


فتعطر

. در- منطقاً

. kund

# LIMITED SITE INVESTIGATION REPORT

## LIMITED SITE INVESTIGATION WALLOPS FLIGHT FACILITY ACCOMACK COUNTY, VIRGINIA Delivery Order 21 Contract Number DACA65-99-D-0068

## FINAL

#### **Prepared** for:

U.S. Army Corps of Engineers Norfolk District

#### Prepared by:

Science Applications International Corporation 11251 Roger Bacon Drive Reston, Virgínia 20190

May 2003

# LIMITED SITE INVESTIGATION REPORT

LIMITED SITE INVESTIGATION WALLOPS FLIGHT FACILITY ACCOMACK COUNTY, VIRGINIA Delivery Order 21 Contract Number DACA65-99-D-0068

### FINAL

#### Prepared for:

U.S. Army Corps of Engineers Norfolk District

Prepared by:

Science Applications International Corporation 11251 Roger Bacon Drive Reston, Virginia 20190

May 2003

# TABLE OF CONTENTS

|    |     |                |                                                                          | Page |
|----|-----|----------------|--------------------------------------------------------------------------|------|
| EX |     |                | SUMMARY                                                                  |      |
| 1. | INT | RODL           | ICTION                                                                   |      |
|    | 1.1 | PUR            | POSE AND SCOPE                                                           |      |
|    |     | 1.1.1          | Scope                                                                    |      |
|    |     | 1.1.2          | Objectives                                                               |      |
|    | 1.2 | INS            | FALLATION DESCRIPTION AND HISTORY                                        |      |
|    |     | 1.2.1          | Installation History                                                     |      |
|    |     | 1.2.2          | <b>1</b>                                                                 |      |
|    | 1.3 |                | VIOUS ENVIRONMENTAL INVESTIGATIONS AND STUDIES                           |      |
|    | 1.4 | REP            | ORT ORGANIZATION                                                         |      |
| 2. | EN  |                | MENTAL SETTING OF THE WALLOPS FLIGHT FACILITY                            |      |
|    | 2.1 | LOC            | ATION                                                                    |      |
|    | 2.2 | DEN            | 10GRAPHICS AND LAND USE                                                  |      |
|    | 2.3 | GEC            | DLOGY AND PHYSIOGRAPHY                                                   |      |
|    | 2.4 | HYI            | DROLOGY AND GROUNDWATER                                                  |      |
|    | 2.5 | DRA            | INAGE                                                                    |      |
| ,  | 2.6 | ECC            | LOGY AND SENSITIVE ENVIRONMENTS                                          |      |
|    | 2.7 | CLI            | MATE                                                                     |      |
| 3. | COI | NTAM           | INANT ASSESSMENT METHODOLOGY                                             |      |
|    | 3.1 | SAM            | IPLING METHODOLOGY                                                       |      |
|    |     | 3.1.1          | Sample Selection                                                         |      |
| •  |     | 3.1.2          | Parameter Selection                                                      |      |
|    | 3.2 | FIEI           | D ACTIVITIES AND PROCEDURES                                              |      |
|    |     | 3.2.1          | Visual Inspection                                                        |      |
|    |     | 3.2.2          | Field Screening                                                          |      |
|    |     | 3.2.3          | Soil Sampling<br>Hydropunch <sup>®</sup> Groundwater Sampling Procedures |      |
|    |     | 3.2.4<br>3.2.5 | Sample Identification                                                    |      |
|    |     | 3.2.5          | Sample Handling, Storage, and Shipping                                   | 3-6  |
|    |     |                | Decontamination Procedures                                               |      |
|    |     |                | 3.2.7.1 Drill Rig and Drilling Equipment Decontamination                 |      |
|    |     |                | 3.2.7.2 Sampling Equipment Decontamination                               |      |
|    |     |                | 3.2.7.3 Investigation-derived Waste Management                           |      |
|    |     |                | 3.2.7.4 Liquid Investigation-derived Waste                               |      |
|    |     |                | 3.2.7.5 Solid Investigation-derived Waste                                |      |
|    |     | 3.2.8          | Topographic Surveying                                                    |      |
|    | 3.3 | DEV            | IATIONS FROM PLANNED ACTIVITIES                                          |      |
|    |     | 3.3.1          | Old WWTP Plant Investigation                                             |      |
|    |     | 3.3.2          | CDL Soil Boring Investigation                                            |      |
|    | 3.4 | PRO            | TECTION STANDARDS                                                        |      |
|    |     | 3.4.1          | Soil Protection Standards                                                |      |
|    |     | 3.4.2          | Groundwater Protection Standards                                         |      |

( )

ţ

ł

## **TABLE OF CONTENTS (Continued)**

|    |                 |       |                    |                                                                                                    | Page           |
|----|-----------------|-------|--------------------|----------------------------------------------------------------------------------------------------|----------------|
| 4. |                 |       |                    | HEMICAL ANALYSIS PROGRAM AND QUALITY ASSURANCE                                                     | 4-1            |
|    | 4.1             | LAE   | BORATO             | RY ANALYTICAL METHODS                                                                              | 4-1            |
|    | 4.2             | DAT   | TA REPO            | RTING AND VALIDATION                                                                               | 4-1            |
|    | 4.3             |       |                    | SSURANCE SUMMARY                                                                                   |                |
|    | <del>.</del> .5 |       |                    | n                                                                                                  |                |
|    |                 | 4.3.2 |                    | ли<br>Су                                                                                           |                |
|    |                 | 4.3.3 |                    | entativeness                                                                                       |                |
|    | •               | 4.3.4 | Compar             | ability                                                                                            |                |
|    |                 | 4.3.5 | Comple             | teness                                                                                             |                |
| 5. | SIT             | E INV | ESTIGAT            | TION RESULTS, CONCLUSIONS, AND RECOMMENDATIONS                                                     | 5-1            |
|    | 5.1             | SITE  | E 1 – OLI          | O WASTEWATER TREATMENT PLANT                                                                       | 5.1-1          |
|    | 0.1             | 5.1.1 |                    | scription, History, and Environmental Setting                                                      |                |
|    |                 | 5.1.1 | 5.1.1.1            | Site Description and History                                                                       | 5.1-1          |
|    | •               |       | 5.1.1.2            | Site Conditions and Environmental Setting                                                          |                |
|    |                 |       | 5.1.1.3            | Background and Previous Site Investigation Activities                                              | 5.1-3          |
|    |                 | 5.1.2 | Field In           | vestigation                                                                                        | 5.1 <b>-</b> 6 |
|    |                 |       | 5.1.2.1            | SAIC Field Investigation                                                                           |                |
| •  |                 | 5.1.3 | -                  | ation Results and Nature and Extent                                                                |                |
|    |                 |       | 5.1.3.1            | Soil Boring Results and Nature and Extent                                                          | 5.1-13         |
|    |                 |       |                    | ions and Recommendations                                                                           |                |
|    |                 |       | 5.1.4.1            | Conclusions                                                                                        |                |
|    |                 | a mr  | 5.1.4.2            | Recommendations                                                                                    |                |
|    | 5.2             |       |                    | D 600,000-GALLON FUEL TANKS, BUILDINGS A-46A AND A-46E                                             |                |
|    |                 | 5.2.1 |                    | cription, History, and Environmental Setting                                                       | J.2-1          |
|    |                 | ·     | 5.2.1.1            | Site Description and History                                                                       | 3.2-1<br>5 2_1 |
|    |                 |       | 5.2.1.2<br>5.2.1.3 | Site Conditions and Environmental Setting<br>Background and Previous Site Investigation Activities | 5.2-1          |
|    |                 | 577   |                    | vestigation                                                                                        | 5 2 <b>-</b> 9 |
|    |                 | 5.2.2 | 5.2.2.1            | SAIC Field Investigation                                                                           | 5.2-9          |
|    |                 | 5.2.3 |                    | ation Results and Nature and Extent                                                                | 5.2-10         |
|    |                 | 9.2.9 | 5231               | UST Sample Results and Nature and Extent                                                           | 5.2-10         |
|    |                 | 5.2.4 | Conclusi           | ions and Recommendations                                                                           | 5.2-16         |
|    |                 |       | 5.2.4.1            | Conclusions                                                                                        | 5.2-16         |
|    |                 |       | 5.2.4.2            | Recommendations                                                                                    | 5.2-16         |
|    | 5.3             | INDU  | JSTRIAL            | , WASTE/SANITARY LANDFILL                                                                          | 5.3-1          |
|    |                 | 5.3.1 | Site Des           | cription, History, and Environmental Setting                                                       | 5.3-1          |
|    |                 |       | 5.3.1.1            | Site Description and History                                                                       | 5.3-1          |
|    |                 |       | 5.3.1.2            | Site Conditions and Environmental Setting                                                          | 5.3-1          |
|    |                 |       | 5.3.1.3            | Background and Previous Site Investigation Activities                                              | 5.3-3          |
|    |                 | 5.3.2 |                    | vestigation                                                                                        | 5.3-5          |
|    |                 |       | 5.3.2.1            | SAIC Field Investigation                                                                           | 5.3-5          |
|    |                 | 5.3.3 |                    | ation Results and Nature and Extent                                                                |                |
|    |                 |       | 5.3.3.1            | Soil Boring Results and Nature and Extent<br>Groundwater Results and Nature and Extent             | 5.3-5          |
|    |                 |       | 5.3.3.2            | Groundwater Results and Nature and Extent                                                          |                |

May 2003

j

j

j

ļ

ļ

Ū

## TABLE OF CONTENTS (Continued)

|    | 5.3.4   | Conclus      | ions and Recommendations                              |       |
|----|---------|--------------|-------------------------------------------------------|-------|
|    |         | 5.3.4.1      | Conclusions                                           |       |
|    |         | 5.3.4.2      | Recommendations                                       |       |
|    | 5.4 CON | <b>STRUC</b> | TION DEBRIS LANDFILL                                  | 5.4-1 |
|    | 5.4.1   | Site Des     | scription, History, and Environmental Setting         |       |
|    |         | 5.4.1.1      | Site Description and History                          |       |
|    |         |              | Site Conditions and Environmental Setting             | 5.4-1 |
|    |         | 5.4.1.3      | Background and Previous Site Investigation Activities |       |
|    | 5.4.2   | Field In     | vestigation                                           | 5.4-2 |
|    | 5       | 5.4.2.1      | SAIC Field Investigation                              |       |
|    | 5.4.3   | Investig     | ation Results and Nature and Extent                   | 5.4-7 |
|    | 55      | 5.4.3.1      | Soil Boring Results and Nature and Extent             | 5.4-7 |
|    |         | 5.4.3.2      | Groundwater Results and Nature and Extent             |       |
|    | 544     |              | ions and Recommendations                              |       |
|    | 5       | 5.4.4.1      | Conclusions                                           |       |
|    |         | 5.4.4.2      | Recommendations                                       |       |
| 6. | REFEREN |              |                                                       |       |

# APPENDICES

| Appendix A. | Soil Boring Logs        |
|-------------|-------------------------|
| Appendix B. | Soil Gas Maps           |
| Appendix C. | Chain-of-Custody Forms  |
| Appendix D. | Data Quality Assessment |
|             | C 337 4 7 1             |

- Appendix E. Source Water Laboratory Results
- Appendix F. Survey Data
- Appendix G. Analytical Data Presentation Tables
- Appendix H. Photographs
- Appendix I. Risk-Based Concentration Tables
- Appendix J. Maximum Contaminant Level Tables

Page

## LIST OF TABLES

|              |                                                                                                                                                                      | Page         |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Table ES-1.  | Summary of Site-specific Sampling Activities                                                                                                                         | ES-1         |
| Table 1-1.   | Summary of Previous Investigations and Studies for LSI Sites                                                                                                         | 1 <b>-</b> 6 |
| Table 2-1.   | Characteristics of Surface Soil                                                                                                                                      |              |
| Table 2-2.   | Classification of WFF Wetlands                                                                                                                                       | 2-13         |
| Table 3-1.   | Limited Site Investigation Field Activities Old WWTP (Site 1), Two 600,000-<br>Gallon USTs (Site 3), IWL, and CDL                                                    | 3-2          |
| Table 3-2.   | Regulatory Screening Criteria                                                                                                                                        | 3-10         |
| Table 4-1.   | Analytical Laboratory Methods                                                                                                                                        |              |
| Table 5.1-1. | Soil Gas Survey Results Site 1 – Old Wastewater Treatment Plant                                                                                                      | 5.1-6        |
| Table 5.1-2. | Inorganic Constituents Detected at Concentrations Greater than Secondary MCLs<br>Site 1 – Old Wastewater Treatment Plant                                             | 5.1-6        |
| Table 5.1-3. | LSI Soil Boring Samples Site 1 – Old Wastewater Treatment Plant                                                                                                      | 5.1-7        |
| Table 5.1-4. | Data Summary: Soil Boring Results, Site 1 - Old Wastewater Treatment Plant                                                                                           | 5.1-8        |
| Table 5.1-5. | Site 1 – Old Wastewater Treatment Plant, Metal Constituents Detected Above Screening Criteria in Soil                                                                | 5.1-15       |
| Table 5.1-6. | Site 1 – Old Wastewater Treatment Plant, Non-Metal Constituents Detected<br>Above Screening Criteria in Soil                                                         | 5.1-19       |
| Table 5.2-1. | Soil Gas Survey Results Site 3 – Two 600,000-Gallon Fuel Tanks                                                                                                       | 5.2-4        |
| Table 5.2-2. | Summary of Soil and Groundwater Analytical Results Site 3 – Two 600,000-<br>Gallon Fuel Tanks, Buildings A-46A and A-46B                                             | 5.2-6        |
| Table 5.2-3. | Summary of Passive Soil Gas Survey Results Limited Site Characterization<br>Report (USACE 1999) Site 3 – Two 600,000-Gallon Fuel Tanks, Buildings<br>A-46A and A-46B |              |
| Table 5.2-4. | Summary of Soil Boring Analytical Results (Earth Tech, Inc., 1999) Site 3 – Two 600,000-Gallon Fuel Tanks, Buildings A-46A and A-46B                                 | 5.2-8        |
| Table 5.2-5. | Summary of Groundwater Analytical Results (Earth Tech, Inc., 1999) Site 3 –<br>Two 600,000-Gallon Fuel Tanks, Buildings A-46A and A-46B                              | 5.2-8        |
| Table 5.2-6. | LSI UST Samples Site 3 – Two 600,000-Gallon Fuel Tanks, Buildings A-46A and A-46B                                                                                    | 5.2-9        |
| Table 5.2-7. | Data Summary: UST Liquids Results, Site 3 – Two 600,000-Gallon Fuel Tanks                                                                                            | 5.2-11       |
| Table 5.2-8. | Site 3 – Two 600,000-Gallon Fuel Tanks, Metal Constituents Detected Above<br>Screening Criteria in UST Liquids                                                       | 5.2-13       |
| Table 5.2-9. | Site 3 – Two 600,000-Gallon Fuel Tanks, Non-metal Constituents Detected<br>Above Screening Criteria in UST Liquids                                                   | 5.2-14       |
| Table 5.3-1. | Summary of Soil Analytical Results – Soil Boring Sample Location W-01<br>Industrial Waste/Sanitary Landfill                                                          | 5.3-4        |
| Table 5.3-2. | Summary of Groundwater Analytical Results – Sample Location W-01 Industrial Waste/Sanitary Landfill                                                                  | 5.3-4        |
| Table 5.3-3. | Industrial Waste/Sanitary Landfill LSI Soil Boring Samples                                                                                                           |              |
| Table 5.3-4. | Industrial Waste/Sanitary Landfill LSI Hydropunch® Samples                                                                                                           |              |
| Table 5.3-5. | Data Summary: Soil Boring Results, Industrial Waste/Sanitary Landfill                                                                                                | 5.3-7        |

vi

Ì

Ì

# LIST OF TABLES (Continued)

|               | Page                                                                                                         |
|---------------|--------------------------------------------------------------------------------------------------------------|
| Table 5:3-6.  | Data Summary: Groundwater Results, Industrial Waste/Sanitary Landfill                                        |
| Table 5.3-7.  | Industrial Waste/Sanitary Landfill, Metal Constituents Detected Above Screening<br>Criteria in Soil          |
| Table 5.4-1.  | Soil Boring Location W-2 Summary of Soil Boring Analytical Results –<br>Construction Debris Landfill         |
| Table 5.4-2.  | Groundwater Sample Location W-02 Summary of Groundwater Analytical<br>Results – Construction Debris Landfill |
| Table 5.4-3.  | Construction Debris Landfill Soil Boring Samples 5.4-6                                                       |
| Table 5.4-4.  | Construction Debris Landfill Hydropunch <sup>®</sup> Samples                                                 |
| Table 5.4-5.  | Data Summary: Soil Boring Results, Construction Debris Landfill                                              |
| Table 5.4-6.  | Data Summary: Groundwater Results, Construction Debris Landfill 5.4-12                                       |
| Table 5.4-7.  | Construction Debris Landfill, Metal Constituents Detected Above Screening<br>Criteria in Soil                |
| Table 5.4-8.  | Construction Debris Landfill, Non-Metal Constituents Detected Above Screening<br>Criteria in Soil            |
| Table 5.4-9.  | Construction Debris Landfill, Non-Metal Constituents Detected Above Screening<br>Criteria in Groundwater     |
| Table 5.4-10. | Construction Debris Landfill, Non-Metal Constituents Detected Above Screening<br>Criteria in Groundwater     |

Í.

-

## LIST OF FIGURES

|               |                                                                                                                               | ıge |
|---------------|-------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 2-1.   | Wallops Flight Facility Installation Location2                                                                                | 2-2 |
| Figure 2-2.   | Wallops Flight Facility Limited Site Investigation Site Location Map                                                          | 2-3 |
| Figure 2-3.   | Wallops Flight Facility Soil Classification                                                                                   | 2-7 |
| Figure 2-4.   | Wallops Flight Facility Wetlands Classification2-                                                                             | 11  |
| Figure 5.1-1. | Site 1 – Old Wastewater Treatment Plant – Site Location Map                                                                   | -2  |
| Figure 5.1-2. | Site 1 – Old Wastewater Treatment Plant – Photograph of Site Conditions                                                       | -3  |
| Figure 5.1-3. | Site 1 - Old Wastewater Treatment Plant - Site Conditions Map                                                                 | 5   |
| Figure 5.1-4. | Site 1 – Old Wastewater Treatment Plant – Inorganic Chemical Constituents<br>Exceeding Screening Criteria                     | 14  |
| Figure 5.1-5. | Site 1 – Old Wastewater Treatment Plant – Organic Chemical Constituents<br>Exceeding Screening Criteria                       | 18  |
| Figure 5.2-1. | Site 3 – Two 600,000-Gallon Fuel Tanks, Buildings A-46A and A-46B5.2                                                          | 2   |
| Figure 5.2-2. | Site 3 - Two 600,000-Gallon Fuel Tanks - Site Conditions Photograph                                                           | ;-3 |
| Figure 5.2-3. | Site 3 – Two 600,000-Gallon Fuel Tanks, Buildings A-46A and A-46B, Site<br>Conditions                                         | :-5 |
| Figure 5.2-4. | Site 3 – Two 600,000-Gallon Fuel Tanks, Buildings A-46A and A-46B, Metal<br>Constituents Exceeding Water Screening Criteria   | 15  |
| Figure 5.2-5. | Site 3 – Two 600,000-Gallon Fuel Tanks, Buildings A-46A and A-46B, Organic<br>Constituents Exceeding Water Screening Criteria | 17  |
| Figure 5.3-1. | Industrial Waste/Sanitary Landfill – Site Location Map                                                                        | -2  |
| Figure 5.3-2. | Industrial Waste/Sanitary Landfill – Site Conditions Photograph                                                               | -3  |
| Figure 5.3-3. | Industrial Waste/Sanitary Landfill – Metal Constituents Exceeding Soil Screening<br>Criteria                                  | 15  |
| Figure 5.3-4. | Industrial Waste/Sanitary Landfill – Organic Constituents Exceeding Screening<br>Soil Criteria in the Soil                    | 16  |
| Figure 5.3-5. | Industrial Waste/Sanitary Landfill – Hydropunch <sup>®</sup> Constituents Exceeding Water<br>Screening Criteria               | 18  |
| Figure 5.4-1. | Construction Debris Landfill Site Location Map5.4                                                                             |     |
| Figure 5.4-2. | Construction Debris Landfill - Site Conditions Photograph                                                                     | -5  |
| Figure 5.4-3. | Construction Debris Landfill – Inorganic Chemical Constituents Exceeding Soil<br>Screening Criteria                           | 20  |
| Figure 5.4-4. | Construction Debris Landfill – Organic Chemical Constituents Exceeding<br>Screening Criteria                                  | 22  |
| Figure 5.4-5. | Construction Debris Landfill – Hydropunch <sup>®</sup> Constituents Exceeding Water<br>Screening Criteria                     |     |

j

1

ļ

U

j

j

ļ

j

# LIST OF ACRONYMS AND ABBREVIATIONS

|     | 2,4-DNT       | 2,4-Dinitrotoluene                                 |
|-----|---------------|----------------------------------------------------|
|     | AFTF          | Aviation Fuel Tank Farm                            |
|     | AOC           | Area of Concern                                    |
| •   | ARAR          | Applicable or Relevant and Appropriate Requirement |
|     | BLS           | Below Land Surface                                 |
|     | BTEX          | Benzene, Toluene, Ethylbenzene, and Xylenes        |
|     | CCB           | Continuing Calibration Blank                       |
|     | CDL           | Construction Debris Landfill                       |
|     | CLP           | Contract Laboratory Program                        |
|     | CNAAS         | Chincoteague Naval Auxiliary Air Station           |
|     | COC           | Chemical of Concern                                |
|     | CoC           | Chain-of-Custody                                   |
|     |               | Conceptual Site Model                              |
|     | CSM           | Dilution-attenuation Factor                        |
|     | DAF           | Defense Environmental Restoration Program          |
|     | DERP          | Deionized                                          |
|     | DI            |                                                    |
|     | DNBP          | Di-n-Butyl Phthalate                               |
|     | DOD           | U.S. Department of Defense                         |
|     | DOI           | U.S. Department of the Interior                    |
|     | DPT           | Direct Push Technology                             |
|     | DQO           | Data Quality Objective                             |
|     | EM            | Engineering Manual                                 |
|     | EPA           | U.S. Environmental Protection Agency               |
|     | EPIC          | Environmental Photographic Interpretation Center   |
|     | ESS           | Environmental Site Survey                          |
|     | FEMA          | Federal Emergency Management Agency                |
|     | FS            | Feasibility Study                                  |
|     | FSP           | Field Sampling Plan                                |
|     | FUDS          | Formerly Used Defense Site                         |
|     | GPES          | General Physics Environmental Services, Inc.       |
|     | GPS           | Global Positioning System                          |
|     | GRO           | Gasoline Range Organics                            |
|     | HQ            | Hazard Quotient                                    |
|     | I.D.          | Identification                                     |
|     | ICB           | Initial Calibration Blank                          |
|     | IDW           | Investigation-derived Waste                        |
|     | IRP           | Installation Restoration Program                   |
|     | IS            | Internal Standard                                  |
| • . | ĪWL           | Industrial/Sanitary Waste Landfill                 |
|     | LCS           | Laboratory Control Sample                          |
|     | LSI           | Limited Site Investigation                         |
|     | LSIR          | LSI Report                                         |
|     | MCL           | Maximum Contaminant Level                          |
|     | MCL<br>MS/MSD | Matrix Spike/Matrix Spike Duplicate                |
|     | msl           | mean sea level                                     |
|     | MSS           | Matrix Spike Sample                                |
| •   | NAD           | North American Datum                               |
|     | NASA          | National Aeronautics and Space Administration      |
|     | NOAA          | National Oceanic and Atmospheric Administration    |
|     | NUAA          | radonal Occane and Autospheric Authinisticion      |
|     |               |                                                    |

Î

## LIST OF ACRONYMS AND ABBREVIATIONS

| NOAEL | No-Observable-Adverse-Effect Level                                       |
|-------|--------------------------------------------------------------------------|
| OD    | Outside Diameter                                                         |
| PA    | Preliminary Assessment                                                   |
| PAH   | Polynuclear Aromatic Hydrocarbon                                         |
| PARCC | Precision, Accuracy, Representativeness, Comparability, and Completeness |
| PCE   | Tetrachloroethene                                                        |
| PCP   | Pentachlorophenol                                                        |
| PID   | Photoionization Detector                                                 |
| PPE   | Personal Protective Equipment                                            |
| ppm   | Parts per Million                                                        |
| ppt   | Parts per Thousand                                                       |
| PRP   | Potentially Responsible Party                                            |
| PWP   | Project Work Plan                                                        |
| QA/QC | Quality Assurance/Quality Control                                        |
| QAPP  | Quality Assurance Project Plan                                           |
| QC    | Quality Control                                                          |
| RBC   | Risk-based Concentration                                                 |
| RCRA  | Resource Conservation and Recovery Act                                   |
| RI    | Remedial Investigation                                                   |
| RPD   | Relative Percent Difference                                              |
|       | Relative Risk Evaluation                                                 |
| RRE   |                                                                          |
| SAIC  | Science Applications International Corporation                           |
| SCS   | Soil Conservation Survey                                                 |
| SDWA  | Safe Drinking Water Act                                                  |
| SI    | Site Investigation                                                       |
| SMCL  | Secondary Maximum Contaminant Level                                      |
| SOP   | Standard Operating Procedure                                             |
| SPCS  | State Plane Coordinate System                                            |
| SSHP  | Site Safety and Health Plan                                              |
| SSL   | Soil Screening Level                                                     |
| SVOC  | Semivolatile Organic Compound                                            |
| T&E   | Threatened and Endangered                                                |
| TCE   | Trichloroethene                                                          |
| TPH   | Total Petroleum Hydrocarbon                                              |
| UCL   | Upper Control Limit                                                      |
| USACE | U.S. Army Corps of Engineers                                             |
| USFWS | U.S. Fish and Wildlife Service                                           |
| USGS  | U.S. Geological Survey                                                   |
| UST   | Underground Storage Tank                                                 |
| UXO   | Unexploded Ordnance                                                      |
| VDEQ  | Virginia Department of Environmental Quality                             |
| VOC   | Volatile Organic Compound                                                |
| WFF   | Wallops Flight Facility                                                  |
| WWII  | World War II                                                             |
| WWTP  | Wastewater Treatment Plant                                               |
|       |                                                                          |

i

J

L

#### EXECUTIVE SUMMARY

Site Investigation (SI) activities were conducted by Science Applications International Corporation (SAIC) at Wallops Flight Facility (WFF), Accomack County, Virginia, in support of the Formerly Used Defense Sites (FUDS) program, and in partial fulfillment of the requirements of Contract Number DACA65-99-D-0068, Delivery Order 21 for the U.S. Army Corps of Engineers (USACE), Norfolk District. This Limited Site Investigation Report (LSIR) presents the site history; sampling and analysis strategy; analytical results; human health screening assessment; and recommended action for the following four FUDS program sites:

- Site 1 Old Wastewater Treatment Plant (WWTP)
- Site 3 Two 600,000-Gallon Fuel Tanks, Buildings A-46A and A-46B
- Industrial Waste/Sanitary Landfill (IWL)
- Construction Debris Landfill (CDL).

During the Limited Site Investigation (LSI) field program, activities were conducted at each site to identify the presence or absence of soil, groundwater, and underground storage tank (UST) liquids contamination, as applicable to individual site conditions. LSI field program activities included the following:

- Site inspection, sample staking, and site clearance for the LSI sites
- Soil boring drilling and surface and subsurface soil sampling and analysis at the WWTP, IWL, and CDL sites
- Groundwater (Hydropunch<sup>®</sup>) sampling and analysis at the IWL and CDL sites
- Sampling and analysis of liquids present in two USTs at Site 3
- Topographic surveying

• Investigation-derived waste (IDW) management.

Site-specific sampling activities conducted at each site are summarized in Table ES-1.

| Site Name                                                            | Sampling Activities                                                                                                                                | Chemical Analysis       |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Old Wastewater Treatment Plant<br>(Site 1)                           | <ul><li>Surface soil sampling</li><li>Soil borings with subsurface soil sampling</li></ul>                                                         | VOCs, SVOCs, and metals |
| Two 600,000-Gallon Fuel Tanks,<br>Buildings A-46A and A-46B (Site 3) | Sampling of liquids in the tanks                                                                                                                   | VOCs, SVOCs, and metals |
| Industrial Waste/Sanitary Landfill                                   | <ul> <li>Surface soil sampling</li> <li>Soil borings with subsurface soil sampling</li> <li>Hydropunch<sup>®</sup> groundwater sampling</li> </ul> | VOCs, SVOCs, and metals |
| Construction Debris Landfill                                         | <ul> <li>Surface soil sampling</li> <li>Soil borings with subsurface soil sampling</li> <li>Hydropunch<sup>®</sup> groundwater sampling</li> </ul> | VOCs, SVOCs, and metals |

#### Table ES-1. Summary of Site-specific Sampling Activities Wallops Flight Facility, Accomack County, Virginia

The primary objective of the LSI was to collect and analyze representative samples from selected locations and media to further characterize the type and concentration of contamination identified during past sampling events. Data from previous site-specific investigation activities have been incorporated into the LSIR to present a complete summary of site-specific information and data available for the four sites.

This LSI is not intended to be a comprehensive evaluation of the four FUDS sites investigated; instead, it is a screening effort intended to determine if potential hazards generated by historical U.S. Department of Defense (DOD) activities exist at the sites and, if so, whether additional study or cleanup actions are required to address the identified hazards. Screening-level evaluations were conducted as part of the LSI. Constituent concentrations detected in the groundwater were compared to U.S. Environmental Protection Agency (EPA) Region III risk-based concentration (RBCs) for Tap Water (EPA 2001a) and Federal maximum contaminant levels (MCLs) (EPA 2001b). Data collected from potentially contaminated sites were subject to a human health toxicity screen. The toxicity screen was used to evaluate human health effects by comparing site data to screening levels (SSLs) for groundwater protection at a dilution-attenuation factor (DAF) of 20. A background comparison (soils or groundwater) to distinguish inorganic constituents that are naturally occurring from those that are site related has not been conducted for the LSIR.

General conclusions and recommendations based on the results of the LSI are summarized below.

#### Site 1 – Old Wastewater Treatment Plant

During the LSI, a total of six soil samples were collected from the former sludge drying bed and downgradient from the trickling filter. Constituent concentrations show exceedances of human health screening criteria for arsenic and polynuclear aromatic hydrocarbons (PAHs).

Additional soil sampling adjacent to and beneath the sludge bed is recommended to further delineate the vertical and horizontal extent of contamination. Installation and sampling of Hydropunch® is also recommended to evaluate potential impacts to groundwater. The revised data set should be screened against background data, and the need for conducting a human health and screening-level ecological risk assessment should be assessed.

#### Site 3 – Two 600,000-Gallon Fuel Tanks, Buildings A-46A and A-46B

Four liquid samples were collected from the two 600,000-gallon USTs to determine the presence or absence of hydrocarbons.

The liquid in the tanks contain various organic constituents associated with the past storage of aviation fuel. This liquid should be removed and the tanks cleaned and abandoned in accordance with the Commonwealth of Virginia UST regulations. Samples of the containerized liquid should be collected prior to disposal for waste characterization. The soil and groundwater surrounding the tank have been previously investigated. Therefore, supplemental evaluation of the existing data should be conducted to support future recommendations for "No Further Action."

#### Industrial Waste/Sanitary Landfill

During the LSI, eight soil samples and four groundwater samples were collected at four discrete locations. The samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and metals.

Constituent concentrations show few exceedances of human health screening criteria. Although environmental data at the IWL do not indicate significant contamination or impact from previous activities, the ability to make a determination of No Further Action will require additional information. Given the lack of historical information and the few samples collected in relation to the size of the landfill, additional soil samples are recommended. The revised data set should be screened against background data, and the need for conducting a human health and screening-level ecological risk assessment should be assessed.

#### **Construction Debris Landfill**

Seven soil and three groundwater samples were collected during the LSI at the CDL. A zone of stained soil was encountered in one soil boring at 7.5 feet below land surface (BLS). To determine the boundary of the CDL and the extent of stained soil, additional soil and groundwater characterization is recommended. The revised data set should be screened against background data, and a human health risk assessment and screening-level ecological risk assessment should be conducted on the combined data set.

# THIS PAGE WAS INTENTIONALLY LEFT BLANK

l

#### 1. INTRODUCTION

This report documents the results and recommendations of a Limited Site Investigation (LSI) of four Formerly Used Defense Site (FUDS) program sites located at the Wallops Flight Facility (WFF), Accomack County, Virginia. Science Applications International Corporation (SAIC) prepared this LSI Report (LSIR) to fulfill the requirements of the U.S. Army Corps of Engineers (USACE), Norfolk District, Contract No. DACA65-99-D-0068, Delivery Order 21. The purpose and scope of this LSIR are defined in Section 1.1. Section 1.2 provides a description and history of the Installation and summarizes current installation activities being conducted at the WFF. Information summarizing previous environmental investigations and studies associated with the LSI sites is presented in Section 1.3 and the organization of the report is provided in Section 1.4.

#### 1.1 PURPOSE AND SCOPE

A preliminary potentially responsible party (PRP) analysis has been conducted at the WFF to identify responsible parties for action at sites of potential environmental concern. The preliminary PRP investigation was used, together with other information presented in documents generated during the investigation of sites under the National Aeronautics and Space Administration (NASA) Defense Environmental Restoration Program (DERP), to focus environmental investigation activities on those sites present at the WFF for which the U.S. Department of Defense (DOD) bears a probable responsibility under the FUDS program. A desktop audit for DOD has been completed at the WFF to evaluate and document existing FUDS program site information and to identify potential operations that may have released chemical constituents or pollutants to the environment (MicroPact 2002). As a result, the following 10 WFF sites have been incorporated into the FUDS program.

- Site 1 Old Wastewater Treatment Plant (WWTP)
- Site 3 Two 600,000-Gallon Fuel Tanks, Buildings A-46A and A-46B
- Site 9 Abandoned Drum Field, Runway 17-35
- Site 13 Ordnance Disposal Area, Boat Basin
- Site 14 Debris Piles, North of Runway 10-28
- Site 15 Debris Piles Along Runway 17-35
- Site 16 Waste Oil Dump
- Industrial/Sanitary Waste Landfill (IWL)
- Construction Debris Landfill (CDL)
- Ordnance Disposal Area, Hanger Delta 1.

The WFF has undertaken an evaluation of the FUDS program sites located at the Main Installation to determine the impact of past DOD activities on public health or to the environment. These environmental investigation activities at the WFF have been coordinated through and managed by USACE Norfolk District. As part of this evaluation, the WFF has adopted the Installation Restoration Program (IRP) format for completion of the environmental investigation at the WFF. The five phases that constitute the IRP process and the purpose and activities associated with each phase are presented below.

**Preliminary** Assessment—A Preliminary Assessment (PA) is conducted to identify and evaluate the type and location of suspected problems associated with past hazardous waste handling procedures, disposal sites, and spill sites. This is accomplished through interviews with past and present facility employees, historical record searches, and visual site inspections. In addition, detailed geologic, hydrologic, meteorological, and environmental data for the study area are collected.

Site Investigation—The purpose of a Site Investigation (SI) is to acquire the necessary data to either confirm or deny the existence of suspected environmental contamination at identified sites of concern. The SI includes identifying specific chemical contaminants and their concentrations in

environmental media and determining the potential for contaminant migration through site-specific hydrogeologic investigations.

**Remedial Investigation**—During a Remedial Investigation (RI), necessary data are acquired to define the extent of confirmed environmental contamination and to further assess the associated risks to human health, welfare, and the environment. The RI quantifies the magnitude and extent of contamination at the sites and identifies the specific chemical contaminants present and their concentrations in environmental media. A determination also is made as to the potential for contaminant migration by assessing site-specific hydrogeologic and contaminant characteristics.

*Feasibility Study*—A Feasibility Study (FS) is performed to develop the remedial action alternative that mitigates confirmed environmental contamination at each site and meets the applicable or relevant and appropriate requirements (ARARs). The FS considers risk assessments and cost benefit analyses in providing the necessary data, direction, and documented supportive rationale to acquire regulatory concurrence (i.e., Federal, state, and local) with the recommended remedial alternative.

**Remedial Design**—The purpose of remedial design is to provide engineering design drawings and construction specifications required to implement the recommended remedial action selected through the FS process. The implementation of the remediation plan requires appropriate regulatory acceptance.

The LSI combines aspects of the PA and SI processes identified above. This LSI is not intended to be a comprehensive evaluation of the FUDS sites investigated; instead it is a screening effort intended to determine if potential hazards generated by historical DOD activities exist and, if so, whether additional study or cleanup actions are required to address such hazards. The principal objective of the LSI is to identify and evaluate the type and location of suspected contamination associated with past activities at four FUDS program sites and to acquire the necessary data to either confirm or deny the existence of suspected environmental contamination at these sites. Sites investigated as part of the LSI are identified below:

- Site 1 Old Wastewater Treatment Plant (WWTP)
- Site 3 600,000-Gallon Fuel Tanks, Buildings A46-A and A46-B
- Industrial/Sanitary Waste Landfill (IWL)
- Construction Debris Landfill (CDL).

As part of this study, SAIC evaluated the presence or absence of contamination in the soils at the Old WWTP, IWL, and CDL and groundwater at the IWL and CDL. In addition, liquids present in the Two 600,000-Gallon underground storage tanks (USTs) (Buildings A46-A and A46-B) were sampled for analysis.

The LSI includes screening-level evaluations, in which data collected at potentially contaminated sites are subject to a toxicity screen. The toxicity screen is used to evaluate the potential for identified constituents to affect human receptors by comparing site data to screening criteria. Human health screening criteria used during the LSI included:

- U.S. Environmental Protection Agency (EPA) Region III risk-based concentrations (RBCs) (EPA 2001) for residential and industrial soils
- EPA soil screening levels (SSLs) for groundwater protection at a dilution-attenuation factor (DAF) of 20.
- EPA Region III RBCs for protection of groundwater (EPA 2001)
- Federal maximum contaminant levels (MCLs) (EPA 2001b).

A background comparison (soils or groundwater) to distinguish inorganic constituent concentrations that are naturally occurring from those that are site related has not been conducted for the LSI. Because the

background comparison has not been used to evaluate the LSI data, the screening process is considered conservative in that naturally occurring concentrations of inorganic constituents may exceed the various screening criteria.

Based on the review of site-specific data presented in previous investigation reports, LSI field observations and analytical data, and results of the LSI human health screening process, recommendations have been made for future activities at these sites. The following paragraphs summarize the scope of work included in the LSI at the four sites and identify the objectives of the LSI.

#### 1.1.1 Scope

The scope of work for the LSI at the WFF consists of four inter-related tasks: preparing a Project Work Plan (PWP), conducting field activities, overseeing chemical and quality assurance/quality control (QA/QC) sampling and analysis, and preparing this LSIR. The PWP consisted of three separate subplans, including a Field Sampling Plan (FSP) (SAIC 2002a), a Quality Assurance Project Plan (QAPP) (SAIC 2002b), and a Site Safety and Health Plan (SSHP) (SAIC 2002c). The three subplans were submitted in Draft and Final format to the USACE, Virginia Department of Environmental Quality (VDEQ), and EPA Region III for review and comment before production of the final version. Final approval of the PWP was received in August 2002.

After SAIC received approval of the PWP, the WFF LSI field program was initiated in August 2002. The field activities followed site-specific sampling and health and safety protocols established in the PWP. Laboratory chemical analyses were conducted in accordance with project QA/QC requirements. The specific QA/QC and health and safety requirements for the LSI are presented in detail in the QAPP and SSHP (Subplans II and III of the PWP) (SAIC 2002b and 2002c), respectively.

Field program activities included visual inspection of the LSI sites, soil boring and Hydropunch<sup>®</sup> completion and sampling, UST liquid sampling, and surveying of LSI sample locations. SAIC conducted all field sampling and inspection activities at the WFF. Subcontractors providing services in support of the LSI included an analytical laboratory, General Physics Environmental Services, Inc. (GPES). Additional information about the subcontractor and their specific tasks are included in the FSP (SAIC 2002a) and QAPP (SAIC 2002b).

The analysis and evaluation of the laboratory data and field information gathered during the LSI field activities have been used to characterize the potential for contamination in the surface and subsurface soils and groundwater at the IWL and CDL, the surface and subsurface soils at the Old WWTP, and the UST liquids present in the 600,000-gallon USTs. All data quality objectives (DQOs) and procedures associated with sample collection, laboratory analysis, sample custody, equipment calibrations, and USACE QC procedures applicable to this project contained within the PWP were followed. All activities were conducted using established methodologies and standard operating procedures (SOPs) that were detailed in the FSP (SAIC 2002a). The field activities associated with the LSI were conducted in accordance with the USACE Engineering Manual (EM) 200-1-3, Requirements for the Preparation of Sampling and Analysis Plans (USACE 2001), EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations (EPA 1998a) and Guidance for Quality Assurance Project Plans (EPA 1998b).

This document summarizes the field investigation activities, laboratory results, and data analysis; identifies protection standards; and provides recommendations pertaining to the sites being investigated. The results of the field investigation and sampling program and a qualitative presentation of field and analytical data are presented in this LSIR. Conclusions regarding the extent of detected contamination are summarized and recommendations for future actions are made for the sites under investigation.

#### 1.1.2 Objectives

The primary objective of the WFF LSI at the four FUDS program sites (the Old WWTP, Site 3, the IWL, and the CDL) was to collect and analyze representative samples from site-specific environmental media to further characterize the type and concentration of contamination identified during past sampling events. The sampling program for data collection activities is designed to meet the following general objectives:

- Evaluate the current surface and subsurface conditions present in the immediate vicinity of the sites
- Determine the presence or absence of contamination in the surface and subsurface soils and identify the chemical nature of contaminants (if present)
- Determine the presence or absence of contamination in the groundwater underlying areas of the sites
- Determine the presence or absence of contamination in the site-specific structures and identify the chemical nature of contaminants (if present)
- Evaluate the geologic and hydrogeologic features of the study area
- Evaluate the potential for contaminant release and migration.

Section 4 of the FSP (SAIC 2002a) describes the sampling and analysis program recommended to meet these objectives and specifies field procedures and methods used during the LSI field investigation at the WFF.

#### 1.2 INSTALLATION DESCRIPTION AND HISTORY

This section describes the history of the installation and summarizes current operations conducted at the WFF.

#### 1.2.1 Installation History

The Department of the Navy acquired the property for the Installation in 1942 and constructed the Chincoteague Naval Auxiliary Air Station (CNAAS) as a training facility for World War II (WWII) naval aviators. Prior to being developed for the CNAAS, this area primarily consisted of farmland and marshes. Aerial photographs indicate that by 1943 various buildings and three runways were constructed. Over the years, the mission of the facility changed numerous times. The three runways were modified and extended as needed with the changing mission. This resulted in the construction, expansion, and occasional abandonment of numerous structures and roadways. On January 26, 1946, the Naval Aviation Ordnance Test Station was established.

In 1958, the National Aeronautics and Space Act established NASA. Although the Navy decided to close the CNAAS, the facility continued to operate until 1959, when it was officially closed. NASA took custody of the facility on June 30, 1959. Finalization of the transfer from the Navy did not take place until December 1, 1961. From 1959 to 1974, the entire complex became known as Wallops Station. During this time period, activities in the study area were conducted in support of the Civilian Space Program.

The name of the facility was changed to Wallops Flight Center in 1975, and activities were expanded to include studies of ocean processes. Noise reduction studies of aircraft on runways were conducted within the boundaries of the study area known as Wallops Research Airport. In July 1975, NASA excessed approximately 397 acres of land along the eastern extent of the Main Base to the U.S. Fish and Wildlife Service (USFWS) to establish the Wallops Island National Wildlife Refuge (USDOI 1975). In October 1981, Wallops Flight Center was consolidated with the Goddard Space Flight Center in Maryland and the name was officially changed to the Wallops Flight Facility (WFF). Since then, the WFF has become NASA's primary facility for suborbital programs (USATEC 2000, NASA 1999, NASA Undated).

#### 1.2.2 Current Operations

The WFF Main Base property was first developed commercially in the 1940s, while under control of the Navy. Many of the buildings and structures constructed at that time remain in active service today. Extensive efforts have been made throughout the Installation to renovate and modernize the current buildings.

The current mission of the facility is to further scientific, educational, and economic advancement by supporting space-based research focused on Earth and its environments. The facility is used for research and development, and tracking and data acquisition, and serves as a central platform for NASA's Suborbital and Special Orbital Programs. Current tenants include, among others, the Navy, the Coast Guard, the National Oceanic and Atmospheric Administration (NOAA), the Wallops Command and Data Acquisition Station (CDAS), and the Wallops Island Marine Science Center (in cooperation with the Marine Science Consortium, Inc.).

The Main Base currently contains the research airport, runways, hangars, administrative and technical offices, laboratories, and air traffic control facilities, as well as housing for students and Navy personnel. The research airport provides many services, including communications, telemetry, enhanced radar tracking, and flight-path guidance. The facility also supports a variety of aeronautical research programs (e.g., traction, acoustics, and navigation). The Marine Science Center is adjacent to the airport and consists of more than 57 acres of classrooms, laboratories, residences, and other facilities (NASA 1999).

#### **1.3 PREVIOUS ENVIRONMENTAL INVESTIGATIONS AND STUDIES**

This section summarizes the various environmental investigations or studies that have been conducted at the four LSI FUDS program sites. From 1987 to the present, a series of environmental investigations have been conducted at the WFF, including the LSI that is the focus of this report. These investigations, which have been conducted by both government agencies and private contractors, have ranged from general surveys to more detailed sampling and analysis. Table 1-1 identifies the LSI FUDS program sites characterized and outlines the chronological events conducted for the LSI sites.

#### 1.4 REPORT ORGANIZATION

Sections 2 through 4 present an overview of the WFF environmental setting and the methods used in conducting the LSI. Section 5 presents site-specific results.

*Executive Summary*—This section summarizes and documents the results and recommendations for the four sites under investigation at the WFF.

Section 1. Introduction—This section identifies the objective and scope of this study; describes the Installation and summarizes its history and current operations; highlights previous investigations or studies; and summarizes data screening methodologies.

Section 2. Environmental Setting of the Wallops Flight Facility—Section 2 provides an overview of the physical setting, climate, geology, and hydrogeology. In addition, soil and groundwater characteristics of the investigated sites are discussed.

# Table 1-1. Summary of Previous Investigations and Studies for LSI Sites Wallops Flight Facility, Accomack County, Virginia

| Document Title                                                                                                                                 | Date              | LSI FUDS Sites Characterized                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------|
| Ground Water Resource Evaluation for the Main Base (Rusnow, Kane & Andrews)                                                                    | March, 1987       | Wallops Flight Facility – Main Base                                                         |
| Remote Sensing Report (Ebasco Services)                                                                                                        | June, 1990        | Site 3 Two 600,000-Gallon Fuel Tanks                                                        |
| Environmental Sites Survey – Wallops Flight<br>Facility (Ebasco Services)                                                                      | November,<br>1990 | Site 1 – Old WWTP; Site 3 – Two<br>600,000-Gallon Fuel Tanks                                |
| NASA Wallops Flight Facility Site Inspection,<br>Preliminary Report #1. Unexploded<br>Ordnance/Magnetometer Survey Results<br>(Metcalf & Eddy) | July, 1993        | Site 1 – Old WWTP                                                                           |
| NASA Wallops Flight Facility Site Inspection,<br>Preliminary Report #2. Soil Gas Survey Results<br>(Metcalf & Eddy)                            | July 1993         | Site 1 – OLD WWTP; Site 3 – Two<br>600,000-Gallon Fuel Tanks                                |
| Preliminary Hazard Ranking System Scoring<br>Results (Metcalf & Eddy)                                                                          | December,<br>1994 | Site 1 – Old WWTP                                                                           |
| Aerial Photographic Analysis NASA-Wallops<br>Flight Facility (EPIC)                                                                            | May, 1996         | Wallops Flight Facility – Main Base<br>(1938 to 1996)                                       |
| Site Inspection for Miscellaneous Sites at<br>Wallops Flight Facility (Ebasco Services)                                                        | March, 1996       | Site 1 – Old WWTP; Site 3 – Two<br>600,000-Gallon Fuel Tanks                                |
| Limited Site Characterization Report for NOAA<br>Facility (USACE)                                                                              | April, 1999       | Site 3 – Two 600,000-Gallon Fuel Tanks<br>(Buildings A-46A and A-46B)                       |
| Status Summary Report (Earth Tech)                                                                                                             | January, 2000     | Site 1 – Old WWTP; Site 3 – Two<br>600,000-Gallon Fuel Tanks; IWL (fish &<br>wildlife); CDL |
| Preliminary Potentially Responsible Party<br>Analysis. Goddard Space Flight Center,<br>Wallops Flight Facility (NASA)                          | February, 2001    | WFF                                                                                         |

Section 3. Contaminant Assessment Methodology—This section describes the field and laboratory procedures and methods used to conduct the LSI. In addition, the approach and rationale for the field activities are summarized.

Section 4. Laboratory Chemical Analysis Program and Quality Assurance Summary—The laboratory chemical analysis program and an assessment of the laboratory and site activity data are included. In addition, the methods and procedures used to establish the soil and groundwater concentrations are presented.

Section 5. Site-specific Investigation Results, Conclusions, and Recommendations—This section provides, on a site-by-site basis, the investigation approach and analytical and screening results. An assessment of field investigation activities is presented, followed by investigation results. Analytical results are summarized and screening results for the detected constituents are presented. Recommendations regarding future actions at the site also are provided.

Section 6. References—This section lists the references that were used in preparing this report.

Appendices—Appendices A through H include data from field activities or related assessments:

- Appendix A. Soil Boring Logs
- Appendix B. Soil Gas Maps

- Appendix C. Chain-of-Custody Forms
- Appendix D. Data Quality Assessment
- Appendix E. Source Water Laboratory Results
- Appendix F. Survey Data
- Appendix G. Analytical Data Presentation Tables
- Appendix H. Photographs

- Appendix I. Risk-Based Concentration Tables
- Appendix J. Maximum Contaminant Level Tables.

# THIS PAGE WAS INTENTIONALLY LEFT BLANK

, **III** 

بد مع ا

j

-----

#### ENVIRONMENTAL SETTING OF THE WALLOPS FLIGHT FACILITY 2.

This section summarizes the environmental setting for the Wallops Flight Facility (WFF), Accomack County, Virginia. The environmental setting incorporates aspects of the Installation location, demographics and land use, physiography and topography, climate and meteorology, geology, hydrogeology, surface water hydrology, soil, and ecology for the Installation and surrounding areas. The environmental setting has been compiled predominantly from field studies and information presented in the Desktop Audit Summary Report (MicroPact 2002); information from the U.S. Geological Survey (USGS), Soil Conservation Survey (SCS), and National Oceanic and Atmospheric Administration (NOAA); and other historical project reports and maps.

Field studies have included site-specific mapping; geologic and hydrogeologic measurements and observations; and quantitative sampling and analysis of surface soil, subsurface soil, groundwater and containerized liquids. This section describes the environmental setting for the four Formerly Used Defense Sites (FUDS) program sites investigated during the Limited Site Investigation (LSI), as determined by historical documentation and field work conducted during historical and ongoing investigations and studies.

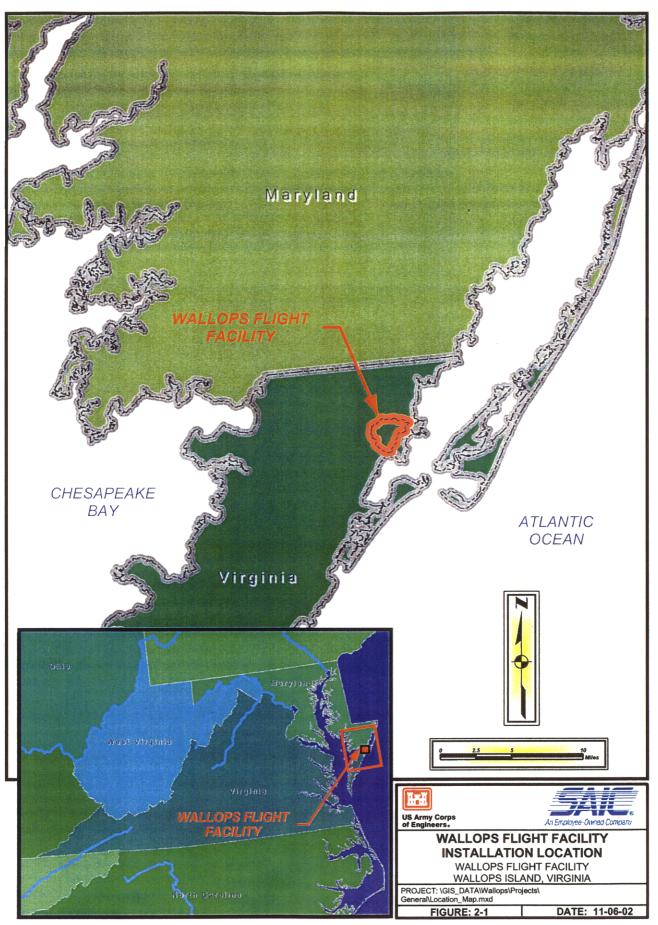
#### LOCATION 2.1

The WFF is located in Accomack County, Virginia. The facility comprises three separate areas: the Main Base, Wallops Island, and Wallops Mainland. The study area (Main Base) is situated on the Atlantic Coast of the Delmarva Peninsula, approximately 5 miles south of the Maryland/Virginia state boundary, and west of Chincoteague Island. Figure 2-1 shows the location of the WFF in Accomack County, Virginia.

The Main Base, which occupies approximately 2,230 acres, is bounded by Mosquito Creek to the north. Cedar Creek to the south. Simoneaston Bay to the east, and Wattsville Branch to the west. Wallops Island and Wallops Mainland are located approximately 7.5 miles southeast of the Main Base. Figure 2-2 shows the boundaries of the WFF and the location of the identified water resources identified above.

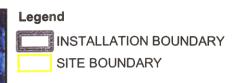
#### **DEMOGRAPHICS AND LAND USE**

The area surrounding the WFF is sparsely populated and largely agricultural. Land not in agricultural use, except for the resort town of Chincoteague, is either wooded or marshland. The main commercial industries are farming (primarily potatoes and soybeans), poultry, commercial and recreational fishing, and tourism. Two national wildlife refuges (Chincoteaue and Assateague Islands) attract a substantial number of visitors to view the wide variety of wildlife inhabiting the area.

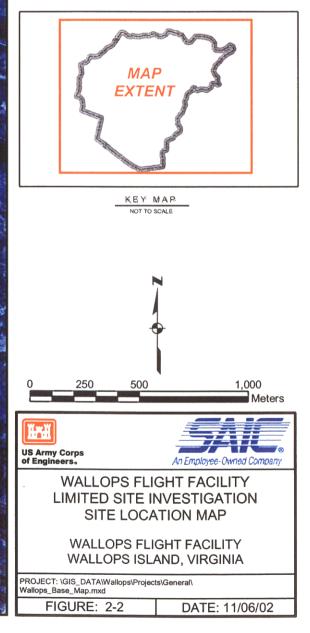

The WFF is surrounded by rural farmland and small villages. Horntown, with approximately 1,466 acres, is located about 2.5 miles north of the Main Base. Wattsville, approximately 826 acres, is located approximately 1 mile west of the Main Base. Atlantic, approximately 459 acres, lies about 2.75 miles southwest of the Main Base.

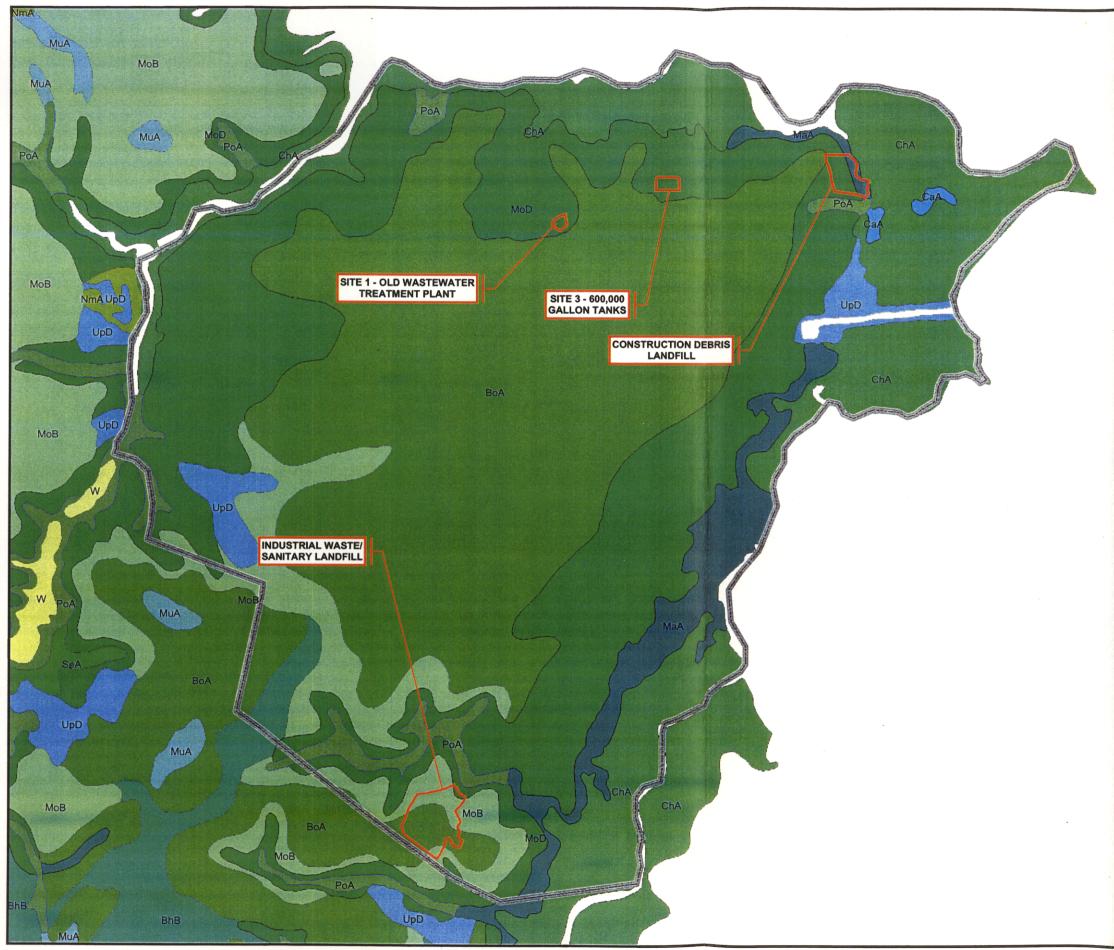
#### 2.3 GEOLOGY AND PHYSIOGRAPHY

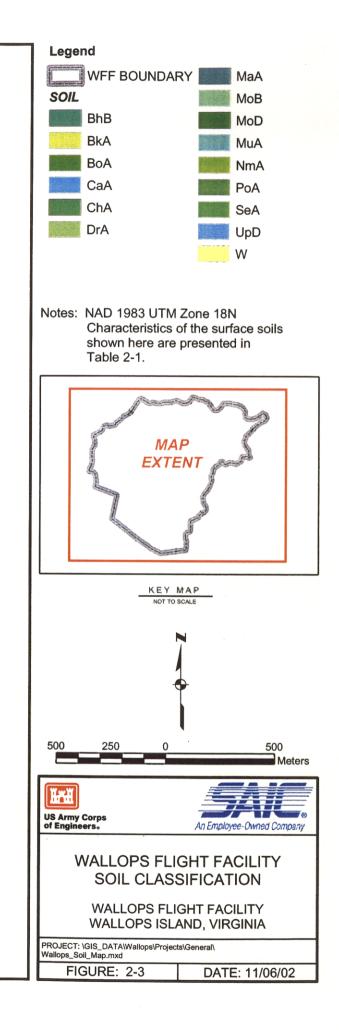
The WFF is located within the Atlantic Coastal Plain physiographic province and is underlain by approximately 7,000 feet of sediment that overlies a crystalline basement. The sedimentary overburden ranges in age from Cretaceous to Quaternary and consists of a thick series of terrestrial deposits (Cretaceous) overlain by a thinner series of marine sediments. These sediments are generally unlithified and consist of clays, silts, sands, and gravels. The regional dip of the units is approximately to the east, toward the shore.


ا ایک ا

## THIS PAGE WAS INTENTIONALLY LEFT BLANK





2-3



#### Notes: NAD 1983 UTM Zone 18N







| Ĺ, | <br>ł. | 1 |  | . 6 |  |
|----|--------|---|--|-----|--|
|    |        |   |  |     |  |

|  | k. |
|--|----|
|  |    |
|  |    |
|  |    |

# Table 2-1. Characteristics of Surface SoilWallops Flight Facility, Accomack County, Virginia

| Mapping Unit                                                                      | Setting                                                                                                      | Soil Properties            |                                                                      |                           |                                                  |                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------|---------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                   |                                                                                                              | Drainage<br>Class          | Permeability                                                         | Organic<br>Matter Content | Depth to<br>Water                                | Soil Reaction                                                                                                                                                                                            |
| BhB – Bojac loamy<br>sand, 2 to 6 percent<br>slopes                               | Landform: Stream terraces<br>Landscape Position:<br>Undulating surfaces and rims<br>of Carolina bays         | Well drained               | Moderately rapid                                                     | Low                       | More than 48<br>inches                           | Extremely acid to slightly<br>acid in the surface layer and<br>subsoil, very strongly acid to<br>moderately acid in the<br>substratum                                                                    |
| BkA – Bojac sandy<br>loam, 0 to 2 percent<br>slopes                               | Landform: Stream terraces<br>Landscape Position: Nearly<br>level and undulating surfaces                     | Well drained               | Moderately rapid                                                     | Low                       | 48 to 72<br>inches                               | Extremely acid to slightly<br>acid in the surface layer and<br>subsoil, very strongly acid to<br>moderately acid in the<br>substratum                                                                    |
| BoA – Bojac fine<br>sandy loam, 0 to 2<br>percent slopes                          | Landform: Stream terraces<br>Landscape Position: Nearly<br>level and undulating surfaces                     | Well drained               | Moderately rapid                                                     | Low                       | More than 48<br>inches                           | Extremely acid to slightly<br>acid in the surface layer and<br>subsoil, very strongly acid to<br>moderately acid in the<br>substratum                                                                    |
| CaA – Camocca fine<br>sand, 0 to 2 percent<br>slopes, frequently<br>flooded       | Landform: Intermingled<br>dunes and marshes<br>Landscape Position:<br>Depressions and flats between<br>dunes | Poorly drained             | Very rapid                                                           | Low                       | 0 to 12 inches                                   | Extremely acid to moderately alkaline                                                                                                                                                                    |
| ChA – Chincoteague<br>silt loam, 0 to 1<br>percent slopes,<br>frequently flooded  | Landform: Tidal salt marshes<br>Landscape Position: Level<br>marsh surfaces                                  | Very poorly<br>drained     | Moderately slow<br>to rapid                                          | Moderate to<br>very high  | Ponded 0 to<br>36 inches<br>above the<br>surface | Moderately acid to slightly alkaline                                                                                                                                                                     |
| DrA – Dragston fine<br>sandy loam, 0 to 2<br>percent slopes                       | Landform: Stream terraces<br>Landscape Position: Rims of<br>depressions, flats, and<br>depressions           | Somewhat<br>poorly drained | Moderately rapid<br>in the subsoil<br>and rapid in the<br>substratum | Low                       | 12 to 30<br>inches                               | Very strongly acid or<br>strongly acid in the surface<br>layer and the upper part of<br>the subsoil, very strongly<br>acid to slightly acid in the<br>lower part of the subsoil and<br>In the substratum |
| MaA – Magotha fine<br>sandy loam, 0 to 2<br>percent slopes,<br>frequently flooded | Landform: Tidal salt marshes<br>Landscape Position: Level<br>marsh surfaces                                  | Poorly drained             | Moderate to<br>rapid                                                 | Moderate to<br>high       | 0 to 12 inches                                   | Very strongly acid to slightly alkaline                                                                                                                                                                  |

2-9

# Table 2-1. Characteristics of Surface Soil Wallops Flight Facility, Accomack County, Virginia (Continued)

| Mapping Unit                                                                        | Setting                                                                                                                    | Soil Properties                                         |                                                                                          |                           |                                                                  |                                          |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------|------------------------------------------|
|                                                                                     |                                                                                                                            | Drainage<br>Class                                       | Permeability                                                                             | Organic<br>Matter Content | Depth to<br>Water                                                | Soil Reaction                            |
| MoB – Molena loamy<br>sand, 0 to 6 percent<br>slopes                                | Landform: Coastal-plain<br>uplands and stream terraces<br>Landscape Position:<br>Undulating surfaces                       | Somewhat<br>excessively<br>drained                      | Rapid                                                                                    | Low                       | More than 60<br>inches                                           | Very strongly acid to<br>moderately acid |
| MoD – Molena loamy<br>sand, 6 to 35 percent<br>slopes                               | Landform: Coastal-plain<br>uplands and stream terraces<br>Landscape Position: Sloping<br>surfaces and escarpments          | Somewhat<br>excessively<br>drained                      | Rapid                                                                                    | Low                       | More than 60<br>inches                                           | Very strongly acid to<br>moderately acid |
| MuA – Munden sandy<br>loam, 0 to 2 percent<br>slopes                                | Landform: Coastal-plain<br>uplands and stream terraces<br>Landscape Position: Nearly<br>level surfaces                     | Moderately well<br>drained                              | Moderately rapid<br>in the subsoil,<br>moderately rapid<br>or rapid in the<br>substratum | Low                       | 18 to 30<br>inches                                               | Very strongly acid to moderately acid    |
| NmA Nimmo sandy<br>Ioam, 0 to 2 percent<br>stopes                                   | Landform: Coastal-plain<br>uplands and stream terraces<br>Landscape Position: Flats,<br>depressions, and<br>drainageways   | Poorly drained                                          | Moderate in the<br>subsoil,<br>moderately rapid<br>or rapid in the<br>substratum         | Low to<br>moderate        | 0 to 12 inches                                                   | Extremely acid to strongly acid          |
| PoA – Polawana<br>mucky sandy loam, 0<br>to 2 percent slopes,<br>frequently flooded | Landform: Coastal-plain<br>uplands and stream terraces<br>Landscape Position:<br>Adjacent to drainageways and<br>streams   | Very poorły<br>drained                                  | Rapid                                                                                    | Moderate to<br>very high  | Ponded 12<br>inches above<br>to 6 inches<br>below the<br>surface | Very strongly acid to neutral            |
| SeA – Seabrook<br>loamy fine sand, 0 to<br>2 percent slopes                         | Landform: Coastal-plain<br>uplands and stream terraces<br>Landscape Position: Nearly<br>level surfaces                     | Moderately well<br>drained                              | Rapid                                                                                    | Low                       | 24 to 48<br>inches                                               | Very strongly acid to slightly acid      |
| UpD – Udorthents<br>and Udipsamments<br>soils, 0 to 30 percent<br>slopes            | Landform: Coastal-plain<br>uplands, stream terraces, and<br>marshes<br>Landscape Position: Filled<br>areas and borrow pits | Somewhat<br>poorly drained<br>to excessively<br>drained | Slow to rapid                                                                            | Low to high               | 18 to more<br>than 60<br>inches                                  | Ultra acid to moderately<br>alkaline     |

Limited Site Investigation Report - Final

2-10

May 2003

# Table 2-2. Classification of WFF WetlandsWallops Flight Facility, Accomack County, Virginia

#### Wetland Systems

[E] Estuarine – The Estuarine System describes deepwater tidal habitats and adjacent tidal wetlands with low energy and variable salinity, influenced and often semi-enclosed by land.

**[P]** Palustrine – The Palustrine System includes all nontidal wetlands dominated by trees, shrubs, emergents, mosses or lichens, and all such wetlands that occur in tidal areas where salinity due to ocean derived salts is below 0.5 parts per thousand (ppt). Wetlands lacking such vegetation are also included if they exhibit all of the following characteristics:

• are less than 8 hectares (20 acres)

. .

بن ا

. بر سب ا

- · do not have an active wave-formed or bedrock shoreline feature
- have at low water a depth less than 2 meters (6.6 feet) in the deepest part of the basin
- have a salinity due to ocean-derived salts of less than 0.5 ppt.

#### Wetland Subsystems

Subtidal - These habitats are continuously submerged substrate, (i.e. below extreme low water).

Intertidal - This is defined as the area from extreme low water to extreme high water and associated splash zone.

#### Wetland Classes

[UB] Unconsolidated Bottom – Includes all wetlands and deepwater habitats with at least 25% cover of particles smaller than stones (less than 6-7 cm), and a vegetative cover less than 30%.

[EM] Emergent – Characterized by erect, rooted, herbaceous hydrophytes, excluding mosses and lichens. This vegetation is present for most of the growing season in most years. These wetlands are usually dominated by perennial plants.

[US] Unconsolidated Shore - Includes all wetland habitats having three characteristics:

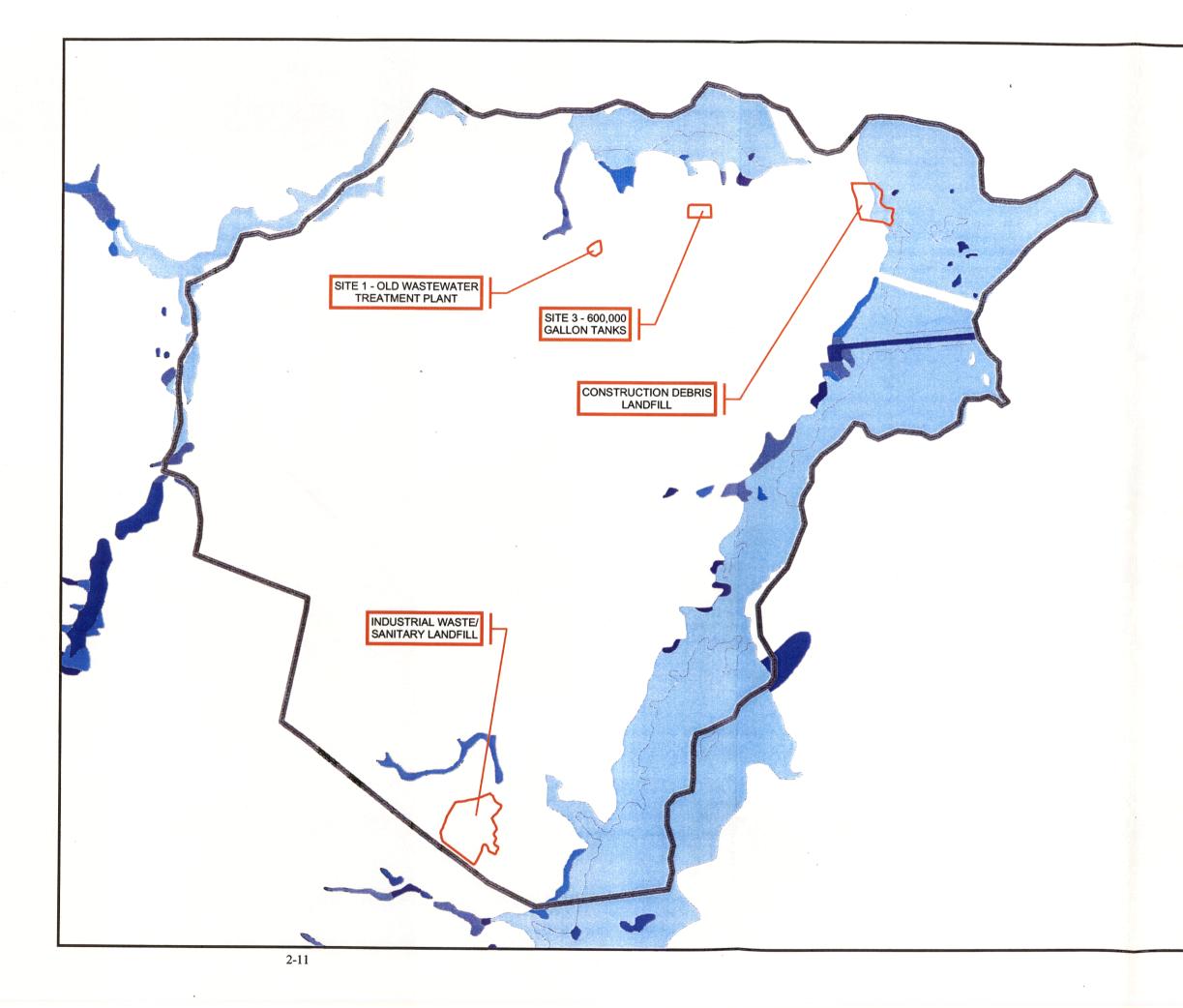
• unconsolidated substrates with less than 75% areal cover of stones, boulders, or bedrock

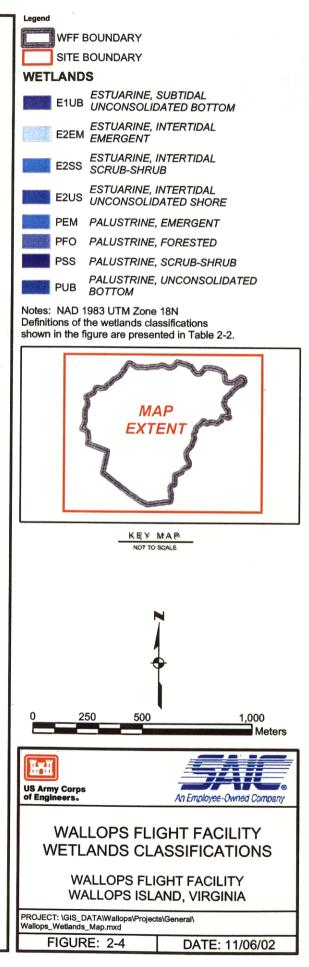
- less than 30% areal cover of vegetation other than pioneering plants;
- any of the following water regimes: irregularly exposed, regularly flooded, irregularly flooded, seasonally flooded, temporarily flooded, intermittently flooded, saturated, seasonal-tidal, temporary-tidal, or artificially flooded.

Intermittent or intertidal channels of the Riverine System or intertidal channels of the Estuarine System are classified as Stream Bed. Landforms such as beaches, bars, and flats are included in the Unconsolidated Shore class.

[FO] Forested - Characterized by woody vegetation that is 6 m tall or taller.

**[SS] Scrub-Shrub** – Includes areas dominated by woody vegetation less than 6 m (20 feet) tall. The species include true shrubs, young trees (saplings), and trees or shrubs that are small or stunted because of environmental conditions.


#### 2.6 ECOLOGY AND SENSITIVE ENVIRONMENTS


The Chincoteague National Wildlife Refuge is located adjacent to Chincoteague Inlet. The Wallops Island National Wildlife Refuge is located east and southeast of State Road 175, adjacent to the Main Base. The refuge is used primarily for limited wildfowl hunting and for wildlife and habitat surveys. Assateague Island National Seashore is located to the north. The federally listed threatened and endangered (T&E) species known to occur at Wallops Island include the piping plover (*Charadrius melodius*), bald eagle (*Haliaeetus leucoccephalus*), and peregrine falcon (*Falco peregrinus*). Numerous wetlands are located around the Main Base and are protected according to state and Federal regulations. The estimated total wetlands area within a 4-mile radius of the WFF is 14,646 acres. A variety of important finfish and shellfish species can be found in the tidal waters in the vicinity of the WFF. These species include summer flounder, sea trout, northern kingfish, menhaden, bluefish, striped bass, American oyster, quahog clam, and blue crab. Little Mosquito Creek and its tributaries were condemned as shellfish areas in April 1989 due to high fecal coliform bacteria levels or the presence of

permitted discharge locations. Closures to shellfish harvesting in the vicinity of permitted discharges serve as buffer zones to ensure public health. No data on shellfish production were available for Jenny's Gut, Mosquito Creek, or Cockle Creek. These areas are used for commercial and recreational fishing (Versar 1992).

#### 2.7 CLIMATE

The WFF is located in the climatic region known as the humid continental warm summer climate zone. The Soil Survey for Accomack County (USDA 1994) provides climatic data at Wallops Island for the time period 1967 to 1979. Precipitation is well-distributed throughout the year. Frequent, steady storms in the winter, spring, and fall result in local flooding and severe shoreline erosion. Summer is hot and humid with thunderstorms occurring on an average of 18 days per year. The total average annual rainfall for Wallops Island is 40.8 inches. Of this, 20.6 inches usually falls in April through September. The heaviest 1-day rainfall during the period of record was 4 inches. In winter, sustained snowfall events are rare. The average seasonal snowfall is 9.8 inches. In the winter, the average daily temperature is 37.1°F and the average minimum daily temperature is 29.6°F. Winter temperatures have ranged as low as 5°F. The average summer temperature is 73.7°F and the average maximum daily temperature is 80.2°F. Summer temperatures have ranged as high as 101°F. The average relative humidity is 60 percent.





DIZD ADZY

### 3. CONTAMINANT ASSESSMENT METHODOLOGY

This section summarizes the field activities conducted by Science Applications International Corporation (SAIC) at the Wallops Flight Facility (WFF) as part of the Limited Site Investigation (LSI). The LSI field investigation sampling methodology, including planned activities, objectives, and rationale for the LSI, are presented in Section 3.1. Field activities completed and procedures used during the investigation of these sites are provided in Section 3.2. A detailed discussion of the methods, procedures, and rationale for the site-specific sampling also is presented in Section 4 of the Field Sampling Plan (FSP) (SAIC 2002a). Deviations from the planned field activities are specified in Section 3.3. Section 3.4 presents an overview of the soil and groundwater standards used for the screening assessment.

#### 3.1 SAMPLING METHODOLOGY

. د م

أبست

e -1244 -

. وند The LSI field investigation program was designed to characterize current environmental conditions at the four sites (the Old Wastewater Treatment Plant [WWTP], Industrial/Sanitary Waste Landfill [IWL], Construction Debris Landfill [CDL], and Two 600,000-Gallon Fuel Tanks under investigation at the WFF. The LSI program was conducted in accordance with the Project Work Plan (PWP) that was specifically prepared for the LSI. The PWP was reviewed and approved by the U.S. Environmental Protection Agency (EPA) Region III, Virginia Department of Environmental Quality (VDEQ), and U.S. Army Corps of Engineers (USACE), Norfolk District. Final approval of the PWP was received in August 2002 prior to the initiation of field investigation activities. Adherence to the requirements outlined in these documents (FSP [SAIC 2002a], Quality Assurance Project Plan [QAPP] [SAIC 2002b], and Site Safety and Health Plan [SSHP] [SAIC 2002c]) ensured that the project data quality objectives (DQOs) were met. Based on EPA guidance for environmental studies, the DQOs for the LSI activities included precision, accuracy, representativeness, comparability, and completeness (PARCC). During the course of the LSI, all activities and analyses were conducted using standard procedures so that known and acceptable PARCC properties were achieved.

The LSI field investigation activities conducted at the four previously identified WFF sites included site inspections; surface and subsurface soil, containerized liquid (USTs) and groundwater (Hydropunch<sup>®</sup>) sampling; and topographic surveying. Direct-push (Geoprobe<sup>®</sup>) drilling and groundwater (Hydropunch<sup>®</sup>) sampling was conducted by SAIC personnel. Prior to initiating the field program, sample locations were staked by SAIC personnel and utilities and vegetation were cleared by SAIC and WFF personnel. General Physics Environmental Services, Inc. (GPES) of Gaithersburg, Maryland, provided soil and water analytical services. Section 4 provides a quality assessment of the data provided to SAIC by GPES. Supplemental information associated with the data quality assessment is presented in Appendix D.

#### 3.1.1 Sample Selection

Table 3-1 summarizes the site-specific sampling activities and sampling rationale for each of the four sites included in this Limited Site Investigation Report (LSIR). The type of data required to meet the LSI objectives is site specific and sampling requirements were based on the previously handled materials, past operations, and previous investigations conducted at the installation. Site-specific rational associated with sample selection are presented in Section 5.

#### 3.1.2 Parameter Selection

Target compound and element lists for each site were prepared on the basis of the type of activities conducted, the suspected contaminants, and previous sampling results. Because the LSI focused on the identification of potential contamination and historical records for most of the sites were very limited, the chemicals of concern (COCs) for each location included volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and metals. A detailed discussion of target analytes is included in the QAPP (SAIC 2002b).

### Table 3-1. Limited Site Investigation Field Activities Old WWTP (Site 1), Two 600,000-Gallon USTs (Site 3), IWL, and CDL Wallops Flight Facility, Accomack County, Virginia

| Site Name                                            | LSI Field Activities                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site 1 – Old Wastewater<br>Treatment Plant<br>(WWTP) | Based on results of previous investigation activities, drilled three soil borings at or<br>adjacent to former soil gas sample locations. Characterized current conditions at these<br>locations by completion of the following:                                                                                       |
|                                                      | <ul> <li>Collected one surface soil sample (0 to &lt;0.5 feet BLS) from below the top of the<br/>natural soil</li> </ul>                                                                                                                                                                                              |
|                                                      | <ul> <li>Conducted field screening at each soil boring location to 4 feet BLS (except at<br/>sludge bed location) using a PID. Collected one subsurface soil sample from the<br/>soil interval that indicated the greatest potential for contamination (e.g., elevated PID<br/>readings, discolored soil).</li> </ul> |
|                                                      | <ul> <li>No groundwater (Hydropunch<sup>®</sup>) samples collected.</li> </ul>                                                                                                                                                                                                                                        |
|                                                      | Samples were analyzed for VOCs, SVOCs, and metals.                                                                                                                                                                                                                                                                    |
| Site 3 – 600,000-Gallon<br>USTs (Buildings A-46A     | Conducted visual inspection of the 600,000-gallon USTs to determine tank depth and if free product is present.                                                                                                                                                                                                        |
| and A-46B)                                           | Collected two samples from each of the 600,000-gallon USTs (A-46A and A-46B) to determine the absence or presence of hydrocarbons within the USTs.                                                                                                                                                                    |
|                                                      | Analyzed samples for VOCs, SVOCs, and metals.                                                                                                                                                                                                                                                                         |
| Industrial/Sanitary<br>Waste Landfill (IWL)          | Based on the interpretation of aerial photographs and current site conditions. Eight soil and four groundwater samples were collected at four discrete locations                                                                                                                                                      |
|                                                      | <ul> <li>Four soil and two groundwater samples were collected in an area identified in the<br/>EPIC report as an area previously containing mounded material.</li> </ul>                                                                                                                                              |
|                                                      | <ul> <li>Two soil and one groundwater samples were collected at location adjacent to<br/>mounded material running parallel with Route 175</li> </ul>                                                                                                                                                                  |
|                                                      | <ul> <li>Two soil samples and one groundwater sample were collected downgradient from<br/>the potential source areas also identified in the EPIC report.</li> </ul>                                                                                                                                                   |
| •                                                    | The following samples were collected from each boring:                                                                                                                                                                                                                                                                |
|                                                      | <ul> <li>One surface soil sample 0 to &lt;0.5 feet BLS below the top of the natural soil (surface soil at SB-IWL-04 was not collected due to elevated PID concentrations detected in the subsurface soil).</li> <li>One subsurface soil sample at the soil-groundwater interface.</li> </ul>                          |
|                                                      | One groundwater sample using Hydropunch <sup>®</sup> technique.                                                                                                                                                                                                                                                       |
|                                                      | Samples were analyzed for VOCs, SVOCs, and metals (filtered metal analysis conducted for groundwater sample).                                                                                                                                                                                                         |
| Construction Debris<br>Landfill (CDL)                | Based on the review of the aerial photographs, three soil borings (SB-CDL-01 through SB-CDL-03) were drilled along the eastern boundary of the former CDL. The following samples were collected from each boring and used to characterize potential constituents released from the site:                              |
|                                                      | <ul> <li>One surface soil sample 0 to &lt;0.5 feet BLS below the top of the natural soil.</li> <li>One subsurface soil sample at the soil-groundwater interface.</li> <li>One groundwater sample using Hydropunch<sup>®</sup> technique.</li> </ul>                                                                   |
|                                                      | Samples were analyzed for VOCs, SVOCs, and metals (filtered metal analysis conducted for groundwater sample).                                                                                                                                                                                                         |

#### 3.2 FIELD ACTIVITIES AND PROCEDURES

The WFF LSI included a site walkover, direct-push drilling and subsurface soil and groundwater sampling, and liquid sampling from the 600,000-gallon USTs. This section describes the activities used to qualitatively and quantitatively assess the presence of contamination at the four LSI sites. Qualitative activities included the field screening and site walkover activities. Quantitative activities included the subsurface soil sampling, Hydropunch<sup>®</sup> sampling, sampling of the liquids in the USTs, and topographic surveying. The field methods and procedures associated with the completion of LSI field activities at the WFF are summarized below. LSI activities were supervised by SAIC and USACE (Norfolk District) personnel to ensure field activities were being conducted in accordance with the PWP. Results and their interpretations are provided in Section 5.

#### 3.2.1 Visual Inspection

A visual inspection was conducted at each site prior to the initiation of investigation activities. Site characteristics, such as topography, surface water drainage patterns, buildings and structures (e.g., location of doors or potential release pathways), visible surface stains, stressed vegetation, exposed soils, and utility locations were considered in locating sampling points. Site visual inspection activities also included the staking of soil boring/Hydropunch<sup>®</sup> sample locations. These visual inspection and staking activities were conducted in July 2002 by SAIC field personnel. The site-specific sample location rationale and observations made during the inspection are discussed in Section 5.

#### 3.2.2 Field Screening

Screening activities were conducted during field operations at the WFF using a photoionization detector (PID). This instrument was used to ensure the safety of the field staff and screen samples for the presence of potential VOCs. SAIC personnel used the monitoring instrument to screen the borehole atmosphere, soil samples, and the breathing zone around the rig during drilling operations. Instrument readings were recorded on soil boring field logs and in the field logbook. Copies of the soil boring field logs are contained in Appendix A.

The Photovac Microtip PID was calibrated using isobutylene gas in accordance with the manufacturer's instructions and SAIC's standard operating procedures (SOPs). Calibration checks were performed at the beginning of each sampling day or more frequently if field personnel suspected that calibration might have been altered or affected by an external factor (e.g., temperature or humidity).

#### 3.2.3 Soil Sampling

All soil samples were collected in accordance with the procedures outlined in the following sections. Quality control (QC) samples were collected using the same procedures described for collecting environmental samples.

Soil sampling was conducted to determine the presence or absence of contamination in the surface and shallow subsurface soil horizons. Soil sampling was conducted at various depths in accordance with site-specific conditions. Sampling depths, sampling methods, and frequency were based on site-specific requirements and rationales. In general, samples were collected from three strata: surface (the top 0.5 feet of soil), the soil-groundwater interface, and the subsurface (from 0.5 to 15 feet below land surface [BLS]) based on site-specific conditions and observations. The site-specific details and depth of sample collection were recorded in the boring logs (Appendix A).

All underground utilities were cleared before conducting any intrusive sampling at the sites. Each sample location was surveyed and the coordinates recorded on the boring logs. Survey data are included

in Appendix E. The following sections describe the methods and equipment that were used to collect the surface and subsurface soil samples.

Surface soil samples (0 to <0.5 feet BLS) were collected at the IWL, CDL, and the Old WWTP during the LSI field activities. The sample collection techniques and methods that were used to collect surface soil samples are summarized in the following paragraphs.

Surface soil samples were collected using stainless steel sampling tools (e.g., augers and spoons) or in a sampler attached to a direct-push Geoprobe<sup>®</sup>. If samples were to be analyzed for VOCs, samples were collected directly from the surface soil or the Geoprobe<sup>®</sup> core barrel using the Encore<sup>TM®</sup> sampler before the semivolatile or metal samples were collected. The remaining sample material, to be used for samples other than VOCs, was placed into stainless steel sampling bowls, homogenized, and placed into a sample container (i.e., glass jar).

All sampling equipment and tools were decontaminated prior to use; all sample jars were glass with Teflon<sup>®</sup> septa, and were certified clean by the manufacturer. All sample containers were labeled, placed in a cooler, and maintained at  $4^{\circ}C \pm 2^{\circ}C$  pending shipment to the laboratory. All shipments were forwarded to the laboratory using overnight express or were delivered to the laboratory by field personnel. Following completion of sampling activities, the borehole was filled to the surrounding surface elevation using bentonite.

Subsurface soil sampling at the Old WWTP was conducted by using a hand auger. Subsurface soil samples were collected at various depths (0.5 to 4 feet BLS) based on physical site conditions, (e.g., soil discoloration, field screening results), intended sample depths, and the professional judgment of the SAIC Field Manager.

Direct push techniques using the Geoprobe<sup>®</sup> system were used to collect subsurface soil samples from soil borings with planned total depths greater than 5 feet BLS (IWL and CDL soil borings). Soil descriptions and other relevant information were recorded in the field logbook. The following sections outline the procedures associated with the collection of subsurface soil samples.

Hand Auger Procedures for Sampling Soil—Hand augers were used to collect soil samples from depths equal to or less than approximately 5 feet BLS. The samples were collected using 2- or 4-inch-width stainless steel hand augers. Each auger was used in only one sampling location before being decontaminated.

Samples from the augers were collected by depositing the removed soil into a stainless steel bowl and immediately collecting the VOC sample (if required). The soil then was homogenized and the remaining jars were filled. These samples then were placed in coolers and kept at  $4^{\circ}C \pm 2^{\circ}C$  until received by the analytical laboratory.

**Direct Push Procedures for Sampling Soil**—Direct push sampling activities were conducted using the Geoprobe<sup>®</sup> system, which is a hydraulically powered soil probe unit capable of exerting more than 15,000 pounds of downward force. The system is used to push or drive soil or groundwater sampling tools into the subsurface. Geoprobe<sup>®</sup> soil sampling was conducted by using a small-diameter (3-inch outside diameter [OD]) stainless steel core barrel sampler with a retractable drive point that is pushed or driven to sampling depth. Once the sampling depth was obtained, the probe or drive point was retracted, and the soil was collected.

The Geoprobe<sup>®</sup> pushed and hammered the core sampler into the ground to the desired depth for sampling. The core samplers were 4 feet long and were filled with acetate liners. As the core sampler was driven into the ground, soil was collected in hard acetate liners contained within the sampler. Once the sampling depth was reached, the core sampler was retracted from the boring. The cutting shoe holding the sample in place in the core sampler was removed and the acetate liner was removed from the

core sampler and placed onto a table for examination by the rig geologist. The rig geologist then screened the soil sample for VOCs using a PID. Detectable organic vapors above the site background and physical soil characteristics, such as soil type, color, moisture, and grain size, were logged and noted by the rig geologist on the boring log.

After the acetate liner was retrieved from the core sampler, the soil was screened using the PID. If the sample interval was used for VOC analysis, an Encore<sup>TM</sup> sampler attached to a T-handle was used to collect three Encore<sup>TM</sup> samples from the sample interval. The Encore<sup>TM</sup> samplers were sealed with plastic caps and labeled, placed in sealed plastic bags, and cooled to  $4^{\circ}C \pm 2^{\circ}C$  prior to delivery to the laboratory. The soil from the remaining sample interval sleeves was placed in a stainless steel bowl and homogenized before distribution into glass jars. The jars then were labeled, placed in resealable plastic bags, and stored in coolers.

#### 3.2.4 Hydropunch<sup>®</sup> Groundwater Sampling Procedures

Groundwater samples were collected using Hydropunch<sup>®</sup> techniques from each soil boring drilled at the IWL and CDL to evaluate site groundwater quality at these sites. No groundwater samples were collected from the Old WWTP or the 600,000-gallon USTs. Samples were analyzed for the same parameters as the site soil (VOCs, SVOCs, and metals). The analytical results obtained using the Hydropunch<sup>®</sup> technique were used to indicate organic and inorganic contamination, if present. All groundwater metal samples were filtered prior to analysis. The Hydropunch<sup>®</sup> groundwater sampling procedures are discussed below.

Hydropunch<sup>®</sup> sampling was conducted using a small-diameter (1-inch OD), percussion-driven, steel probing tool or rod with a retractable drive point that was driven using a truck-mounted hydraulic percussion unit (Geoprobe<sup>®</sup>). The sampling rod with an expendable point was driven approximately 3 feet below the anticipated or field-identified groundwater level. When the probe reached the desired depth, it was retracted, exposing the open bore of the probe rod and allowing the rod to fill with formation water. A Teflon<sup>®</sup> tube with a bottom check valve was inserted inside the probe rod and attached to a peristaltic pump at the surface. Groundwater was collected directly into the appropriate sample containers from the Teflon<sup>®</sup> tube.

Groundwater samples were collected from four soil borings at the IWL (SB-IWL-01 through SB-IWL-04) and three soil borings at the CDL (SB-CDL-01 through SB-CDL-03) during the LSI. Analytical groundwater samples were collected from each soil boring location using the Hydropunch<sup>®</sup> groundwater sampling procedure specified above. All samples were retrieved using the peristaltic pump and Teflon<sup>®</sup> tube and dispensed directly into an appropriate sample bottle. VOC samples always were obtained first and placed into 40-mL vials. The vials were filled completely to eliminate all headspace. Following the collection of the VOC samples, the remaining analytes were collected in the appropriate sample containers, labeled, and stored in iced coolers. All information was recorded directly in the field logbook. All samples were maintained at 4°C  $\pm$  2°C from the time of collection until they were delivered to the laboratory.

#### 3.2.5 Sample Identification

A sample identification (I.D.) system developed by SAIC was used to identify each environmental sample collected and field QC blank prepared during the field investigation. This I.D. system allowed precise documentation of locations and sample information. Site I.D. codes and field sample numbers were assigned to each environmental and field QC sample collected. A complete list of field sample numbers and site IDs was maintained by the Field Manager. The format of the field sample numbers and site IDs is as follows:

*Site Identification* — A site I.D. served as a unique identification code for each location sampled. These site I.D.s were assigned before the start of the field investigation. The following are typical identifiers that were used for the field investigation at the WFF.

| Code      | Media Description                           |
|-----------|---------------------------------------------|
| SB-IWL-02 | Soil boring number 2 at the IWL             |
| HP-CDL-03 | Hydropunch <sup>®</sup> number 3 at the CDL |

The first two letters represented the site type as defined by SB for soil boring samples and HP for groundwater (Hydropunch<sup>®</sup>) samples. The next three letters (e.g., CDL) designates the site. The last two digits denote the sample location at the site.

Field Sample Number—The field sample number was a unique designation assigned by the field team to each environmental sample and field QC sample collected. This numerical code indicated the sample number for its corresponding site I.D. For example, a field sample number of SAIC01 for site I.D. SB-CDL-01 indicates that it is the first soil sample collected from soil boring number 1 at the CDL.

Duplicate and Field QC Blanks—The following QC test and flagging codes were used to identify duplicate environmental and field QC blank samples:

- "D" entered in the flagging code field was used to identify all field duplicates collected in the field.
- "R" entered in the QC test code field was used to identify all rinsate blanks collected in the field.
- "T" entered in the QC test code field was used to identify all trip blanks prepared by the analytical laboratory.

#### 3.2.6 Sample Handling, Storage, and Shipping

The procedures followed during the transportation of environmental samples and field QC blanks from the WFF to the analytical laboratory are summarized below:

- The outer surface of all sample containers was cleaned with white paper towels. The sample label was placed on the container and covered with clear tape.
- After the containers for a given sample location were filled, they were placed in a rigid ice cooler and preserved at a temperature of 4°C ± 2°C.
- Sample collection points, depth increments, and sampling devices documented in the field logbooks were verified with the information written on the sample label and chain-of-custody (CoC) form.
- Logbook entries and CoC forms with sample identification points, date, time, and names or initials of all persons handling the sample in the field were completed prior to sample shipping.
- One custody seal was placed over the neck and down the side of each container.
- Samples were packaged in thermally insulated, rigid coolers for delivery to the laboratory. Environmental samples and field QC blanks submitted to the laboratory were placed in a sample cooler along with ice packs and coolant blanks, and the final cooler temperature was recorded prior to sealing the cooler. After a cooler was filled, the appropriate CoC form was placed inside a Zip-loc<sup>®</sup> plastic bag and taped to the inside lid of the cooler, the outer surface of the cooler was cleaned, and the cooler was sealed.
- Custody tape was attached at two separate locations on the outside of each cooler. Sample coolers were shipped to the analytical laboratory by overnight delivery or because of the

laboratory's close proximity to the WFF, the sample containers were transported to the laboratory via the SAIC Field Manager. The Field Manager received a signed CoC upon delivery of the samples to document and trace sample possession. Completed CoC forms are shown in Appendix C. A detailed discussion of CoC procedures is presented in Section 5 of the QAPP (SAIC 2002b).

#### 3.2.7 Decontamination Procedures

Field equipment was decontaminated before sampling activities began, between drilling and sampling activities, and at the conclusion of the sampling program. Decontamination operations were conducted to prevent cross-contamination. Only potable water from a sampled source, isopropanol, and deionized (DI) water from the laboratory were used during the decontamination process. DI water was used as a final rinse in the decontamination process. These water sources were identified and sampled during the field investigation activities to aid in the validation of the data collected during the field investigation activities. The analytical results from the sampling of the DI and potable water sources are presented in Appendix E. The decontamination procedures used during the WFF LSI are summarized below.

#### 3.2.7.1 Drill Rig and Drilling Equipment Decontamination

Decontamination of large equipment associated with sampling, such as drill rigs, and all downhole equipment not coming in direct contact with the soil or groundwater sample, was performed using a water from the potable water source. Equipment was vigorously scrubbed and given a final rinse with approved water.

#### 3.2.7.2 Sampling Equipment Decontamination

All equipment directly contacting analytical sample media, including hand augers, stainless steel core barrels, stainless steel bowl, and stainless steel sampling tools (e.g., spoons) was decontaminated before and after each use. The following decontamination procedures were followed during the LSI:

- The equipment was washed and scrubbed in a solution of potable water and Liquinox<sup>™</sup> with brushes to remove particulate matter and surface films. Once the equipment was thoroughly scrubbed, it was placed into a potable water rinse.
- Rinse with DI, analyte-free water
- Rinse with isopropanol
- Rinse with DI, analyte-free water
- Air dry

• Wrap in aluminum foil.

#### 3.2.7.3 Investigation-derived Waste Management

Investigation-derived waste (IDW) was generated as a result of the field activities conducted during the WFF LSI. The types of generated IDW included soil cuttings, solid waste, and liquid waste. SAIC was responsible for the proper handling, labeling, and staging of site IDW as described in the following sections. Site IDW was managed and handled in compliance with Federal and Commonwealth of Virginia requirements. The following sections describe the WFF IDW management.

#### 3.2.7.4 Liquid Investigation-derived Waste

Liquid IDW was generated from decontamination and Hydropunch<sup>®</sup> purging operations conducted during the investigation. Decontamination water and pre-sample purge water was collected and containerized in 55-gallon drums pending further laboratory characterization at the point of generation pending groundwater sampling results. The storage and drums were labeled with the following information:

- Project name
- Brief description of the contents (e.g., decontamination water, Hydropunch<sup>®</sup> HP-CDL-01 purge water)
- Date container was filled
- Installation point-of-contact and telephone number
- Estimated number of gallons
- Number of containers (e.g., 1 of 1, 1 of 2).

#### 3.2.7.5 Solid Investigation-derived Waste

Solid IDW generated during the WFF LSI included soil cuttings, personal protective equipment (PPE), and noncontaminated municipal solid waste. The following sections describe the disposition of each type of solid IDW.

Soil Cuttings—Soil cuttings were generated during drilling and soil sampling operations. Soil cuttings from each boring were placed on 20-mil plastic until the PID screening results were obtained and then were containerized in 55-gallon drums and stored in a designated area. The soils from soil borings drilled at the CDL were containerized in a separate 55-gallon drum at the request of USACE. The drums containing soil IDW were labeled with the following information:

- Project name
- Brief description of the contents (i.e., soil boring cuttings, decontamination water)
- Date container was filled
- Installation point-of-contact and telephone number
- Number of containers (e.g., 1 of 1, 1 of 2).

**Personal Protective Equipment**—PPE wastes generated during the WFF LSI included latex gloves, vinyl gloves, and Tyvek<sup>®</sup> suits. This material was double-bagged using large trash bags and screened using the PID. All PPE IDW was disposed of as municipal solid waste because PID readings did not exceed background concentrations.

#### 3.2.8 Topographic Surveying

A topographic survey was conducted to determine the map coordinates of the soil borings at the four LSI sites. The Global Positioning System (GPS) was used to establish the horizontal location of the soil borings at the WFF. The borings were located to an accuracy of  $\pm 1$  foot using the North American Datum (NAD) 83/93 Virginia State Plane Coordinate System (SPCS). Information and data pertaining to the completion of the survey is contained in Appendix F.

#### 3.3 DEVIATIONS FROM PLANNED ACTIVITIES

Although activities conducted under the LSI were extensively planned and approved by EPA, VDEQ, and USACE, initial plans were modified as field conditions were more fully understood. In general, these changes were the result of unanticipated field conditions, site requirements, or screening

results that emerged for a given site. Deviations from planned field sampling tasks were deemed necessary to obtain project objectives. The planned versus actual tasks and the rationale for associated changes are presented in the following subsections. In these cases, the deviations were discussed prior to implementation.

#### 3.3.1 Old WWTP Plant Investigation

During soil boring drilling activities at the Old WWTP sludge bed, soil boring location SB-WTP-03, the hand-auger could not be advanced to a depth greater that 1 feet BLS because of auger refusal encountered in the sludge beds. As a result, soil screening activities at the boring could not be completed to a depth of 4 feet as proposed in the FSP (SAIC 2002a).

#### 3.3.2 CDL Soil Boring Investigation

During soil boring drilling activities at SB-CDL-01 elevated PID concentrations were detected in the shallow subsurface soil. Therefore, a soil sample was collected from the interval with the greatest potential for contamination. As a result, no samples were collected from the surface soil interval as proposed in the FSP (SAIC 2002a). In addition, because potential contamination was identified (e.g., elevated PID concentrations, discolored soils) during the drilling and sampling of SB-CDL-01, the boring was advanced to a depth greater than the soil-groundwater interface to aid in the delineation of the vertical extent of the identified contamination.

#### 3.4 PROTECTION STANDARDS

This section describes the basis for the comparison of the WFF sample data to protection standards based on applicable or relevant and appropriate requirements (ARARs). Sample results from the LSI were compared to the protection standards to provide information that will support recommendations for further investigations or no further action.

#### 3.4.1 Soil Protection Standards

There are no enforceable standards for contamination in soil resulting from waste disposal activities. Instead, EPA Region III risk-based concentrations (RBCs) for soils are used for the comparison. The RBCs are target concentration limits based on risk to human health and are calculated for both residential and industrial land use.

The residential RBCs used in the comparison are protective of a receptor during childhood and adulthood (chronic, long-term exposure) that is exposed to contaminants in soil via the ingestion route. Industrial RBCs assume exposure only as an adult. The RBCs are published by EPA Region III and the most recent concentrations (April 2002) are presented in Table 3-2.

The RBCs are calculated by using a target hazard quotient (HQ) of 1 and a target cancer risk of  $1 \times 10^{-6}$ . Using the cancer target is, therefore, conservative and allows for additive effects for multiple contaminants. However, using the HI of 1 does not allow for additive effects for multiple chemicals.

As noted by EPA Region III, the RBCs are protective as no-action levels or cleanup goals, with the following provisions:

- A single medium is contaminated
- A single contaminant contributes nearly all of the health risk
- Volatilization, dermal contact, and other pathways not included in the RBCs are expected to be insignificant

#### Table 3-2. Regulatory Screening Criteria Wallops Flight Facility, Accomack County, Virginia

| Chemical Constituent         | EPA Region III RBC<br>Residential Soil<br>Inorganic (mg/kg)<br>Organic (μg/kg) | EPA Region III RBC<br>Industrial Soil<br>Inorganic (mg/kg)<br>Organic (µg/kg) | EPA Region III RBC<br>Migration to Groundwater<br>Groundwater DAF 20<br>Inorg mg/kg, Org µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EPA Region III RBC<br>Tap<br>Water | Federal<br>MCLs<br>Water              |
|------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------|
| 1,1,1-Trichloroethane        | 21,900,000                                                                     | 572,320,000                                                                   | 60,326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (µg/L)                             | (µg/L)                                |
| 1,1,2-Trichloroethane        | 11,206                                                                         | 100,407                                                                       | .78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3171.7                             | 20                                    |
| 1,1-Dichloroethylene         | 1,065                                                                          | 9,539                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .19                                |                                       |
| 1,1-Dichloroethane           | 7,821,429                                                                      | 204,400,000                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .044                               |                                       |
| 1,2,4-Trichlorobenzene       | 782,143                                                                        | 20,440,000                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 798.4                              |                                       |
| 1,2-Dichlorobenzene          | 7,039,286                                                                      | 183,960,000                                                                   | 7,518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 194.4                              | 7                                     |
| 1,2-Dichloroethane           | 7,019                                                                          | 62,892                                                                        | 4,553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 268.2                              | 60                                    |
| 1,2-Dichloropropane          | 9,393                                                                          | 84,165                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .12                                |                                       |
| 1,3-Dichlorobenzene          | 2,346,429                                                                      | 61,320,000                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .16                                |                                       |
| 1,4-Dichlorobenzene          | 26,614                                                                         | 238,467                                                                       | 2,910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102.0                              |                                       |
| 2,4,5-Trichlorophenol        | 7,821,429                                                                      | 204,400,000                                                                   | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .47                                | 7                                     |
| 2,4,6-Trichlorophenol        | 58,066                                                                         | 204,400,000                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3650.0                             |                                       |
| 2,4-Dichlorophenol           | 234,643                                                                        | 6,132,000                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.1                                |                                       |
| 2,4-Dimethylphenol           | 1,564,286                                                                      | 40,880,000                                                                    | 1,2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                                       |
| 2,4-Dinitrophenol            | 156,429                                                                        | 4,088,000                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |
| 2,4-Dinitrotoluene           | 156,429                                                                        | 4,088,000                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73.0                               |                                       |
| 2,6-Dinitrotoluene           | 78,214                                                                         | 2,044,000                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |
| 2-Chlorophenol               | 391,071                                                                        | 10,220,000                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |
| 2-Chloronaphthalene          | 6,257,143                                                                      | 163,520,000                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.4                               |                                       |
| 2-Methylnaphthalene          | 1,564,286                                                                      | 40,880,000                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |
| 2-Methyl Phenol              | 3,910,714                                                                      | 102,200,000                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |
| 2-Nitroaniline               | 0,010,714                                                                      | 102,200,000                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1825.0                             |                                       |
| 2-Nitrophenol                |                                                                                |                                                                               | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                                       |
| 3,3'-Dichlorobenzidine       | 1,419                                                                          | 12,718                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |
| 3-Nitroaniline               | 1,415                                                                          | 12,710                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .15                                |                                       |
| 4,6-Dinitro-2-methylphenol   | 78,214                                                                         | 2,044,000                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |
| 4-Bromophenyl Phenyl Ether   | 10,214                                                                         | 2,044,000                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36.5                               |                                       |
| 4-Chloroaniline              | 312,857                                                                        | 8 476 000                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |
| 4-Chloro-3-methylphenol      | 512,037                                                                        | 8,176,000                                                                     | 969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 146.0                              |                                       |
| 4-Chlorophenyl Phenyl Ether  |                                                                                |                                                                               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                                       |
| 4-Methyl Phenol              | 391,071                                                                        | 10,220,000                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |
| 4-Nitroaniline               |                                                                                | 10,220,000                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 182.5                              |                                       |
| 4-Nitrophenol                | 625,714                                                                        | 48.050.000                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |
| Acetone                      | 7,821,429                                                                      | 16,352,000                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |
| Silver                       | 391                                                                            | 204,400,000                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000.0                              |                                       |
| Aluminum                     | 78,214                                                                         | 10,220                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102.0                              |                                       |
| Acenaphthene                 | 4,692,857                                                                      | 2,044,000                                                                     | and the second division of the second divisio | 36500.0                            |                                       |
| Acenaphthylene               | 4,092,697                                                                      | 122,640,000                                                                   | 104,832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 365.0                              |                                       |
| Anthracene                   | 23,464,286                                                                     | 040.000                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |
| Arsenic                      | 23,404,280                                                                     | 613,200,000                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |
| bis(2-Chloroethoxy) Methane  | .420                                                                           | 4                                                                             | .03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .045                               | · · · · · · · · · · · · · · · · · · · |
| bis(2-Chloroisopropyl) Ether | 9,125                                                                          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |
| bis(2-Chloroethyl)ether      |                                                                                | 81,760                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                       |
| bis(2-Ethylhexyl)phthalate   | 581                                                                            | 5,203                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .010                               |                                       |
| ciole cantaiov hibitaloide   | 45,623                                                                         | 408,800                                                                       | 2,889,403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.8                                |                                       |

### Table 3-2. Regulatory Screening Criteria Wallops Flight Facility, Accomack County, Virginia

| Chemical Constituent      | EPA Region III RBC<br>Residential Soll<br>Inorganic (mg/kg)<br>Organic (µg/kg) | EPA Region III RBC<br>Industrial Soil<br>Inorganic (mg/kg)<br>Organic (ug/kg) | EPA Region III RBC<br>Migration to Groundwater<br>Groundwater DAF 20<br>Inorg mg/kg, Org µg/kg                 | EPA Region III RBC<br>Tap<br>Water<br>(µg/L) | Federal<br>MCLs<br>Water<br>(µg/L)    |
|---------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|
| Barium                    | 5,475                                                                          | 143,080                                                                       | 2.105                                                                                                          | 2555.0                                       | 200                                   |
| Benzo(a)anthracene        | 875                                                                            | 7,840                                                                         | 1.461                                                                                                          | .092                                         | .2                                    |
| Benzo(a)pyrene            | 87                                                                             | 784                                                                           | 374                                                                                                            | .032                                         |                                       |
| Benzo(b)fluoranthene      | 875                                                                            | 7.840                                                                         | 4.514                                                                                                          | .009                                         | · · · · · · · · · · · · · · · · · · · |
| Butyl Benzyl Phthalate    | 15.642.857                                                                     | 408,800,000                                                                   | 16,819,201                                                                                                     | 7300.0                                       | ······                                |
| Beryllium                 | 156                                                                            | 4,088                                                                         | 1,154                                                                                                          | 73.0                                         | ·····                                 |
| Benzo(g,h,i)pervlene      |                                                                                |                                                                               | 1,104                                                                                                          | 73.0                                         |                                       |
| Benzo(k)fluoranthene      | 8,750                                                                          | 78,400                                                                        | 45,141                                                                                                         | .92                                          |                                       |
| Bromodichloromethane      | 10.302                                                                         | 92,310                                                                        |                                                                                                                | .17                                          |                                       |
| cis-1,2-Dichloroethene    | 782,143                                                                        | 20,440,000                                                                    |                                                                                                                | 60.8                                         |                                       |
| cis-1,3-Dichloropropene   |                                                                                |                                                                               |                                                                                                                | 00.8                                         | 7                                     |
| Vinyl Chloride            | 90                                                                             | 7,949                                                                         | .33                                                                                                            | .015                                         |                                       |
| Chloroethane              | 220,250                                                                        | 1,973,517                                                                     |                                                                                                                |                                              | · · · · · · · · · · · · · · · · · · · |
| Benzene                   | 11.613                                                                         | 104,058                                                                       |                                                                                                                |                                              |                                       |
| Calcium                   |                                                                                |                                                                               |                                                                                                                | .02                                          |                                       |
| Carbazole                 | 31,936                                                                         | 286,160                                                                       | 467                                                                                                            | 3.3                                          |                                       |
| Carbon Tetrachloride      | 4,913                                                                          | 44,025                                                                        |                                                                                                                |                                              |                                       |
| Cadmium                   | 78                                                                             | 2.044                                                                         |                                                                                                                |                                              |                                       |
| Methylene Chloride        | 85,163                                                                         | 763,093                                                                       |                                                                                                                |                                              |                                       |
| Bromomethane              | 109,500                                                                        | 2,861,600                                                                     |                                                                                                                |                                              |                                       |
| Chloromethane             | 49,133                                                                         | 440,246                                                                       | the second s |                                              |                                       |
| Bromoform                 | 80,851                                                                         | 724,456                                                                       |                                                                                                                |                                              |                                       |
| Chioroform                | 782,143                                                                        | 20,440,000                                                                    |                                                                                                                |                                              |                                       |
| Chrysene                  | 87,497                                                                         | 784,000                                                                       |                                                                                                                |                                              |                                       |
| Hexachlorobenzene         | 399                                                                            | 3,577                                                                         |                                                                                                                |                                              |                                       |
| Hexachlorocyclopentadiene | 469,286                                                                        | 12,264,000                                                                    |                                                                                                                |                                              |                                       |
| Hexachloroethane          | 45,623                                                                         | 408,800                                                                       |                                                                                                                |                                              |                                       |
| Chlorobenzene             | 1,564,286                                                                      | 40,880,000                                                                    |                                                                                                                |                                              | 1                                     |
| Cobalt                    | 1,564                                                                          | 40,880                                                                        |                                                                                                                | 730.0                                        |                                       |
| Chromium                  | 117,321                                                                        | 3,066,000                                                                     | 1,971,000,219                                                                                                  |                                              | 1                                     |
| Carbon Disulfide          | 7,821,429                                                                      | 204,400,000                                                                   |                                                                                                                |                                              | <b>!</b>                              |
| Copper                    | 3,129                                                                          | 81,760                                                                        |                                                                                                                |                                              | 13                                    |
| Dibenzo(a,h)anthracene    | 87                                                                             | 784                                                                           |                                                                                                                |                                              | 15                                    |
| Dibromochloromethane      | 7,604                                                                          | 68,133                                                                        |                                                                                                                |                                              |                                       |
| Dibenzofuran              | 312,857                                                                        | 8,176,000                                                                     |                                                                                                                | 1.14                                         | <u> </u>                              |
| Diethyl Phthalate         | 62,571,429                                                                     | 1,635,200,000                                                                 |                                                                                                                |                                              |                                       |
| Dimethyl Phthalate        | 782,142,857                                                                    | 20,440,000,000                                                                |                                                                                                                | 365000.0                                     |                                       |
| di-N-Butyl Phthalate      | 7,821,429                                                                      | 204,400,000                                                                   |                                                                                                                |                                              |                                       |
| di-N-Octyl Phthalate      | 1,564,286                                                                      |                                                                               |                                                                                                                |                                              | · · · · · · · · · · · · · · · · · · · |
| Ethylbenzene              | 7,821,429                                                                      | 204,400,000                                                                   |                                                                                                                |                                              | 7                                     |
| Fluoranthene              | 3,128,571                                                                      | 81,760,000                                                                    |                                                                                                                |                                              | '                                     |
| Iron                      | 23,464                                                                         | 613,200                                                                       |                                                                                                                | 10950.0                                      |                                       |
| Fluorene                  | 3,128,571                                                                      | 81,760,000                                                                    |                                                                                                                |                                              |                                       |
| Hexachlorobutadiene       | 8,189                                                                          |                                                                               |                                                                                                                |                                              |                                       |

Limited Site Investigation - Final Report

3-11

May 2003

#### Table 3-2. Regulatory Screening Criteria Wallops Flight Facility, Accomack County, Virginia

| Chemical Constituent       | EPA Region III RBC<br>Residential Soll<br>Inorganic (mg/kg)<br>Organic (µg/kg) | EPA Region III RBC<br>Industrial Soil<br>Inorganic (mg/kg)<br>Organic (µg/kg) | EPA Region III RBC<br>Migration to Groundwater<br>Groundwater DAF 20<br>Inorg mg/kg, Org µg/kg | EPA Region III RBC<br>Tap<br>Water<br>(µg/L) | Federal<br>MCLs<br>Water              |
|----------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|
| Mercury                    |                                                                                |                                                                               | morg mgrag, org pgrag                                                                          |                                              | (µg/L)                                |
| Indeno(1,2,3-cd)pyrene     | 875                                                                            | 7,840                                                                         | 12,734                                                                                         | .092                                         | 2                                     |
| Isophorone                 | 672,343                                                                        | 6,024,421                                                                     | 415                                                                                            |                                              |                                       |
| Potassium                  |                                                                                | 0,024,421                                                                     | 415                                                                                            | 70.5                                         |                                       |
| Toluene                    | 15,642,857                                                                     | 408,800,000                                                                   | 8,790                                                                                          | 747.0                                        |                                       |
| Methyl ethyl ketone        | 46,928,571                                                                     | 1,226,400,000                                                                 | 7,937                                                                                          | <u>747.0</u><br>1906.1                       | 1000                                  |
| Magnesium                  |                                                                                | (12-0) (0000                                                                  | 1,907                                                                                          | 1906,1                                       |                                       |
| Methylisobutylketone       | 6,257,143                                                                      | 163,520,000                                                                   | 1,303                                                                                          | 139.0                                        | · · · · · · · · · · · · · · · · · · · |
| Manganese                  | 1,564                                                                          | 40,880                                                                        | 11000                                                                                          |                                              |                                       |
| 2-Hexanone                 | 3,128,571                                                                      | 81,760,000                                                                    |                                                                                                | 730.0                                        |                                       |
| Sodium                     |                                                                                |                                                                               |                                                                                                | 1460.0                                       |                                       |
| Naphthalene                | 1,564,286                                                                      | 40,880,000                                                                    | 154                                                                                            |                                              |                                       |
| Nitrobenzene               | 39,107                                                                         | 1,022,000                                                                     |                                                                                                | 0.0                                          | · · · · · · · · · · · · · · · · · · · |
| Nickel                     | 1,564                                                                          | 40,880                                                                        |                                                                                                | V.V.                                         |                                       |
| N-Nitroso-di-N-propylamine | 91                                                                             | 40,000                                                                        |                                                                                                | 730.0                                        |                                       |
| N-Nitrosodiphenylamine     | 130,352                                                                        | 1,168,000                                                                     | .00                                                                                            |                                              |                                       |
| Lead                       |                                                                                | 1,100,000                                                                     | 160                                                                                            | 13.7                                         |                                       |
| Pentachlorophenol          | 5,323                                                                          | 47,693                                                                        |                                                                                                |                                              | 19                                    |
| Phenanthrene               |                                                                                |                                                                               |                                                                                                | .56                                          |                                       |
| Phenol                     | 46,928,571                                                                     | 1,226,400,000                                                                 | 133,153                                                                                        |                                              |                                       |
| Pyrene                     | 2,346,429                                                                      | 61,320,000                                                                    |                                                                                                |                                              |                                       |
| Antimony                   | 31                                                                             | 818                                                                           |                                                                                                |                                              |                                       |
| Selenium                   | 391                                                                            | 10,220                                                                        |                                                                                                |                                              | (                                     |
| Styrene                    | 15,642,857                                                                     | 408,800,000                                                                   |                                                                                                | 104.0                                        | 50                                    |
| trans-1,2-Dichloroethene   | 1,564,286                                                                      | 40,880,000                                                                    |                                                                                                |                                              | 100                                   |
| trans-1,3-Dichloropropene  |                                                                                | 40,000,000                                                                    | 043                                                                                            | 121.7                                        | 100                                   |
| 1,1,2,2-Tetrachloroethane  | 3,194                                                                          | 28,616                                                                        | .68                                                                                            |                                              |                                       |
| Tetrachloroethylene        | 12,283                                                                         |                                                                               |                                                                                                |                                              |                                       |
| Thallium                   | 5                                                                              | 143                                                                           |                                                                                                |                                              |                                       |
| Trichloroethylene          | 1,597                                                                          | 14,308                                                                        |                                                                                                | 2.6                                          |                                       |
| Xylenes                    | 156,428,571                                                                    | 4,088,000,000                                                                 |                                                                                                | 1020                                         |                                       |
| Vanadium                   | 548                                                                            |                                                                               |                                                                                                |                                              | 1000                                  |
| Zinc                       | 23,464                                                                         |                                                                               |                                                                                                |                                              |                                       |

.....

- The land use and exposure scenarios assumed in the RBCs is appropriate for the site
- The target risk levels assumed in the RBCs are appropriate for the site.

#### 3.4.2 Groundwater Protection Standards

For groundwater, each sample result was compared to EPA Region III tap water RBCs (April 2002) and Federal drinking water maximum contaminant levels (MCLs) (July 2002). The tap water RBCs are designed to be protective of human health and are generally more restrictive than the MCLs. In addition, the tap water RBCs include contaminants not regulated under the MCLs. The tap water RBCs are presented in Table 3-2. The MCLs are enforceable limits (defined by the Safe Drinking Water Act [SDWA]) for a contaminant in a public water system.

 $r = \frac{r}{\epsilon}$ 

### THIS PAGE WAS INTENTIONALLY LEFT BLANK

 $\prod$ 

.

#### 4. LABORATORY CHEMICAL ANALYSIS PROGRAM AND QUALITY ASSURANCE SUMMARY

This section summarizes the laboratory chemical analysis program implemented as part of the Limited Site Investigation (LSI) conducted at the Wallops Flight Facility (WFF), Accomack County, . Sections 4.1 and 4.2 summarize analytical methods and data reporting and validation, respectively. Additional information on these topics is presented in the Quality Assurance Project Plan (QAPP) submitted as Appendix A of the Field Sampling Plan (FSP) prepared by Science Applications International Corporation (SAIC) (SAIC 2002b), which was followed during the laboratory chemical analysis program. GPL Laboratories, Inc. (GPL), 202 Perry Parkway, Gaithersburg, Maryland, was the analytical laboratory under contract for the WFF LSI.

A quality assurance (QA) summary of the analytical data is presented in Section 4.3. Appendix D provides additional information on the QA assessment. Appendix D (Tables D-1a and D-1b) presents the number of soil and groundwater samples collected during the WFF LSI, in addition to the number of field quality control (QC) samples collected and selected laboratory QC (i.e., matrix spike/matrix spike duplicates [MS/MSDs] and laboratory duplicates) samples analyzed.

#### 4.1 LABORATORY ANALYTICAL METHODS

The chemical analysis program for the WFF LSI conforms to the analytical requirements presented in the U.S. Environmental Protection Agency (EPA) *Test Methods for Evaluating Solid Waste*, *Physical/Chemical Methods SW846* and the QAPP (SAIC 2002b) for the chemical analysis of soil and groundwater samples. GPL analyzed all samples collected during the WFF LSI for use in data analysis. The analytical methods are presented in Table 4-1.

| Parameters                     | Water          | Soil           |
|--------------------------------|----------------|----------------|
| Volatile Organic Compounds     | SW8260B        | SW8260B        |
| Semivolatile Organic Compounds | SW8270C        | SW8270C        |
| Metals                         | SW6010B/SW7470 | SW6010B/SW7471 |

Table 4-1. Analytical Laboratory Methods Wallops Flight Facility, Accomack County, Virginia

#### 4.2 DATA REPORTING AND VALIDATION

The SAIC QA Officer or designee initiated a validation of the analytical data packages. One hundred percent of the data were validated using a modification of the 1994 EPA *Contract Laboratory Program* (*CLP*) *National Functional Guidelines for Organic and Inorganic Data Review* (EPA 1994a and 1994b). Non-CLP parameters were validated against similar CLP parameter guidelines. For example, volatile organic compounds (VOCs) were analyzed by SW846 Method 8260B and validated against the National Functional Guidelines VOC criteria. As such, CLP Forms 1 to 14 were reviewed to ensure that the QC results fell within appropriate QC limits for holding times, blank contamination, calibrations, surrogates, MS/MSDs, laboratory control samples (LCSs), internal standards (ISs), cleanup checks, laboratory duplicates, serial dilutions, detection limits, and any other required QC data. Laboratory QC forms were reviewed to ensure that the QC results fell within the appropriate QC limits. Any resulting data validation qualifiers were applied and a data validation report was prepared. No recalculations were done.

A secondary stage of validation occurred once the initial validation for a discrete sampling event was completed. Individual trip blanks, equipment rinsate blanks, and field blanks were associated with the corresponding environmental samples. These field QC blanks were evaluated following the same criteria as method blanks, and the associated environmental samples were appropriately qualified. After all of the data validation for the project was completed, a project data quality assessment was prepared (see Appendix D).

#### 4.3 QUALITY ASSURANCE SUMMARY

This section summarizes the results of the data quality assessment conducted for the analytical data resulting from this investigation. A comparison of the analytical results to project data quality objectives (DQOs), as defined in the QAPP (SAIC 2002b), formed the basis for evaluating the quality of the analytical data. Data verification and validation were conducted on 100 percent of the resulting analytical data packages to ensure that the laboratory produced an acceptable quality level for results. One hundred percent of the data were evaluated for contamination due to field activities by evaluating all field QC blanks (i.e., trip blanks, equipment rinsate blanks, and field blanks).

The following sections summarize the DQOs for the precision, accuracy, representativeness, comparability, and completeness (PARCC) and sensitivity parameters obtained during the WFF LSI. A detailed project data quality assessment is presented in Appendix D. Appendix D (Tables D-1a and D-1b) presents the number of samples, the parameters of interest, and the related field QC samples (i.e., trip blanks, equipment rinsate blanks, and field blanks). All data validation qualifiers applied to the data are presented in Appendix D (Table D-2). Appendix C presents the chain-of-custody (CoC) forms associated with this investigation.

#### 4.3.1 Precision

Precision is defined in Section 3 of the QAPP (SAIC 2002b) and was evaluated based on the analysis of three different types of QC samples: MS/MSDs, laboratory duplicates, and field duplicate samples.

The first type of QC sample used to assess the precision of the data quality was the relative percent differences (RPDs) of the MS/MSDs. All MS/MSD RPDs were within the control limits specified within Section 3 of the QAPP (SAIC 2002b).

The second type of QC sample used to assess the precision of the data quality was the RPDs of the laboratory duplicate samples. Laboratory duplicate RPDs were within acceptable ranges.

The third type of QC sample used to monitor field precision was field duplicate samples. Duplicate sample pairs were collected to ascertain the contribution of variability (i.e., precision) due to environmental media and sampling precision techniques. Field duplicate RPDs were calculated on 10 percent of the data and reviewed to identify any percentages that were suspicious. Data have not been qualified based on the results of field duplicates, since the National Functional Guidelines do not include control limits for RPDs. No specific control limits for field duplicates were established in part because the natural heterogeneity of the environmental media was much greater than the variability imparted by field and laboratory activities.

Based on an evaluation of MS/MSD, laboratory duplicate, and field duplicate RPDs, the overall precision is acceptable. As a result, the laboratory DQO for precision has been fulfilled. A comprehensive discussion of MS/MSD and duplicate results is presented in Appendix D.

#### 4.3.2 Accuracy

Analytical accuracy is defined in Section 3 of the QAPP (SAIC 2002b) and was measured through the use of surrogates, MS/MSDs, metals matrix spike samples (MSSs), LCSs, blanks (method, calibration, and field QC), and calibration standards (initial and continuing).

A few surrogate percent recoveries for VOCs and semivolatile organic compounds (SVOCs) were outside the control limits specified in Section 3 of the QAPP (SAIC 2002b), as discussed in Appendix D. No data validation qualifiers were applied based on SVOC surrogate results, since SVOCs were not detected in the associated water samples. For VOCs, positive results in associated samples were qualified as estimated "J" and nondetect results were qualified as estimated "UJ." These qualified data points are considered to be acceptable, but estimates, and were used in the human health-based data screen. Appendix D (Table D-2) lists the samples that were qualified due to surrogate results.

A few SVOC MS/MSD percent recoveries were outside the control limits specified in Section 3 of the QAPP (SAIC 2002b), as discussed in Appendix D. Six SVOC soil percent recovery values (of 36 total values) were outside the control limits. Since the National Functional Guidelines do not recommend the application of data validation qualifiers based solely on MS/MSD results, these results were used in conjunction with other QC indicators (i.e., surrogates, LCSs, and ISs) when qualifying the data. No data validation qualifiers were applied based on the MS/MSD results, since these other QC criteria were met. Two soil metals MSS percent recovery values (of 46 total values) were outside the QC limits. As a result, antimony in 11 soil samples was qualified as estimated "UJ" or "J." These qualified data points are considered to be acceptable, but estimates, and were used in the human health-based data screen. Appendix D (Table D-2) lists the samples that were qualified with a "J" or "UJ" due to MSS results.

The LCS was the fourth QC type used to assess analytical accuracy. Based on an evaluation of the data, all criteria were within the control limits specified in Section 3 of the QAPP (SAIC 2002b) with the exception of a few SVOC outliers. 4-Chloro-3-methylphenol, 4-nitrophenol, and pentachlorophenol (PCP) each had an LCS recovery above the upper control limit (UCL) in one water lot. 2,4-Dinitrotoluene (2,4-DNT) and phenol each had an LCS recovery above the UCL in one soil lot. No data validation qualifiers were applied, since no positive results were identified in the associated soil and water samples.

All supporting QC information cited above also was qualitatively evaluated with respect to the analytical accuracy DQO. Based on the evaluation of the surrogate, MS/MSD, MSS, and LCS results and the associated laboratory QC results summarized in Appendix D, the laboratory accuracy has been determined to be acceptable for all analyses. The analytical DQO for accuracy has been met.

Method blank analysis was conducted with each analytical batch of environmental samples analyzed, and the results evaluated for interferents that might potentially interfere with accurate quantitation of a target compound. Methylene chloride, acetone, and trichloroethene (TCE) were detected at concentrations and frequencies in the organic method blanks that might bias the analytical results. The data validation qualifier "U" was applied to 22 methylene chloride, 14 acetone, and 15 TCE soil concentrations, as well as 37 methylene chloride water concentrations, that were less than 10 or 5 times the concentration detected in the associated method blanks. These qualified data points are considered to be acceptable, but nondetect, and were used in the human health-based data screen. Appendix D (Table D-2) lists the samples that were qualified with a "U" due to method blank results.

Antimony, arsenic, calcium, cobalt, copper, iron, magnesium, manganese, nickel, sodium, thallium, vanadium, and zinc were detected in various method blanks, initial calibration blanks (ICBs), and continuing calibration blanks (CCBs) at concentrations and frequencies that might bias the analytical results. Associated soil and water concentrations that were less than the action level associated with the concentration detected in the method blanks, ICBs, and CCBs were qualified with a "U." These qualified data points are

considered to be acceptable, but nondetect, and were used in the human health-based data screen. Appendix D (Table D-2) lists the samples that were qualified with a "U" due to laboratory blank results.

Field QC blanks (i.e., trip blanks, equipment rinsate blanks, and field blanks) were collected to determine the degree of cross-contamination or ensure successful decontamination procedures. The data validation qualifier "U" was applied to one carbon disulfide and seven acetone soil concentrations, as well as six carbon disulfide and four acetone water concentrations, that were detected at concentrations below the action level in the associated trip blank. The data validation qualifier "U" was applied to three toluene, four di-n-butyl phthalate (DNBP), four antimony, one chromium, four cobalt, two copper, and four potassium soil concentrations, as well as eight copper water concentrations that were detected at concentrations below the action level in the associated equipment rinsate blanks. No VOC, SVOC, or metals results were qualified based on field blank results. Data points qualified with a "U" in the above samples are biased high due to trip blank and equipment rinsate blank contamination and should be considered nondetect. These qualified data points are considered to be acceptable, but nondetect, and were used in the human health-based data screen. Appendix D (Table D-2) lists the samples that were qualified with a "U" due to field QC blank results.

Based on an evaluation of the compounds and elements detected in the blanks and calibration results, the overall accuracy has been determined to be acceptable for all analyses. The analytical DQO for accuracy has been met. A comprehensive discussion of the method and field QC blank results is presented in Appendix D.

#### 4.3.3 Representativeness

Based on an evaluation of sample precision and accuracy, the samples collected during the WFF LSI are considered to be representative of the environmental conditions.

#### 4.3.4 Comparability

Based on the precision and accuracy assessment presented above, the data collected during the WFF LSI are considered to be comparable with the data collected during previous investigations.

#### 4.3.5 Completeness

Completeness measures the amount of valid data obtained from the laboratory analysis process and sampling. For data to be considered valid, they must have met all acceptance criteria, including accuracy and precision, as well as any other criteria specified by the analytical methods used. Furthermore, project completeness was defined as the percentage of data used to perform the human health-based data screen, upon which LSI recommendations were made. For analytical data to be considered usable for the LSI recommendations, each data point must be satisfactorily validated.

Results that have been qualified "U," "UJ," or "J" for various reasons encountered minor analytical problems with limited impact on the data quality. Data were qualified rejected "R" when significant errors were identified and were not used to calculate project completeness. No data collected during the WFF LSI were rejected as a result of the data validation process.

DQOs for the WFF LSI were set at 90 percent for field sampling and laboratory completeness. Based on the evaluation of the field and laboratory QC results presented in Appendix D, 100 percent of the total environmental sample data collected during the WFF LSI were used as the basis for all recommendations presented in this report.

#### 5. SITE INVESTIGATION RESULTS, CONCLUSIONS, AND RECOMMENDATIONS

This section presents the results of the Limited Site Investigation (LSI) conducted at four Formerly Used Defense Sites (FUDS) program sites (Site 1 – Old Wastewater Treatment Plant [WWTP], Site 3 – Two 600,000-gallon Fuel Storage Tanks, Buildings A-46A and A-46B, the Industrial Waste/Sanitary Landfill [IWL], and the Construction Debris Landfill [CDL]) at the Wallops Flight Facility (WFF). This section includes a physical description and history of each site, a summary of the LSI field activities, the analytical results of the environmental sampling, the nature and extent of identified constituents, the results of screening assessments, and the conclusions and recommendations for each site.

### THIS PAGE WAS INTENTIONALLY LEFT BLANK

ľ

Ĺ

#### 5.1 SITE 1 – OLD WASTEWATER TREATMENT PLANT

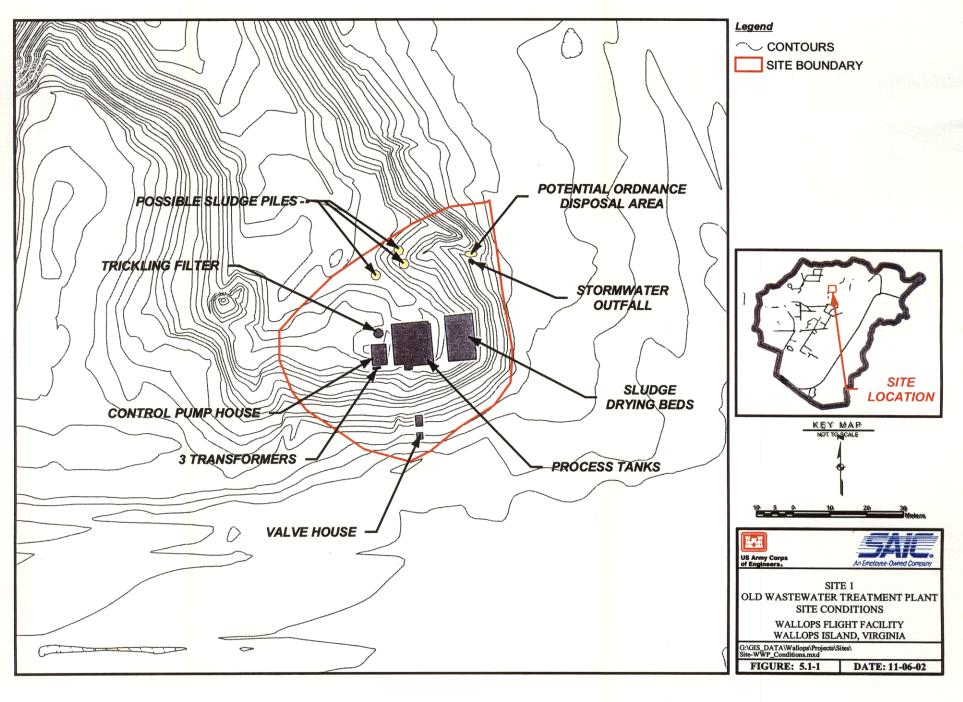
This section presents the results of the LSI for the Old WWTP (Site 1). A description and history of the site, a summary of the site conditions and environmental setting, and an overview of the environmental investigation activities previously conducted at the Old WWTP are provided in Section 5.1.1. Section 5.1.2 discusses the LSI activities conducted at Site 1. Section 5.1.3 presents the laboratory analytical results of the LSI field investigation and summarizes the nature and extent of contamination identified during the investigation of the Old WWTP. The results of the human health toxicological screening assessment also are presented in Section 5.1.3. Conclusions and recommendations for Site 1 are summarized in Section 5.1.4.

#### 5.1.1 Site Description, History, and Environmental Setting

Information pertinent to the physical description of Site 1, the operational history, and the environmental setting for the site was obtained from historical site maps, aerial photographs, anecdotal evidence, site visual inspections, and information and data presented in previous site investigations and studies. Topographic information was obtained from the EG&G, Inc. digital base map.

#### 5.1.1.1 Site Description and History

The WWTP was constructed by the Navy in the early 1940s and is located northwest of the intersection of Runway 17-35 and the taxiway that parallels Runway 10-28. The WWTP is no longer active and the structures are partially degraded and overgrown with vegetation. The National Aeronautics and Space Administration (NASA) abandoned the facility upon obtaining custody of the land and has not used the WWTP for any purpose since the transfer of the facility ownership in 1959. The Principal Responsible Party (PRP) Analysis (NASA 2001) concluded that the U.S. Department of Defense (DOD) and U.S. Army Corps of Engineers (USACE) should assume responsibility for Site 1 under the FUDS program. Figure 5.1-1 shows the location of the Old WWTP (Site 1) at the WFF.


The former wastewater treatment plant consists of three cinder-block structures (control/pump house, process tanks [clarifiers], and sludge drying beds) and a trickling filter. Influent to the Old WWTP probably flowed by gravity or pump stations to the headworks (control/pump house), where the flow was routed through a screening process before it entered the process tanks (clarifiers). Effluent from the clarifier in these processes are pumped over the trickling filter, generally returning to the inlet side of the clarifier tanks. As a result, effluent from the trickling filter is recirculated continuously through the clarifier or a secondary clarifier to aid in the removal of the suspended solids. Once the effluent from the clarifier has undergone significant treatment in the trickling filter process, the effluent may be discharged and sludge from the clarifiers discarded to the sludge drying beds. The photograph presented in Figure 5.1-2 shows the current conditions of the Old WWTP and the physical features of the surrounding area.

#### 5.1.1.2 Site Conditions and Environmental Setting

Site 1 is located at the base of a moderate hill that consists of approximately 30 feet of topographic relief. The defined site, as shown in Figure 5.1-1 is approximately 0.8 acres and the hill slopes down to the WWTP, toward the northwest. The site is surrounded by woodland brush, young trees, and dense vegetative cover. A temporary access road was cleared for the LSI sampling activities through the western portion of the site by WFF personnel prior to the arrival of the Science Applications International Corporation (SAIC) sampling team. The site contains mounded material identified in previous investigations as residual sludge piles located approximately 150 to 200 feet north of the Site 1 concrete structures. In addition, the sludge drying beds also may contain residual sludge materials associated with former WWTP activities.

r ----

### THIS PAGE WAS INTENTIONALLY LEFT BLANK



OIZOAB3Y



Figure 5.1-2. Site 1 – Old Wastewater Treatment Plant – Photograph of Site Conditions Wallops Flight Facility, Accomack County, Virginia

During the April 2002 site visit, personnel from the Virginia Department of Environmental Quality (VDEQ) stated that based on past experience, trickling filters such as that at the Old WWTP sometimes contain mercury. However, the presence or absence of a mercury seal could not be positively determined during that time and the presence of a mercury containing seal would be addressed in a separate procedure.

The hydrologic conditions at the Old WWTP have not been characterized based on data collected previously at the site. Unfortunately, no soil boring lithologic data has been identified during the review of the site-specific data, so a lithologic description of the subsurface soil greater than 4 feet below land surface (BLS) could not be included in this LSI.

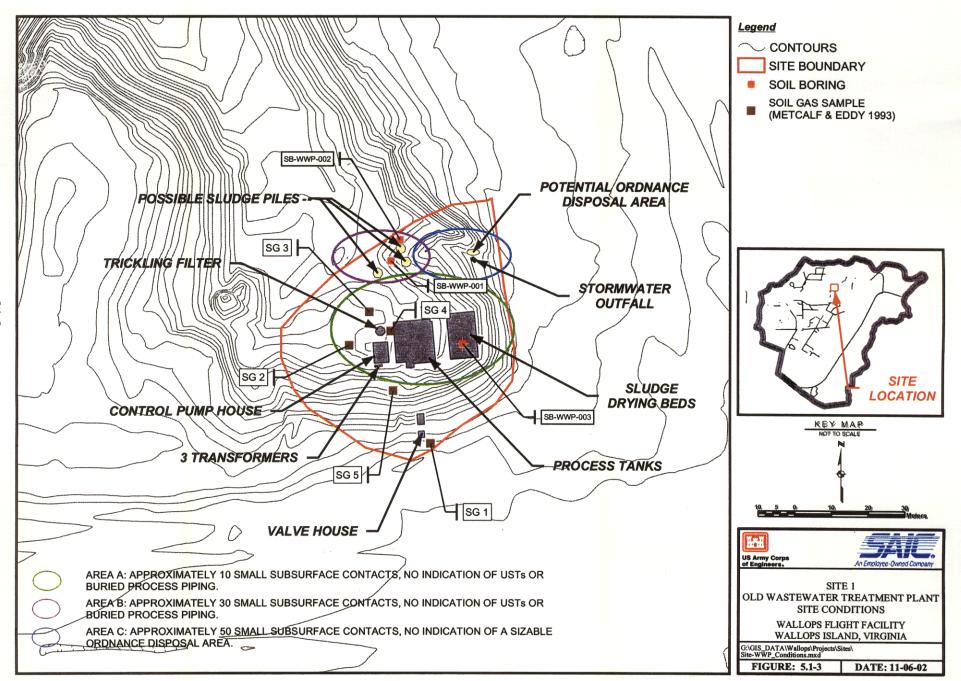
#### 5.1.1.3 Background and Previous Site Investigation Activities

In November 1990, an Environmental Site Survey (ESS) Report provided an overview of sites known to have impacted the environment, their investigation status, and identified additional sites for future investigation. The Old WWTP was identified as 1 of 14 sites that had not been investigated prior to completion of the report and indicated that no information currently was available for the site. As a result, the ESS concluded that additional investigation at Site 1 was warranted.

In July 1993, a preliminary report (Metcalf & Eddy 1993a) presented the findings of an unexploded ordnance (UXO) and magnetometer survey conducted at Site 1. The report summarizes structures observed at the Old WWTP and references a NASA memorandum regarding the potential for past use of this area as an ordnance disposal site. During the UXO/magnetometer survey, three areas (A, B, and C) were investigated to determine the presence of buried tanks, process piping, and UXO. The results of the UXO/magnetometer survey are summarized below:

- Area A Immediate area surrounding the Old WWTP (10 possible subsurface contacts located)
- Area B Possible sludge disposal area (30 subsurface contacts located)
- Area C Possible ordnance disposal area (50 subsurface contacts located).

The subsurface objects were not identified during the investigation and all subsurface contacts were characterized as less than 2 feet in diameter. Based on the results of the UXO/magnetometer survey, the recommendation was made to record Area C as a possible ordnance disposal area on the Facilities Master Plan. The ESS also concluded that additional subsurface investigations (UXO survey) should be conducted prior to any intrusive activity at this site. The ESS indicates that the site would be forwarded to USACE for further evaluation. Areas identified during the UXO/magnetometer survey are presented in Figure 5.1-3.


In conjunction with the UXO/magnetometer survey, a preliminary report to NASA (Metcalf & Eddy 1993b) presented the findings of a soil gas survey conducted at the Old WWTP. The report states that six soil gas samples (WFF1-SG1 through WFF1-SG6) were collected during the March 1993 soil gas survey in the vicinity of the Old WWTP. Soil gas sampling was not performed in areas of suspected UXO due to the potential safety hazard.

Field investigation screening procedures using a photoionization detector (PID) indicated that volatile organic compound (VOC) concentrations of 7 and 200 parts per million (ppm) were present in the subsurface soil at soil gas sample locations WFF1-SG1 and WFF1-SG6, respectively. The organic vapor analyzer (OVA) detected no VOCs at either of these sample locations. However, the OVA registered a concentration of >1,000 ppm at soil gas location WFF1-SG3. This measurement was repeated with a filter tip, confirming that the subsurface soils at WFF1-SG3 probably contained methane, a common anaerobic degradation product.

The soil gas survey report recommended collection of subsurface soil samples at three locations: soil gas sample location WFF1-SG2, the sludge piles located north of WFF1-SG2, and soil gas sample location WFF1-SG6. The report indicated that additional evaluation of Site 1 would be conducted by USACE. Soil gas survey results are presented in Table 5.1-1. Soil gas survey locations are presented in Figure 5.1-3.

In March 1996, a Site Investigation (SI) Report evaluating 15 separate sites (sites identified as being environmentally significant in the ESS) (Metcalf & Eddy 1996) was submitted to NASA. The Old WWTP was 1 of 15 sites addressed during the SI. Site 1 was included in the SI evaluation based on a 1988 NASA memorandum to USACE that indicated that a drainage swale located near the Old WWTP potentially had been used as an ordnance disposal site. The SI report reiterates the findings of the preliminary reports that no evidence of ordnance was noted during the initial phases of the investigation. However, NASA discontinued field investigation of Site 1 in 1993 after completion of the magnetometer/UXO and soil gas surveys because the site was associated with former Navy activities (prior to 1959) and, therefore, falls under the jurisdiction of USACE FUDS Program.

In January 2000, Earth Tech, Inc. submitted a letter report to NASA (Earth Tech, Inc. 2000) for work conducted at the WFF. The report identified potential environmental impacts at the subject FUDS site and evaluated the need for future environmental studies. Work performed at this site as part of this effort included: a site visit, personnel interviews, direct push technology (DPT) soil sample collection (one boring), and laboratory analysis. A relative risk evaluation (RRE) performed using existing data found the relative risk to be high. In May 1999, a status summary report was submitted to USACE for the sampling activities performed at sites located on the Main Base (Earth Tech, Inc. 2001). Sampling activities were performed as part of this investigation involved several sites, including the Old WWTP. One groundwater sample was collected at Site 1 (location W-05) and results of that sampling indicated that aluminum, iron, and manganese exceeded their respective secondary maximum contaminant levels (MCLs). The analytical results for constituents detected in the groundwater at Site 1 that exceeded Region III risk-based concentrations (RBCs) or secondary MCLs during the previous sampling activities are summarized in Table 5.1-2.



5.1-5

#### Table 5.1-1. Soil Gas Survey Results Site 1 – Old Wastewater Treatment Plant Wallops Flight Facility, Accomack County, Virginia

| Soil Gas<br>Sample I.D. | Collection<br>Date | Sample Depth<br>(feet) | PID Screening<br>Results (ppm) | OVA Screening<br>Results (ppm)* | Comments                                         |
|-------------------------|--------------------|------------------------|--------------------------------|---------------------------------|--------------------------------------------------|
| WFF1-SG1                | 3/11/93            | 5                      | 7                              | ND                              |                                                  |
| WFF1-SG2                | 3/11/93            | 3                      | ND                             | ND                              | Concentration >1,000 ppm<br>for methane detected |
| WFF1-SG3                | 3/11/93            | 5                      | ND                             | ND                              |                                                  |
| WFF1-SG4                | 3/11/93            | 4                      | ND                             | ND                              |                                                  |
| WFF1-SG5                | 3/11/93            | 2.5                    | ND                             | ND                              |                                                  |
| WFF1-SG6                | 3/11/93            | 5                      | 200                            | ND                              | · ·                                              |

OVA concentrations depicted do not include concentrations of methane detected.

# Table 5.1-2. Inorganic Constituents Detected at ConcentrationsGreater than Secondary MCLsSite 1 – Old Wastewater Treatment PlantWallops Flight Facility, Accomack County, Virginia

| Sample I.D. | Parameter         | Result (mg/L) | Secondary MCLs<br>(mg/L)* |
|-------------|-------------------|---------------|---------------------------|
| W-05        | Aluminum (Total)  | 32.90         | 0.053 to 0.23             |
|             | Iron (Total)      | 21.00         | 0.33                      |
|             | Manganese (Total) | 0.145         | 0.053                     |

\*Secondary Maximum Contaminant Levels (SMCLs) are unenforceable Federal guidelines regarding taste, odor, color, and certain other non-aesthetic effects of drinking water. EPA recommends them to the states as reasonable goals, but Federal law does not require water systems to comply with them.

Results of the previous investigation activities at Site 1 indicated that additional sampling activities were required to confirm that the Old WWTP had not received or released hazardous substances or petroleum products as a result of historical activities. Supplemental soil sampling was required to characterize site conditions at locations identified as anomalies during the soil gas investigation and was required to characterize residual soils present at the "sludge piles" and in the abandoned sludge drying beds. Laboratory analysis included constituents commonly associated with activities conducted at the Old WWTP and included VOCs, SVOCs, and metals.

#### 5.1.2 Field Investigation

The LSI field activities followed site-specific project plans that included field sampling and laboratory analyses conducted under project-specific quality assurance/quality control (QA/QC) and health and safety protocols. The following paragraphs present the objectives, approach, and field activities conducted during the field investigation of the Old WWTP. The rationale for sampling, the analyte selection, and a discussion of the sampling methodologies also are included.

#### 5.1.2.1 SAIC Field Investigation

As a result of previous investigation activities, additional evaluation of the Old WWTP for potential environmental concerns was warranted based on results of the previous soil gas sampling, the presence of

residual sludge mounds, and concern regarding residual materials in the Old WWTP sludge drying beds. The objective of the LSI at the Old WWTP was to investigate the potential presence of chemical constituents at the Old WWTP as a result of past disposal practices and to determine if chemical constituents exist in the soils at concentrations that exceed human health screening criteria for soils.

To assess whether contamination had been released at the Old WWTP, the site-specific sampling plan included in the Field Sampling Plan (FSP) (SAIC 2002a) proposed the collection of samples from three soil boring locations (SB-WWP-01 through SB-WWP-03) to characterize current conditions present at the Old WWTP and to confirm results of previous investigation activities. Based on soil gas survey results, surface and subsurface soil samples were collected at soil gas sample location WFF1-SG2, the sludge piles located north of WFF1-SG2, and soil gas sample location WFF1-SG6. Two samples (surface and shallow subsurface) and the appropriate QC samples (duplicates) were collected from each of the three soil borings. Soil samples were analyzed for chemical constituents potentially associated with the materials discarded at Site 1 (VOCs, SVOCs, and metals). Table 5.1-3 summarizes the samples collected during the LSI. Figure 5.1-3 shows the LSI soil boring locations at Site 1.

#### Table 5.1-3. LSI Soil Boring Samples Site 1 – Old Wastewater Treatment Plant Wallops Flight Facility, Accomack County, Virginia

| Borehole I.D. | Borehole<br>Depth (feet) | Field Sample Number | Sample<br>Interval (feet) |
|---------------|--------------------------|---------------------|---------------------------|
| SB-WWP-01     | 4                        | SAIC01              | 0 - 0.5                   |
|               |                          | SAIC01R             | 0 – 0.5                   |
|               |                          | SAIC02              | 0.5 – 1.0                 |
|               |                          | SAIC02R             | 0.5 - 1.0                 |
| SB-WWP-02     | 4                        | SAIC 01             | 0 - 0.5                   |
|               |                          | SAIC01R             | 0 - 0.5                   |
|               |                          | SAIC01D             | 0 - 0.5                   |
|               |                          | SAIC01DR            | 0 - 0.5                   |
|               |                          | SAIC 02             | 3.5 - 4.0                 |
|               | · · · · · ·              | SAIC 02R            | 3.5 - 4.0                 |
| SB-WWP-03     | 0.5                      | SAIC 01             | 0 - 0.5                   |
|               |                          | SAIC01R             | 0 - 0.5                   |
|               |                          | SAIC 02             | 0.5 - 1.0                 |
|               |                          | SAIC 02R            | 0.5 – 1.0                 |

Notes:

All soil samples collected from the old WWTP were analyzed for VOCs, SVOCs, and metals. QA/QC sampling followed protocols specified in the FSP (SAIC 2002a).

Duplicate samples were identified using a "D." A second round of VOC samples was recollected at Site 1 due to a mix-up of sample I.D.s during the analysis process. Recollected samples are identified with an "R."

#### 5.1.3 Investigation Results and Nature and Extent

This section presents the results of the LSI sampling and analysis. The data collected during the LSI were used to provide a basis for evaluating the magnitude and extent of contamination and conducting the human health screen. Complete analytical results for the soil samples are presented in Appendix G and summarized in Table 5.1-4.

| Table 5.1-4. Data Summary: Soil Boring Results, Site 1 - Old Wastewater Treatmen | nt Plant |
|----------------------------------------------------------------------------------|----------|
| Wallops Flight Facility, Accomack County, Virginia                               |          |

Ł

| lite ID                    | <u> </u>       |     | SB-WWP-01  |    | SB-WWP-01  | SB-WWP-01  |           | SB-WWP-01  | SB-WWP-02 |    | SB-WWP-02  | •      | SB-WWP-02  |
|----------------------------|----------------|-----|------------|----|------------|------------|-----------|------------|-----------|----|------------|--------|------------|
| eld Sample Number          |                |     | SAIC01     |    | SAIC01R    | SAIC02     |           | SAIC02R    | SAIC01    |    | SAIC01D    |        | SAIC01DR   |
| ite Type                   |                |     | BORE       |    | BORE       | BORE       |           | BORE       | BORE      |    | BORE       |        | BORE       |
| ollection Date             |                |     | 08/08/02   |    | 08/16/02   | 08/08/02   |           | 08/16/02   | 08/08/02  |    | 08/08/02   |        | 08/16/02   |
| epth (ft)                  |                |     | 0.00       |    | 0.00       | 0.50       |           | 0.50       | 0.00      |    | 0.00       |        | 0.00       |
| IETALS(6010)               |                |     |            |    |            |            |           |            |           |    | * ÷        |        |            |
| arameter                   | Units          | RL  |            |    |            |            |           |            |           |    |            |        |            |
| luminum                    | MG/KG          | 20  | 5110       |    | N/A        | 5630       |           | N/A        | 4770      |    | 4520       |        | N/A        |
| Intimony                   | MG/KG          | 0.6 | 0.25       | υJ | N/A        | 0.23       | UJ        | N/A        | 1.2       | UJ | 1.1        | UJ     | N/A        |
| Arsenic                    | MG/KG          | 1   | 2.2        |    | N/A        | 2.4        |           | N/A        | 2.3       | 8  | 2.3        | 8      | N/A        |
| Barium                     | MG/KG          | 20  | 24.1       |    | N/A        | 19.1       |           | N/A        | 37.7      |    | 36.8       |        | N/A        |
| Beryllium                  | MG/KG          | 0.5 | 0.2        |    | N/A        | 0.18       |           | N/A        | 0.18      | В  | 0.18       | в      | N/A        |
| Cadmium                    | MG/KG          | 0.5 | 0.09       | B  | N/A        | 0.02       | U         | N/A        | 4         |    | 4          | -      | N/A        |
| Calcium                    | MG/KG          | 100 | 541        |    | N/A        | 224        |           | N/A        | 6240      |    | 9750       |        | N/A        |
| Chromium                   | MG/KG          | 1.  | 5.3        |    | N/A        | 5          |           | N/A        | 8.1       |    | 7.7        |        | N/A        |
| Cobalt                     | MG/KG          | 5   | 1.2        |    | N/A        | 1          |           | N/A        | 1.4       | υ  | 1.2        | U      | N/A        |
| Copper                     | MG/KG          | 1   | 2.6        |    | N/A        | 1.7        |           | N/A        | 14.9      | -  | 14.5       |        | N/A        |
| ron                        | MG/KG          | 10  | 3850       |    | N/A        | 3300       |           | N/A        | 3870      |    | 3750       |        | N/A        |
| .ead                       | MG/KG          | 0.3 | 8.2        |    | N/A        | 2.7        |           | N/A        | 36.2      |    | 35.3       |        | N/A        |
| Magnesium                  | MG/KG          | 100 | 450        |    | N/A        | 300        |           | N/A        | 564       |    | 558        |        | N/A        |
| Manganese                  | MG/KG          | 1.5 | 113        |    | N/A        | 53.6       |           | N/A        | 73.5      |    | 73.5       |        | N/A        |
| Nickel                     | MG/KG          | 1   | 2.7        | J  | N/A        | 2          | J         | N/A        | 4.6       | J  | 4.2        | J      | N/A        |
| otassium                   | MG/KG          | 100 | 281        | ÷  | N/A        | 203        | •         | N/A        | 231       | Ŭ  | 219        | J<br>U | N/A<br>N/A |
| Selenium                   | MG/KG          | 0.5 | 0.25       | Ú  | N/A        | 0.23       | U         | . N/A      | 1.2       | -  |            |        |            |
| Silver                     | MG/KG          | 1   | 0.06       | Ŭ  | N/A        | 0.23       | Ŭ         | N/A        | 1.2       | U  | 1.1        | U      | N/A        |
| Sodium                     | MG/KG          | 100 | 67.9       | ŰJ | N/A        | 64.2       | UJ        | N/A        |           | UJ | 2.1        |        | N/A        |
| Vanadium                   | MG/KG          | 5   | 10.9       | 05 |            |            | 05        |            | 95.1      | UJ | 110        | UJ     | N/A        |
| Zinc                       | MG/KG          | 2   | 16.1       |    | N/A<br>N/A | 7.2<br>5.8 |           | N/A        | 8.6       |    | 8.2        |        | N/A        |
|                            |                |     |            |    |            |            |           |            |           |    | 101        |        | 185        |
| METALS(7471) Parameter     | Units          | RL  |            |    |            |            | - <u></u> |            |           |    |            |        |            |
| Mercury                    | MG/KG          | 0.1 | 0.2        |    | NUA        |            |           |            |           |    |            |        |            |
| wercury                    | MG/NG          | 0.1 | 0.2        |    | N/A        | 0.04       |           | N/A        | 2.3       |    | 2.8        | ÷      | N/A        |
| SEMIVOLATILE ORGAN         |                |     |            |    |            |            |           |            | <u>.</u>  |    |            |        |            |
| Parameter                  | Units          | RL  |            |    |            |            |           |            |           |    |            |        |            |
| 1,4-Dichlorobenzene        | ug/kg          | 330 | 350        |    | N/A        | 350        |           | N/A        | 350       |    | 32         | J      | N/A        |
| 2,4-Dinitrotoluene         | ug/kg          | 330 | 350        | -  | N/A        | 350        |           | N/A        | 350       |    | 350        | U      | N/A        |
| 2-Methylnaphthalene        | ug/kg          | 330 | 350        |    | N/A        | 350        |           | N/A        | 350       | -  | 350        | U      | N/A        |
| Acenaphthene               | ug/kg          | 330 | 350        |    | N/A        | 350        |           | N/A        | 350       | U  | 350        | U      | N/A        |
| Acenaphthylene             | ug/kg          | 330 | 350        |    | N/A        | 350        |           | N/A        | 350       |    | 350        | U      | N/A        |
| Anthracene                 | ug/kg          | 330 | 350        |    | N/A        | 350        | U         | N/A        | 350       | U  | 350        | U      | N/A        |
| Benzo(a)anthracene         | ug/kg          | 330 | 350        | U  | N/A        | 350        | U         | N/A        | 350       | U  | 350        | Ū      | N/A        |
| Benzo(a)pyrene             | ug/kg          | 330 | 350        | U  | N/A        | 350        | U         | N/A        | 34        |    | 350        | Ū      | N/A        |
| Benzo(b)fluoranthene       | ug/kg          | 330 | 350        |    | N/A        | 350        |           | N/A        | 350       |    | 350        |        | N/A        |
| Benzo(g,h,i)perylene       | ug/kg          | 330 | 350        |    | N/A        | 350        |           | N/A        | 350       |    | 350        | -      | N/A        |
| Benzo(k)fluoranthene       | ug/kg          | 330 | 350        |    | N/A        | 350        |           | N/A        | 350       |    | 350        |        | N/A        |
| bis(2-Ethylhexyl)phthalate |                | 330 | 350        |    | N/A        | 350        |           | N/A        | 350       |    | 350        |        | N/A        |
| Carbazole                  | ug/kg          | 330 | 350        |    | N/A        | 350        |           | N/A        | 350       |    | 350        |        | N/A        |
| Chrysene                   | ug/kg          | 330 | 350        | -  | N/A        | 350        |           | N/A        | 55        |    |            |        |            |
| Dibenzofuran               | ug/kg          | 330 | 350        |    | N/A        | 350        |           | N/A        | 350       |    | 86         |        | N/A        |
| Di-n-butyl phthalate       |                | 330 | 350        |    |            |            |           |            |           |    | 350        |        | N/A        |
|                            | ug/kg          | 330 |            |    | N/A        | 350        |           | N/A        | 350       |    | 350        | -      | N/A        |
|                            |                |     |            |    |            |            |           |            |           |    |            |        |            |
| Fluoranthene<br>Fluorene   | ug/kg<br>ug/kg | 330 | 350<br>350 |    | N/A        | 350        |           | N/A<br>N/A | 350       |    | 350<br>350 |        | N/A        |

Created on 5/27/2003

| Table 5.1-4. Data | Summary: Soil Boring Results, Site 1 - Old Wastewater Treatment Plant |  |
|-------------------|-----------------------------------------------------------------------|--|
|                   | Wallops Flight Facility, Accomack County, Virginia                    |  |

| Site ID                |          |       | SB-WWP-01 |   | SB-WWP-01 | _  | SB-WWP-01 |   | SB-WWP-01 |     | SB-WWP-02 |   | SB-WWP-02 |   | SB-V | WP-02    |    |
|------------------------|----------|-------|-----------|---|-----------|----|-----------|---|-----------|-----|-----------|---|-----------|---|------|----------|----|
| Field Sample Number    |          |       | SAIC01    |   | SAIC01R   |    | SAIC02    |   | SAIC02R   |     | SAIC01    |   | SAIC01D   |   | SA   | IC01DR   |    |
| Site Type              |          |       | BORE      |   | BORE      |    | BORE      |   | BORE      |     | BORE      |   | BORE      |   |      | BORE     |    |
| Collection Date        |          |       | 08/08/02  |   | 08/16/02  |    | 08/08/02  |   | 08/16/02  |     | 08/08/02  |   | 08/08/02  |   | (    | 08/16/02 |    |
| Depth (ft)             |          |       | 0.00      |   | 0.00      |    | 0.50      |   | 0.50      |     | 0.00      |   | 0.00      |   |      | 0.00     |    |
| Indeno(1,2,3-cd)pyrene | ug/kg    | 330   | 350       | υ | N/A       |    | 350       | U | N/A       |     | 350       | U | 350       | U |      | N/A      |    |
| N-Nitrosodiphenylamine | ug/kg    | 330   | 350       | U | N/A       |    | 350       | U | N/A       |     | 350       | U | 350       | Ū |      | N/A      |    |
| Phenanthrene           | ug/kg    | 330   | 350       | U | N/A       |    | 350       | U | N/A       |     | 350       | Ũ | 350       | ū |      | N/A      |    |
| Pyrene                 | ug/kg    | 330   | 350       | U | N/A       |    | 350       | U | N/A       |     | 350       | Ū | 350       | Ū |      | N/A      |    |
| VOLATILE ORGANIC CO    | MPOUNDS( | 8260) |           |   |           |    |           |   |           |     |           |   |           |   |      |          |    |
| Parameter              | Units    | RL    |           |   |           |    |           |   |           |     |           |   |           |   |      |          |    |
| Acetone                | ug/kg    | 10    | N/A       |   | 37        | UJ | N/A       |   | 61        | UJ  | N/A       |   | N/A       |   |      | 68       | UJ |
| Methyl ethyl ketone    | ug/kg    | 10    | N/A       |   | 10        | J  | N/A       |   | 6.6       | J   | N/A       |   | N/A       |   |      | 15       | ŭ  |
| Methylene Chloride     | ug/kg    | 5     | N/A       |   | 5.3       | U  | N/A       |   | 5.2       | Ū   | N/A       |   | N/A       |   |      | 7.4      | Ū  |
| Toluene                | ug/kg    | 5     | N/A       |   | 5.3       | U  | N/A       |   | 5.2       | U - | N/A       |   | N/A       |   |      | 7.4      | ŭ  |

C

]

- ---

----

\_\_\_

-

Created on 5/27/2003

Щ.

| Table 5.1-4. Data Summary: Soil Boring Results, Site 1 - Old Wastewater Tr | eatment Plant |
|----------------------------------------------------------------------------|---------------|
| Wallops Flight Facility, Accomack County, Virginia                         |               |

| te ID                                                                                                                                                                                                                                                                                                                    |                                                                                                                                              |                                                                                     | SB-WWP-02                                                               | SB-WWP-02                                                          |                                 | SB-WWP-02                                                          | SB-WWP-03                                                                                                        |                                      | SB-WWP-03                                                          | SB-WWP-03                                                                                 |                                 | SB-WWP-03                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------|
| ield Sample Number                                                                                                                                                                                                                                                                                                       |                                                                                                                                              |                                                                                     | SAIC01R                                                                 | SAIC02                                                             |                                 | SAIC02R                                                            | SAIC01                                                                                                           |                                      | SAIC01R                                                            | SAIC02                                                                                    |                                 | SAIC02R                                                            |
| te Type                                                                                                                                                                                                                                                                                                                  |                                                                                                                                              |                                                                                     | BORE                                                                    | BORE                                                               |                                 | BORE                                                               | BORE                                                                                                             |                                      | BORE                                                               | BORE                                                                                      |                                 | BORE                                                               |
| oliection Date                                                                                                                                                                                                                                                                                                           |                                                                                                                                              |                                                                                     | 08/16/02                                                                | 08/08/02                                                           |                                 | 08/16/02                                                           | 08/08/02                                                                                                         |                                      | 08/16/02                                                           | 08/08/02                                                                                  |                                 | 08/16/02                                                           |
| epth (ft)                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                                                                     | 0.00                                                                    | 3.50                                                               |                                 | 3.50                                                               | 0.00                                                                                                             |                                      | 0.00                                                               | 0.50                                                                                      |                                 | 0.50                                                               |
|                                                                                                                                                                                                                                                                                                                          |                                                                                                                                              |                                                                                     |                                                                         |                                                                    |                                 |                                                                    |                                                                                                                  |                                      |                                                                    |                                                                                           |                                 |                                                                    |
| IETALS(6010)                                                                                                                                                                                                                                                                                                             | 11-14-                                                                                                                                       |                                                                                     |                                                                         |                                                                    |                                 |                                                                    |                                                                                                                  |                                      | ·                                                                  |                                                                                           | 1                               | ·                                                                  |
| arameter                                                                                                                                                                                                                                                                                                                 | Units                                                                                                                                        | RL                                                                                  |                                                                         |                                                                    |                                 |                                                                    |                                                                                                                  |                                      |                                                                    | · · · · · · · · · · · · · · · · · · ·                                                     |                                 |                                                                    |
| luminum                                                                                                                                                                                                                                                                                                                  | MG/KG                                                                                                                                        | 20                                                                                  | N/A                                                                     | 14300                                                              |                                 | N/A                                                                | 6700                                                                                                             |                                      | N/A                                                                | 6220                                                                                      |                                 | N/A                                                                |
| ntimony                                                                                                                                                                                                                                                                                                                  | MG/KG                                                                                                                                        | 0.6                                                                                 | N/A                                                                     | 0.26                                                               | UJ                              | N/A                                                                | 10.8                                                                                                             | ÚJ                                   | N/A                                                                | 7.2                                                                                       | J                               | N/A                                                                |
| vrsenic                                                                                                                                                                                                                                                                                                                  | MG/KG                                                                                                                                        | 1                                                                                   | N/A                                                                     | 11.9                                                               |                                 | N/A                                                                | 7.7                                                                                                              | 8                                    | N/A                                                                | 3.4                                                                                       |                                 | N/A                                                                |
| larium                                                                                                                                                                                                                                                                                                                   | MG/KG                                                                                                                                        | 20                                                                                  | N/A                                                                     | 81.8                                                               |                                 | N/A                                                                | 453                                                                                                              |                                      | N/A                                                                | 285                                                                                       |                                 | N/A                                                                |
| Beryllium                                                                                                                                                                                                                                                                                                                | MG/KG                                                                                                                                        | 0.5                                                                                 | N/A                                                                     | 0.68                                                               |                                 | N/A                                                                | 0.49                                                                                                             | в                                    | N/A                                                                | 0.37                                                                                      |                                 | N/A                                                                |
| Cadmium                                                                                                                                                                                                                                                                                                                  | MG/KG                                                                                                                                        | 0.5                                                                                 | N/A                                                                     | 0.17                                                               | в                               | N/A                                                                | 6.4                                                                                                              |                                      | N/A                                                                | 5.1                                                                                       |                                 | N/A                                                                |
| Calcium                                                                                                                                                                                                                                                                                                                  | MG/KG                                                                                                                                        | 100                                                                                 | N/A                                                                     | 1110                                                               |                                 | N/A                                                                | 8460                                                                                                             |                                      | N/A                                                                | 4090                                                                                      |                                 | N/A                                                                |
| hromium                                                                                                                                                                                                                                                                                                                  | MG/KG                                                                                                                                        | 1                                                                                   | N/A                                                                     | 13.8                                                               |                                 | N/A                                                                | 61.3                                                                                                             |                                      | N/A                                                                | 38.2                                                                                      |                                 | N/A                                                                |
| Cobalt                                                                                                                                                                                                                                                                                                                   | MG/KG                                                                                                                                        | 5                                                                                   | N/A                                                                     | 4.1                                                                |                                 | N/A                                                                | 4.9                                                                                                              |                                      | N/A                                                                | 2.7                                                                                       |                                 | N/A                                                                |
| Copper                                                                                                                                                                                                                                                                                                                   | MG/KG                                                                                                                                        | 1                                                                                   | N/A                                                                     | 6,9                                                                |                                 | N/A                                                                | 221                                                                                                              |                                      | N/A                                                                | 146                                                                                       | -                               | N/A                                                                |
| ron                                                                                                                                                                                                                                                                                                                      | MG/KG                                                                                                                                        | 10                                                                                  | N/A                                                                     | 9920                                                               |                                 | N/A                                                                | 53200                                                                                                            |                                      | N/A                                                                | 18800                                                                                     |                                 | N/A                                                                |
| ead                                                                                                                                                                                                                                                                                                                      | MG/KG                                                                                                                                        | 0.3                                                                                 | N/A                                                                     | 14.3                                                               |                                 | N/A                                                                | 883                                                                                                              |                                      | N/A                                                                | 586                                                                                       |                                 | N/A                                                                |
| Magnesium                                                                                                                                                                                                                                                                                                                | MG/KG                                                                                                                                        | 100                                                                                 | N/A                                                                     | 1330                                                               |                                 | N/A                                                                | 1450                                                                                                             |                                      | N/A                                                                | 1080                                                                                      |                                 | N/A                                                                |
| Vanganese                                                                                                                                                                                                                                                                                                                | MG/KG                                                                                                                                        | 1.5                                                                                 | N/A                                                                     | 115                                                                |                                 | N/A                                                                | 632                                                                                                              |                                      | N/A                                                                |                                                                                           |                                 |                                                                    |
| Nickel                                                                                                                                                                                                                                                                                                                   | MG/KG                                                                                                                                        | 1.5                                                                                 | N/A<br>N/A                                                              | 7.9                                                                | J                               | N/A<br>N/A                                                         | 632<br>16.8                                                                                                      | J                                    |                                                                    | 237                                                                                       |                                 | N/A                                                                |
|                                                                                                                                                                                                                                                                                                                          |                                                                                                                                              |                                                                                     |                                                                         |                                                                    | 3                               |                                                                    |                                                                                                                  | J                                    | N/A                                                                | 10.9                                                                                      | 1                               | N/A                                                                |
| Potassium                                                                                                                                                                                                                                                                                                                | MG/KG                                                                                                                                        | 100                                                                                 | N/A                                                                     | 485                                                                |                                 | N/A                                                                | 486                                                                                                              | _                                    | N/A                                                                | 308                                                                                       |                                 | N/A                                                                |
| Selenium                                                                                                                                                                                                                                                                                                                 | MG/KG                                                                                                                                        | 0.5                                                                                 | N/A                                                                     | 0.26                                                               | U                               | N/A                                                                | 2.5                                                                                                              | в                                    | N/A                                                                | 1.1                                                                                       | B                               | N/A                                                                |
| Silver                                                                                                                                                                                                                                                                                                                   | MG/KG                                                                                                                                        | - 1                                                                                 | N/A                                                                     | 0.06                                                               | U                               | N/A                                                                | 144                                                                                                              |                                      | N/A                                                                | 103                                                                                       |                                 | N/A                                                                |
| Sodium                                                                                                                                                                                                                                                                                                                   | MG/KG                                                                                                                                        | 100                                                                                 | N/A                                                                     | 126                                                                | UJ                              | N/A                                                                | 118                                                                                                              | UJ                                   | N/A                                                                | 82.8                                                                                      | UJ                              | N/A                                                                |
| Vanadium                                                                                                                                                                                                                                                                                                                 | MG/KG                                                                                                                                        | 5                                                                                   | N/A                                                                     | 20.9                                                               |                                 | N/A                                                                | 23.4                                                                                                             |                                      | N/A                                                                | 11.6                                                                                      |                                 | N/A                                                                |
| Zinc                                                                                                                                                                                                                                                                                                                     | MG/KG                                                                                                                                        | 2                                                                                   | N/A                                                                     | 58.2                                                               |                                 | N/A                                                                | 1180                                                                                                             |                                      | N/A                                                                | 746                                                                                       |                                 | N/A                                                                |
| METALS(7471)                                                                                                                                                                                                                                                                                                             |                                                                                                                                              |                                                                                     |                                                                         | -                                                                  |                                 |                                                                    |                                                                                                                  | ۰.                                   |                                                                    |                                                                                           |                                 |                                                                    |
| Parameter                                                                                                                                                                                                                                                                                                                | Units                                                                                                                                        | RL                                                                                  |                                                                         |                                                                    |                                 |                                                                    |                                                                                                                  |                                      |                                                                    |                                                                                           |                                 |                                                                    |
| Mercury                                                                                                                                                                                                                                                                                                                  | MG/KG                                                                                                                                        | 0.1                                                                                 | N/A                                                                     | 0.21                                                               |                                 | N/A                                                                |                                                                                                                  |                                      | N/A                                                                | 24.3                                                                                      |                                 | N/A                                                                |
| •                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              |                                                                                     | 10/1                                                                    |                                                                    |                                 |                                                                    | 32.2                                                                                                             |                                      |                                                                    |                                                                                           |                                 |                                                                    |
|                                                                                                                                                                                                                                                                                                                          | COMPOUN                                                                                                                                      |                                                                                     |                                                                         |                                                                    |                                 |                                                                    | 32.2                                                                                                             |                                      |                                                                    | •                                                                                         |                                 |                                                                    |
|                                                                                                                                                                                                                                                                                                                          | COMPOUNI<br>Units                                                                                                                            |                                                                                     |                                                                         | ······································                             |                                 |                                                                    | 32.2                                                                                                             |                                      |                                                                    | •                                                                                         |                                 |                                                                    |
| Parameter                                                                                                                                                                                                                                                                                                                | Units                                                                                                                                        | DS(8270)<br>RL                                                                      | j                                                                       | 370                                                                | <u> </u>                        | N/A                                                                | 240                                                                                                              |                                      | N/A                                                                | 480                                                                                       |                                 | N/A                                                                |
| Parameter<br>1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                         | Units<br>ug/kg                                                                                                                               | DS(8270)<br>RL<br>330                                                               | )<br>N/A                                                                | 370                                                                |                                 | N/A                                                                | 240                                                                                                              |                                      | N/A<br>N/A                                                         | 480<br>82                                                                                 |                                 | N/A<br>N/A                                                         |
| Parameter<br>1,4-Dichlorobenzene<br>2,4-Dinitrotoluene                                                                                                                                                                                                                                                                   | Units<br>ug/kg<br>ug/kg                                                                                                                      | DS(8270)<br>RL<br>330<br>330                                                        | N/A<br>N/A                                                              | 370<br>370                                                         | U                               | N/A<br>N/A                                                         | 240<br>430                                                                                                       | U                                    | N/A                                                                | 82                                                                                        | <br>J                           | N/A                                                                |
| Parameter<br>1,4-Dichlorobenzene<br>2,4-Dinitrotoluene<br>2-Methylnaphthalene                                                                                                                                                                                                                                            | Units<br>ug/kg<br>ug/kg<br>ug/kg                                                                                                             | DS(8270)<br>RL<br>330<br>330<br>330<br>330                                          | )<br>N/A<br>N/A<br>N/A                                                  | 370<br>370<br>370<br>370                                           | U<br>U                          | N/A<br>N/A<br>N/A                                                  | 240<br>430<br>430                                                                                                |                                      | N/A<br>N/A                                                         | 82<br>51                                                                                  | J                               | N/A<br>N/A                                                         |
| Parameter<br>1,4-Dichlorobenzene<br>2,4-Dinitrotoluene<br>2-Methylnaphthalene<br>Acenaphthene                                                                                                                                                                                                                            | Units<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                                                                                                    | DS(8270)<br>RL<br>330<br>330<br>330<br>330<br>330                                   | N/A<br>N/A<br>N/A<br>N/A                                                | 370<br>370<br>370<br>370<br>370                                    | U<br>U<br>U                     | N/A<br>N/A<br>N/A<br>N/A                                           | 240<br>430<br>430<br>89                                                                                          | ป<br>บ<br>บ                          | N/A<br>N/A<br>N/A                                                  | 82<br>51<br>400                                                                           | J                               | N/A<br>N/A<br>N/A                                                  |
| Parameter<br>1,4-Dichlorobenzene<br>2,4-Dinitrotoluene<br>2-Methylnaphthalene<br>Acenaphthene<br>Acenaphthylene                                                                                                                                                                                                          | Units<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                                                                                           | DS(8270)<br>RL<br>330<br>330<br>330<br>330<br>330<br>330                            | )<br>N/A<br>N/A<br>N/A<br>N/A                                           | 370<br>370<br>370<br>370<br>370<br>370                             | บ<br>บ<br>บ<br>บ                | N/A<br>N/A<br>N/A<br>N/A<br>N/A                                    | 240<br>430<br>430<br>89<br>150                                                                                   | UU                                   | N/A<br>N/A<br>N/A<br>N/A                                           | 82<br>51<br>400<br>400                                                                    | J                               | N/A<br>N/A<br>N/A<br>N/A                                           |
| Parameter<br>1,4-Dichlorobenzene<br>2,4-Dinitrotoluene<br>2-Methylnaphthalene<br>Acenaphthene<br>Acenaphthylene<br>Anthracene                                                                                                                                                                                            | Units<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                                                                                  | DS(8270)<br>RL<br>330<br>330<br>330<br>330<br>330<br>330<br>330                     | )<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                    | 370<br>370<br>370<br>370<br>370<br>370<br>370                      | บ<br>บ<br>บ<br>บ                | N/A<br>N/A<br>N/A<br>N/A<br>N/A                                    | 240<br>430<br>430<br>89<br>150<br>810                                                                            | ป<br>บ<br>บ                          | N/A<br>N/A<br>N/A<br>N/A                                           | 82<br>51<br>400<br>400<br>420                                                             | J                               | N/A<br>N/A<br>N/A<br>N/A<br>N/A                                    |
| Parameter<br>1,4-Dichlorobenzene<br>2,4-Dinitrotoluene<br>2-Methylnaphthalene<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo(a)anthracene                                                                                                                                                                      | Units<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                                                                         | DS(8270)<br>RL<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330              | )<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                    | 370<br>370<br>370<br>370<br>370<br>370<br>370<br>370               | บ<br>บ<br>บ<br>บ                | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                             | 240<br>430<br>430<br>89<br>150<br>810<br>3200                                                                    | 1<br>1<br>1                          | N/A<br>N/A<br>N/A<br>N/A<br>N/A                                    | 82<br>51<br>400<br>400<br>420<br>1700                                                     | J                               | N/A<br>N/A<br>N/A<br>N/A<br>N/A                                    |
| Parameter<br>1,4-Dichlorobenzene<br>2,4-Dinitrotoluene<br>2-Methylinaphthalene<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo(a)anthracene<br>Benzo(a)pyrene                                                                                                                                                   | Units<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                                                                | DS(8270)<br>RL<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330       | )<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                             | 370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370        | U<br>U<br>U<br>U<br>U<br>U<br>U | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                      | 240<br>430<br>430<br>89<br>150<br>810<br>3200<br>3100                                                            | រ<br>រ<br>ប                          | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                             | 82<br>51<br>400<br>400<br>420<br>1700<br>1500                                             | J                               | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                             |
| Parameter<br>1,4-Dichlorobenzene<br>2,4-Dinitrotoluene<br>2-Methylnaphthalene<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo(a)anthracene<br>Benzo(a)apyrene<br>Benzo(b)fluoranthene                                                                                                                           | Units<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                                                       | DS(8270)<br>RL<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>33 | )<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                      | 370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370 |                                 | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                      | 240<br>430<br>430<br>89<br>150<br>810<br>3200<br>3100<br>4300                                                    | า<br>ก                               | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                             | 82<br>51<br>400<br>420<br>1700<br>1500<br>2300                                            | J                               | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                             |
| Parameter<br>1,4-Dichlorobenzene<br>2,4-Dinitrotoluene<br>2-Methylnaphthalene<br>Acenaphthene<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo(a)aptrene<br>Benzo(b)fluoranthene<br>Benzo(b)fluoranthene                                                                                                         | Units<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                                                       | DS(8270)<br>RL<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>33 | )<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               | 370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370 |                                 | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               | 240<br>430<br>89<br>150<br>810<br>3200<br>3100<br>4300<br>2000                                                   | ר<br>ח<br>ח                          | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                      | 82<br>51<br>400<br>420<br>1700<br>1500<br>2300<br>1100                                    | J                               | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                      |
| Parameter<br>1,4-Dichlorobenzene<br>2,4-Dinitrotoluene<br>2-Methylnaphthalene<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo(a)anthracene<br>Benzo(a)pyrene<br>Benzo(a),hj)perylene<br>Benzo(k)fluoranthene<br>Benzo(k)fluoranthene                                                                            | Units<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                                              | DS(8270)<br>RL<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>33 | )<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               | 370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370 |                                 | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        | 240<br>430<br>89<br>150<br>810<br>3200<br>3100<br>4300<br>2000<br>1300                                           | U<br>U<br>J<br>J                     | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               | 82<br>51<br>400<br>420<br>1700<br>1500<br>2300<br>1600                                    | J                               | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               |
| Parameter<br>1,4-Dichlorobenzene<br>2,4-Dinitrotoluene<br>2-Methylnaphthalene<br>Acenaphthylene<br>Anthracene<br>Benzo(a)anthracene<br>Benzo(a)pyrene<br>Benzo(a)pyrene<br>Benzo(a),i)perylene<br>Benzo(a),i)perylene<br>Benzo(a),i)perylene<br>Benzo(2,1,i)perylene<br>bis(2-Ethylhexyl)phthalate                       | Units<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                   | DS(8270)<br>RL<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>33 | )<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | 370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370 |                                 | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | 240<br>430<br>430<br>89<br>150<br>3200<br>3100<br>4300<br>2000<br>1300<br>67                                     | 1<br>1<br>1                          | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        | 82<br>51<br>400<br>420<br>1700<br>1500<br>2300<br>1100                                    | J                               | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                      |
| Parameter<br>1,4-Dichlorobenzene<br>2,4-Dinitrotoluene<br>2-Methylnaphthalene<br>Acenaphthylene<br>Actenaphthylene<br>Anthracene<br>Benzo(a)anthracene                                                                                                                                                                   | Units<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                                              | DS(8270)<br>RL<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>33 | )<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               | 370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370 |                                 | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        | 240<br>430<br>89<br>150<br>810<br>3200<br>3100<br>4300<br>2000<br>1300                                           | 1<br>1<br>1                          | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               | 82<br>51<br>400<br>420<br>1700<br>1500<br>2300<br>1600                                    | J                               | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               |
| Parameter<br>1,4-Dichlorobenzene<br>2,4-Dinitrotoluene<br>2-Methylnaphthalene<br>Acenaphthylene<br>Anthracene<br>Benzo(a)anthracene<br>Benzo(a)pyrene<br>Benzo(b)fluoranthene<br>Benzo(g,h,i)perylene<br>Benzo(g,h,i)perylene<br>Benzo(2,thuoranthene<br>bis(2-Ethylhexyl)phthalate                                      | Units<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                   | DS(8270)<br>RL<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>33 | )<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | 370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370 |                                 | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | 240<br>430<br>430<br>89<br>150<br>3200<br>3100<br>4300<br>2000<br>1300<br>67                                     | U<br>J<br>J<br>J                     | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        | 82<br>51<br>400<br>400<br>1700<br>1500<br>2300<br>1100<br>600<br>400                      | J<br>U<br>U                     | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               |
| Parameter<br>1,4-Dichlorobenzene<br>2,4-Dinitrotoluene<br>2-Methylnaphthalene<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzo(a)anthracene<br>Benzo(a)huranthene<br>Benzo(b)fluoranthene<br>Benzo(g,h,i)perylene<br>Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene<br>bis(2-Ethylhexyl)phthalate<br>Carbazole     | Units<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg          | DS(8270)<br>RL<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>33 | )<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | 370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370 |                                 | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | 240<br>430<br>430<br>89<br>150<br>810<br>3200<br>3100<br>4300<br>2000<br>1300<br>67<br>420                       | ប<br>រ<br>រ<br>រ                     | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        | 82<br>51<br>400<br>420<br>1700<br>1500<br>2300<br>1100<br>600<br>400<br>300<br>1500       | 1<br>0<br>1<br>1                | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |
| Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene<br>bis(2-Ethylhexyl)phthalate<br>Carbazole<br>Chrysene<br>Dibenzofuran                                                                                                                                                                                                      | Units<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg | DS(8270)<br>RL<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>33 | )<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | 370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370 |                                 | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | 240<br>430<br>430<br>89<br>150<br>810<br>3200<br>3100<br>4300<br>4300<br>2000<br>1300<br>67<br>420<br>3100<br>76 | 1<br>1<br>1<br>1                     | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | 82<br>51<br>400<br>420<br>1700<br>1500<br>2300<br>1100<br>600<br>400<br>300<br>1500<br>61 | ן<br>ה<br>ח<br>ר                | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |
| Parameter<br>1,4-Dichlorobenzene<br>2,4-Dinitrotoluene<br>2-Methylnaphthalene<br>Acenaphthene<br>Acenaphthene<br>Anthracene<br>Benzo(a)anthracene<br>Benzo(a)pyrene<br>Benzo(a)pyrene<br>Benzo(g),h.i)perylene<br>Benzo(g),h.i)perylene<br>Benzo(g),tiluoranthene<br>bis(2-Ethylhexyl)phthalate<br>Carbazole<br>Chrysene | Units<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg          | DS(8270)<br>RL<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>33 | )<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | 370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370<br>370 |                                 | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | 240<br>430<br>430<br>89<br>150<br>810<br>3200<br>3100<br>4300<br>2000<br>1300<br>67<br>420<br>3100               | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | 82<br>51<br>400<br>420<br>1700<br>1500<br>2300<br>1100<br>600<br>400<br>300<br>1500       | 1<br>1<br>1<br>1<br>1<br>1<br>1 | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |

# Table 5.1-4. Data Summary: Soil Boring Results, Site 1 - Old Wastewater Treatment Plant Wallops Flight Facility, Accomack County, Virginia

|                        |          |       |           |    |           |   |           |    |           |   |                                        |    |           |    | •         |    |
|------------------------|----------|-------|-----------|----|-----------|---|-----------|----|-----------|---|----------------------------------------|----|-----------|----|-----------|----|
| Site ID                | · · · -  |       | SB-WWP-02 |    | SB-WWP-02 |   | SB-WWP-02 |    | SB-WWP-03 |   | SB-WWP-03                              |    | SB-WWP-03 |    | SB-WWP-03 |    |
| Field Sample Number    |          |       | SAIC01R   |    | SAIC02    |   | SAIC02R   |    | SAIC01    |   | SAIC01R                                |    | SAIC02    |    | SAIC02R   |    |
| Site Type              |          |       | BORE      |    | BORE      |   | BORE      |    | BORE      |   | BORE                                   |    | BORE      |    | BORE      |    |
| Collection Date        |          |       | 08/16/02  |    | 08/08/02  |   | 08/16/02  |    | 08/08/02  |   | 08/16/02                               |    | 08/08/02  |    | 08/16/02  |    |
| Depth (ft)             |          |       | 0.00      |    | 3,50      |   | 3.50      |    | 0.00      | ; | 0.00                                   |    | 0.50      |    | 0.50      |    |
| Indeno(1,2,3-cd)pyrene | ug/kg    | 330   | N/A       |    | 370       | U | N/A       |    | 1800      |   | N/A                                    |    | 1000      |    | N/A       |    |
| N-Nitrosodiphenylamine | ug/kg    | 330   | N/A       |    | 370       | U | N/A       |    | 430       | U | N/A                                    |    | 30        | J. | N/A       |    |
| Phenanthrene           | ug/kg    | 330   | N/A       |    | 370       | U | N/A       |    | 2500      | - | N/A                                    |    | 1300      | •  | N/A       |    |
| Pyrene                 | ug/kg    | 330   | N/A       |    | 370       | Ū | N/A       |    | 4200      |   | N/A                                    |    | 2000      |    | N/A       |    |
| VOLATILE ORGANIC COI   | MPOUNDS( | 8260) |           |    |           |   |           |    |           |   |                                        |    |           |    |           |    |
| Parameter              | Units    | RL    |           |    |           |   |           |    |           |   | ······································ |    | ····      |    |           |    |
| Acetone                | ug/kg    | 10    | 45        | UJ | N/A       |   | 25        | UJ | N/A       |   | 65                                     | UJ | N/A       |    | 84        | IJ |
| Methyl ethyl ketone    | ug/kg    | 10    | 8.9       | J  | N/A       |   | 4.8       | J  | N/A       |   | 14                                     |    | N/A       |    | 17        |    |
| Methylene Chloride     | ug/kg    | 5     | 5.9       | ບ  | N/A       |   | 6.1       | Ŭ  | N/A       |   | 6.6                                    | U  | N/A       |    | 6.1       | U  |
| Toluene                | ug/kg    | 5     | 5.9       | U  | N/A       |   | 6.1       | Ű  | N/A       |   | 6,6                                    | Ŭ  | N/A       |    | 6.1       | ŭ  |

. . . . .

Limited Site Investigation - Final Report

Created on 5/27/2003

#### ٦ [\_\_\_] ĺ., ſ · - 1

# Table 5.1-4. Data Summary: Soil Boring Results, Site 1 - Old Wastewater Treatment Plant Wallops Flight Facility, Accomack County, Virginia (continued)

| Footnotes:                                                                                                                                                                                                                                                                                                                                                                                      |                      | ······ |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------|---|
| <ul> <li>B – Metals: Reported value was less than the contract required detection limit but greater than or equal to the instrument detection limit.</li> <li>B – Organics: Analyte was found in the associated method blank. Validation of the data did not result in this compound being qualified as nondetect due to the Therefore this result is considered to be site retated.</li> </ul> | blank contamination. |        |   |
| D - The value for the target analyte was calculated from a dilution.                                                                                                                                                                                                                                                                                                                            |                      |        |   |
| E - Metals: The reported value is estimated because of the presence of interferents.                                                                                                                                                                                                                                                                                                            |                      |        |   |
| E - Organics: Concentration range exceeded for this analyte.                                                                                                                                                                                                                                                                                                                                    |                      |        |   |
| J – Value is estimated.                                                                                                                                                                                                                                                                                                                                                                         |                      |        |   |
| N - Metals: Spiked sample recovery not within control limits.                                                                                                                                                                                                                                                                                                                                   |                      |        |   |
| N - Organics: Tentatively identified compound based on mass spectral library search.                                                                                                                                                                                                                                                                                                            |                      |        |   |
| P - There is greater than 25% difference for detected concentrations between the two GC columns for the associated pesticide/PCB target analyte.                                                                                                                                                                                                                                                |                      |        |   |
| R – Value is rejected.                                                                                                                                                                                                                                                                                                                                                                          |                      |        | N |
| U - Compound was analyzed for but not detected.                                                                                                                                                                                                                                                                                                                                                 |                      |        |   |
| UJ - Compound was analyzed for but not detected and is considered an estimate.                                                                                                                                                                                                                                                                                                                  |                      |        |   |
| X - The mass spectrum does not meet EPA CLP criteria for confirmation, but compound presence is strongly suspected.                                                                                                                                                                                                                                                                             |                      |        |   |
| * - Duplicate analysis not within control limits.                                                                                                                                                                                                                                                                                                                                               |                      |        |   |
| N/A - Compound not analyzed for.                                                                                                                                                                                                                                                                                                                                                                |                      |        |   |
| NF – Data not found.                                                                                                                                                                                                                                                                                                                                                                            |                      |        |   |
| RL – Reporting Limit for each method. For SW846 methods, the samples are reported down to the method detection limits (MDL). For metals, the samples the instrument detection limit (IDL).                                                                                                                                                                                                      | are reported down to |        |   |
| MDL – Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                   |                      |        |   |
| SAICXXR - An SAIC field sample number followed by an "R" designates a recollected sample.                                                                                                                                                                                                                                                                                                       |                      |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                 |                      |        |   |

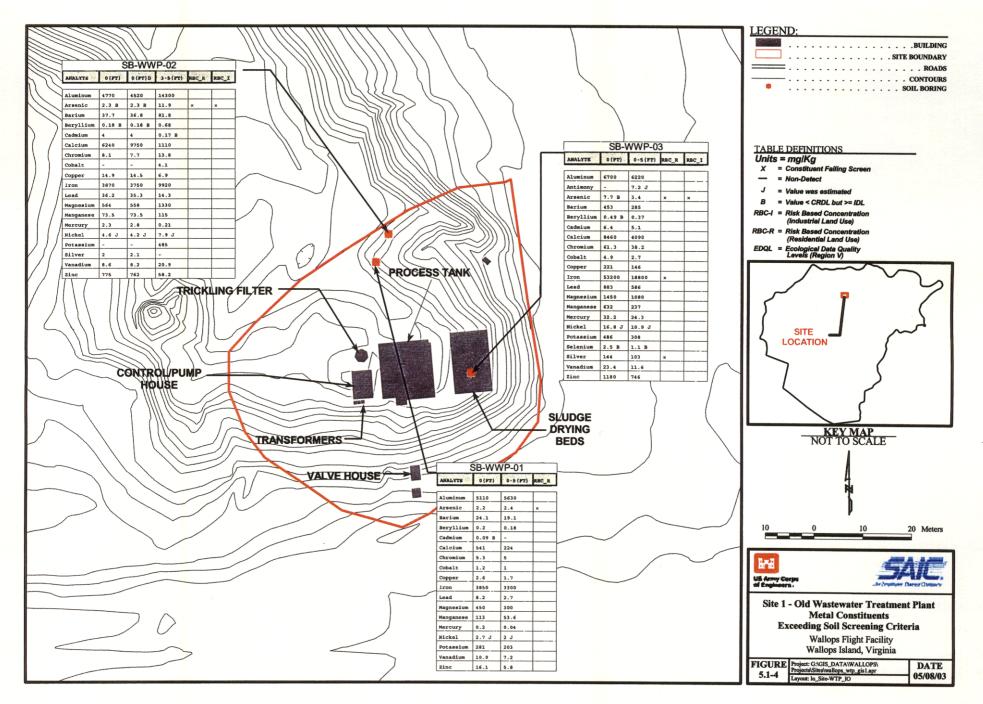
Limited Site Investigation - Final Report

.[

The LSI included a screening-level evaluation in which soil data collected from Site 1 were subject to a human health toxicity screen. The toxicity screen is used to evaluate human health effects by comparing site-specific soil data to screening criteria (e.g., RBCs, soil screening levels [SSLs] for protection of groundwater).

The following paragraphs summarize the chemical constituents detected in the soils at Site 1 and the results of the screening-level evaluation. Screening criteria comparisons for the inorganic and organic constituents detected in the soil at Site 1 are presented in Table 5.1-5 and 5.1-6, respectively.

#### 5.1.3.1 Soil Boring Results and Nature and Extent


Seven soil samples (two from each boring and one duplicate) were collected during the installation of three soil borings (SB-WWP-01 through SB-WWP-03) at the Old WWTP. The inorganic (metals) and organic (VOCs and SVOCs) constituents detected at Site 1 are summarized below.

Inorganic Constituents—Twenty inorganic constituents were detected in the surface soil (0 to <0.5 feet BLS) and 21 inorganic constituents were detected in the shallow subsurface soils (0.5 to 5 feet BLS). Soil boring depth was limited to the shallow subsurface soils; therefore, no deep subsurface soil samples (>15 feet BLS) were collected at the site. The following paragraphs identify the metals that exceed the industrial, residential, and protection of groundwater RBCs in the different soil horizons:

- Surface soil (0 to <0.5 feet BLS)
  - Industrial arsenic
  - Residential arsenic and iron
  - Migration to groundwater arsenic and silver
- Shallow subsurface soil (0.5 to 15 feet BLS)
  - Industrial arsenic
  - Residential arsenic
  - Migration to groundwater arsenic and silver.

The concentrations and distribution of inorganic constituents detected in the soil at Site 1 are presented in Figure 5.1-4. Table 5.1-5 presents the inorganic constituents detected in the soil samples that exceed the human health screening criteria and lists the soil boring (sample identification [I.D.] and depth) where the constituent concentration exceeds the screening criteria in the surface and subsurface soil, the concentrations that exceed the screening criteria, and the screening criteria that the detected concentration exceeds. The following sections summarize the results of the toxicity screen and characterize the distribution of the inorganic constituents that exceed the human health screening criteria at Site 1.

Arsenic was detected in all samples collected from the surface soil at concentrations that exceeded the human health Region III RBCs for residential land use (0.426 mg/kg) and migration to groundwater (0.03 mg/kg). The maximum concentration of arsenic (7.7 mg/kg) was detected in the surface soil sample collected at SB-WWP-03, located in the western portion of the sludge beds. Arsenic concentrations detected at this location exceeded the human health Region III RBC for industrial land use (4 mg/kg). Concentrations of arsenic detected in the surface soil at Site 1 are consistent (i.e., same order of magnitude) throughout the site (2.2 to 7.7 mg/kg).



5.1-14

NIZNANIU

|                                                                                                                                                                                                                                    | Constituent S      |                        | -                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | Units          | Protection of                                                                                                     | Human Health                                                                 | Migration to Groundwater                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Sample<br>Interval<br>(Depth)                                                                                                                                                                                                      |                    | Sample<br>ID           | Field<br>Sample<br>Number                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                | Concentration Exceeds<br>Region III RBC<br>Residential Screening<br>Value b.c                                     | Concentration Exceeds<br>Region III RBC<br>Industrial Screening<br>Value b.c | Concentration Exceeds<br>Region III REC                                                                          |
| urface Soil (0 to <0.5 feet BLS)                                                                                                                                                                                                   | Arsenic            | SB-WWP-01              | BORE                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.2         | MG/KG          | X                                                                                                                 |                                                                              | X                                                                                                                |
|                                                                                                                                                                                                                                    |                    | SB-WWP-02              | BORE                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.3         | MG/KG          | <b>X</b>                                                                                                          |                                                                              | · · X                                                                                                            |
|                                                                                                                                                                                                                                    |                    | SB-WWP-02              | BORE                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.3         | MG/KG          | X                                                                                                                 |                                                                              | × ×                                                                                                              |
|                                                                                                                                                                                                                                    |                    | SB-WWP-03              | BORE                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.7         | MG/KG          | X                                                                                                                 | X                                                                            | Х                                                                                                                |
|                                                                                                                                                                                                                                    | Barium             | SB-WWP-01              | BORE                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24.1        | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
|                                                                                                                                                                                                                                    | · ·                | SB-WWP-02              | BORE                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36.8        | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
|                                                                                                                                                                                                                                    | 1 N.               | SB-WWP-02              | BORE                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37.7        | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
|                                                                                                                                                                                                                                    |                    | SB-WWP-03              | BORE                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 453         | MG/KG          |                                                                                                                   |                                                                              | [                                                                                                                |
| ·                                                                                                                                                                                                                                  | Cadmium            | SB-WWP-01              | BORE                                                                                                           | Ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.09        | MG/KG          |                                                                                                                   | ł                                                                            | (                                                                                                                |
|                                                                                                                                                                                                                                    |                    | SB-WWP-02              | BORE                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4           | MG/KG          | -                                                                                                                 | · ·                                                                          |                                                                                                                  |
|                                                                                                                                                                                                                                    |                    | SB-WWP-02              | BORE                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4           | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
|                                                                                                                                                                                                                                    | Chromium           | SB-WWP-03<br>SB-WWP-01 | BORE                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.4         | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
|                                                                                                                                                                                                                                    | Chiomun            | SB-WWP-01              | BORE                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.3<br>7.7  | MG/KG<br>MG/KG | 1                                                                                                                 |                                                                              |                                                                                                                  |
|                                                                                                                                                                                                                                    | a second           | 6B-WWP-02              | BORE                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.1         | MG/KG          |                                                                                                                   |                                                                              | and the second |
| •                                                                                                                                                                                                                                  |                    | SB-WWP-03              | BORE                                                                                                           | l o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61.3        | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
|                                                                                                                                                                                                                                    | Cobalt             | SB-WWP-01              | BORE                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2         | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
|                                                                                                                                                                                                                                    |                    | SB-WWP-03              | BORE                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.9         | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
|                                                                                                                                                                                                                                    | Copper             | SB-WWP-01              | BORE                                                                                                           | Ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.6         | MG/KG          |                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                                        |                                                                                                                  |
|                                                                                                                                                                                                                                    |                    | SB-WWP-02              | BORE                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.5        | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
| •                                                                                                                                                                                                                                  | 100 A              | SB-WWP-02              | BORE                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.9        | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
|                                                                                                                                                                                                                                    |                    | SB-WWP-03              | BORE                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 221         | MG/KG          |                                                                                                                   | 1                                                                            |                                                                                                                  |
|                                                                                                                                                                                                                                    | Iron               | SB-WWP-03              | BORE                                                                                                           | Ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 53200       | MG/KG          | X                                                                                                                 |                                                                              |                                                                                                                  |
|                                                                                                                                                                                                                                    | Lead               | SB-WWP-01              | BORE                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.2         | MG/KG          |                                                                                                                   | 1                                                                            | 1                                                                                                                |
|                                                                                                                                                                                                                                    |                    | SB-WWP-02              | BORE                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35.3        | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
|                                                                                                                                                                                                                                    |                    | SB-WWP-02              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36.2        | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
| · · · ·                                                                                                                                                                                                                            |                    | SB-WWP-03              |                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 883         | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
|                                                                                                                                                                                                                                    | Mercury            | SB-WWP-01              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2         | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
|                                                                                                                                                                                                                                    |                    | SB-WWP-02              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.3         | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
|                                                                                                                                                                                                                                    | 1 .                | SB-WWP-02              | Ang 1 Andrew Andre                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.8         | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
| مى ئۇرىيۇلۇرمۇمەر بىرىغۇرلار ئەتتە بىرىيەت بىرىيە بىرىغىرى                                                                                                                                                                         | AN ANA ANA ANA     | SB-WWP-03              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32.2        | MG/KG          |                                                                                                                   | . Andreas de la Contras de La                                                |                                                                                                                  |
| 이 것은 것 같은 것이 같이 있는 것이 있다. 이 사람은 것이다.<br>같은 것이 같은 것이 같은 것은 것이 같은 것이 같이 있는 것이 같이                                                                                                                 | Nickel             | SB-WWP-03              |                                                                                                                | and the second se | 16.8        | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
|                                                                                                                                                                                                                                    | Selenium           | SB-WWP-03              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.5         | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
|                                                                                                                                                                                                                                    | Silver<br>Vanadium | SB-WWP-03              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 144         | MG/KG          |                                                                                                                   |                                                                              | X                                                                                                                |
|                                                                                                                                                                                                                                    |                    | SB-WWP-02              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.2<br>8.6  | MG/KG          |                                                                                                                   |                                                                              | 1                                                                                                                |
|                                                                                                                                                                                                                                    |                    | SB-WWP-01              | NU (1975) - Children (1975)                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0<br>10.9 | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
| e ne este e la faction de l<br>La faction de la faction de |                    | SB-WWP-03              | Av. 10.000.00                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23.4        | MG/KC          |                                                                                                                   | 1                                                                            |                                                                                                                  |
|                                                                                                                                                                                                                                    | Zinc               | SB-WWP-01              | the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.1        | MG/KC          | a second |                                                                              |                                                                                                                  |
|                                                                                                                                                                                                                                    | 1                  | SB-WWP-02              | (2) 12 14 (8) 10.                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 762         | MG/KG          |                                                                                                                   |                                                                              |                                                                                                                  |
| -                                                                                                                                                                                                                                  |                    | SB-WWP-02              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 775         | MG/KG          | 1                                                                                                                 |                                                                              |                                                                                                                  |

Limited Site Investigation - Final Report

5.1-15

May 2003

|                                    |             |              | All the second            |     |                            | <u>کر دیدی</u> | Protection of                                                                 | Human Health                                                                                                     | Migration to Groundwater                                          |
|------------------------------------|-------------|--------------|---------------------------|-----|----------------------------|----------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Sample<br>Interval<br>(Depth)      | Constituent | Sample<br>ID | Field<br>Sample<br>Number |     | Concentration <sup>a</sup> | Units          | Concentration Exceeds<br>Region III RBC<br>Residential Screening<br>Value b,c | Concentration Exceeds<br>Region III RBC<br>Industrial Screening<br>Value b.c                                     | Concentration Exceeds<br>Region III RBC<br>Screening<br>Value b.c |
|                                    |             | SB-WWP-03    | BORE                      | Ő   | 1180                       | MG/KG          |                                                                               |                                                                                                                  |                                                                   |
| bsurface Soil (0.5 to 15 feet BLS) | Antimony    | SB-WWP-03    | BORE                      | 0.5 | 7.2                        | MG/KG          |                                                                               | · · · ·                                                                                                          |                                                                   |
|                                    | Arsenic     | SB-WWP-01    | BORE                      | 0.5 | 2.4                        | MG/KG          | X                                                                             |                                                                                                                  | X                                                                 |
|                                    |             | SB-WWP-03    | BORE                      | 0.5 | 3.4                        | MG/KG          | X                                                                             |                                                                                                                  | х                                                                 |
|                                    |             | SB-WWP-02    | BORE                      | 3.5 | 11.9                       | MG/KG          | X                                                                             | x                                                                                                                | ×                                                                 |
|                                    | Barium      | SB-WWP-01    | BORE                      | 0.5 | 19.1                       | MG/KG          |                                                                               |                                                                                                                  |                                                                   |
|                                    |             | SB-WWP-02    | BORE                      | 3.5 | 81.8                       | MG/KG          |                                                                               |                                                                                                                  |                                                                   |
|                                    |             | SB-WWP-03    | BORE                      | 0.5 | 285                        | MG/KG          |                                                                               |                                                                                                                  |                                                                   |
|                                    | Cadmium     | SB-WWP-02    | BORE                      | 3.5 | 0.17                       | MG/KG          |                                                                               |                                                                                                                  | · · ·                                                             |
|                                    |             | SB-WWP-03    | BORE                      | 0.5 | 5.1                        | MG/KG          |                                                                               |                                                                                                                  |                                                                   |
|                                    | Chromium    | SB-WWP-01    | BORE                      | 0.5 | 5                          | MG/KG          |                                                                               |                                                                                                                  | · · · · · · · · · · · · · · · · · · ·                             |
|                                    | 1           | SB-WWP-02    | BORE                      | 3.5 | · 13.8                     | MG/KG          |                                                                               |                                                                                                                  |                                                                   |
|                                    |             | SB-WWP-03    | BORE                      | 0.5 | 38.2                       | MG/KG          |                                                                               |                                                                                                                  |                                                                   |
|                                    | Cobalt      | SB-WWP-01    | BORE                      | 0.5 | 1                          | MG/KG          |                                                                               |                                                                                                                  |                                                                   |
|                                    | 1           | SB-WWP-03    | BORE                      | 0.5 | 2.7                        | MG/KG          |                                                                               |                                                                                                                  |                                                                   |
|                                    |             | SB-WWP-02    | BORE                      | 3.5 | 4.1                        | MG/KG          |                                                                               |                                                                                                                  |                                                                   |
| •                                  | Copper      | SB-WWP-01    | BORE                      | 0.5 | 1.7                        | MG/KG          |                                                                               |                                                                                                                  |                                                                   |
|                                    |             | SB-WWP-02    | BORE                      | 3.5 | 6.9                        | MG/KG          |                                                                               |                                                                                                                  |                                                                   |
|                                    |             | SB-WWP-03    | BORE                      | 0.5 | 146                        | MG/KG          |                                                                               |                                                                                                                  | · ·                                                               |
|                                    | Lead        | SB-WWP-01    | BORE                      | 0.5 | 2.7                        | MG/KG          |                                                                               |                                                                                                                  |                                                                   |
|                                    |             | SB-WWP-02    | BORE                      | 3.5 | 14.3                       | MG/KG          |                                                                               | · · · ·                                                                                                          |                                                                   |
| •                                  |             | SB-WWP-03    | BORE                      | 0.5 | 586                        | MG/KG          | · · · · · · · · · · · · · · · · · · ·                                         | the second s   |                                                                   |
|                                    | Mercury     | SB-WWP-02    | BORE                      | 3.5 | 0.21                       | MG/KG          |                                                                               | 1                                                                                                                |                                                                   |
|                                    |             | SB-WWP-03    | BORE                      | 0.5 | 24.3                       | MG/KG          |                                                                               |                                                                                                                  |                                                                   |
|                                    | Selenium    | SB-WWP-03    | BORE                      | 0.5 | 1.1                        | MG/KG          |                                                                               |                                                                                                                  |                                                                   |
|                                    | Silver      | SB-WWP-03    | BORE                      | 0.5 | 103                        | MG/KG          |                                                                               |                                                                                                                  | X                                                                 |
|                                    | Vanadium    | SB-WWP-01    | BORE                      | 0.5 | 7.2                        | MG/KG          | · · · · · · · · · · · · · · · · · · ·                                         |                                                                                                                  |                                                                   |
|                                    |             | SB-WWP-03    | BORE                      | 0.5 | 11.6                       | MG/KG          |                                                                               |                                                                                                                  |                                                                   |
|                                    |             | SB-WWP-02    | BORE                      | 3.5 | 20.9                       | MG/KG          | 1                                                                             | 1                                                                                                                | 1                                                                 |
|                                    | Zinc        | SB-WWP-02    | BORE                      |     | 58.2                       | MG/KG          |                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                            |                                                                   |
|                                    |             | SB-WWP-03    | BORE                      |     | 746                        | MG/KG          | 1                                                                             | and the second | , successively and the second                                     |

SW BA

#### Table 5.1-5. Site 1 - Old Wastewater Treatment Plant Site-related Metal Constituents Detected Above Screening Criteria in Soil Wallops Flight Facility, Accomack County, Virginia

Constituent concentrations that exceed screening oriteria are listed in ascending order (lowest to highest).
 X indicates detected concentration exceeds the screening oriteria.

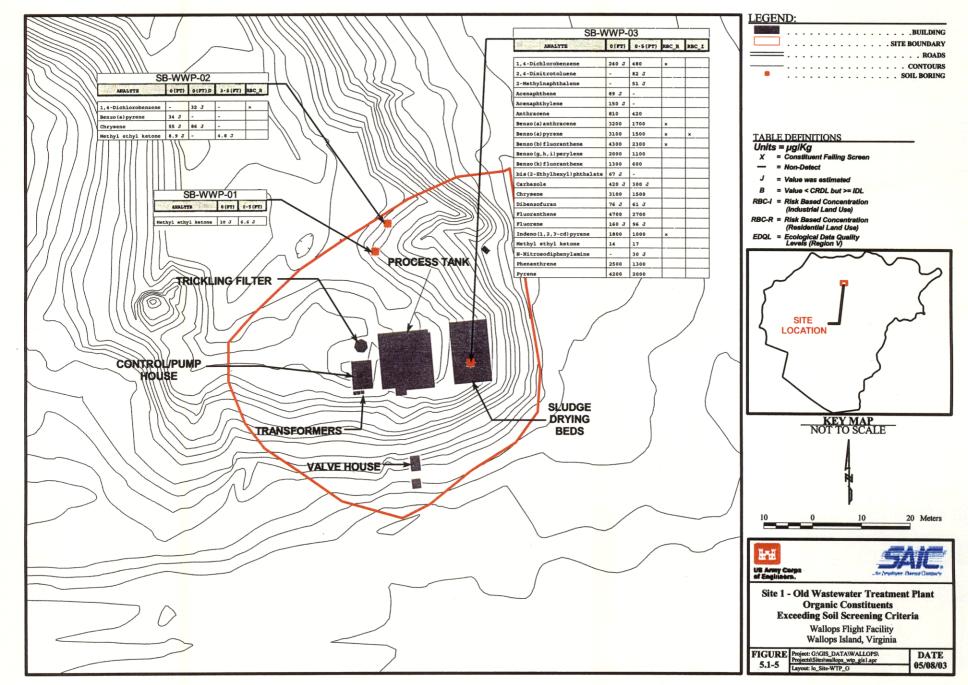
\* EPA Region III RBCs.

May 2003

Arsenic concentrations detected in the subsurface soil also exceeded the Region III RBCs for residential land use and migration to groundwater in all samples collected. The maximum concentration (11.9 mg/kg) of arsenic in the subsurface soil was detected at 3.5 feet BLS, in the sample collected at SB-WWP-02, located beneath the Old WWTP sludge piles while the highest arsenic concentrations detected in the surface soil was in the sludge drying beds (SB-WWP-03). Arsenic concentrations detected in the subsurface soil also exceeded the Region III RBC for industrial land use and again were relatively consistent throughout the site (2.4 to 11.9 mg/kg).

The remaining metals (iron and silver) detected in the soil at concentrations that exceeded screening criteria were detected in the soil of the sludge drying bed sample location (SB-WWP-03). Iron was detected in the sludge drying bed surface soil at a concentration (53,200 mg/kg) that exceeded the Region III RBC for residential land use (23,464 mg/kg). Silver was detected in surface soil sample SB-WWP-03 at a concentration (144 mg/kg) that exceeded the Region III RBC for migration to groundwater (4 mg/kg). Silver also was the only metal detected in the subsurface soil at concentrations that exceeded human health regulatory screening criteria. A silver concentration of 103 mg/kg was detected in the subsurface soil of SB-WWP-03 at 0.5 feet BLS. Data collected during the LSI indicate that metals have been released to the sludge drying bed soils. The conclusions associated with the distribution of the metals are summarized in Section 5.1.5

**Organic Constituents**—Nineteen organic constituents were detected in the surface soil (0 to <0.5 feet BLS) and 19 organic constituents were detected in the shallow subsurface soils (0.5 to 15 feet BLS). Soil boring depth was limited to the shallow subsurface soils; therefore, no deep subsurface soil samples (>15 feet BLS) were collected at the site. The following paragraphs identify the organic compounds that exceed the industrial, residential, and protection of groundwater RBCs in the different soil horizons:


• Surface soil (0 to <0.5 feet BLS)

- Industrial benzo(a)pyrene
- Residential benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno-(1,2,3-cd)pyrene
- Migration to groundwater benzo(a)anthracene, benzo(a)pyrene, and 1,4-dichlorobenzene
- Shallow subsurface soil (0.5 to 15 feet BLS)
  - Industrial benzo(a)pyrene
  - Residential benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3cd)pyrene
  - Migration to groundwater benzo(a)anthracene, benzo(a)pyrene, and 1,4-dichlorobenzene.

The concentrations and distribution of organic constituents detected in the soil at Site 1 are presented in Figure 5.1-5. Table 5.1-6 presents the organic constituents detected in the soil that exceed the human health screening criteria and lists the soil (sample I.D. and depth) where the constituent concentration exceeds the screening criteria in the surface and subsurface soil, the detected concentrations that exceed the screening criteria, and the screening criteria that the detected concentration exceeds. The following sections summarize the results of the toxicity screen and characterize the distribution of the organic constituents that were detected at concentrations that exceed the human health screening criteria at Site 1.

## THIS PAGE WAS INTENTIONALLY LEFT BLANK

- Andrew



5.1-18

## Table 5.1-6. Site 1 - Old Wastewater Treatment Plant Site-related non-Metal Constituents Detected Above Screening Criteria in Soil Wallops Flight Facility, Accomack County, Virginia

| Sample                               |                        |              | Field            |     |      |       | Protection of I                                                                          | luman Health                                                                            | Migration to Groundwater                                                    |
|--------------------------------------|------------------------|--------------|------------------|-----|------|-------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Interval<br>(Depth)                  | Constituent            | Sample<br>ID | Sample<br>Number |     |      | Units | Concentration Exceeds<br>Region III RBC<br>Residential Screening<br>Value <sup>b.c</sup> | Concentration Exceeds<br>Region III RBC<br>Industrial Screening<br>Value <sup>b.d</sup> | Concentration Exceeds<br>Region III RBC<br>Screening<br>Value <sup>bc</sup> |
| Surface Soil (0 to <0.5 feet BLS)    | 1,4-Dichlorobenzene    | SB-WWP-02    | BORE             | 0   | 32   | µg/kg |                                                                                          | 10                                                                                      | X                                                                           |
|                                      |                        | SB-WWP-03    | BORE             | 0   | 240  | µg/kg |                                                                                          |                                                                                         | X                                                                           |
|                                      | Benzo(a)anthracene     | SB-WWP-03    | BORE             | 0   | 3200 | µg/kg | . X                                                                                      |                                                                                         | X                                                                           |
|                                      | Benzo(a)pyrene         | SB-WWP-03    | BORE             | 0   | 3100 | µg/kg | X                                                                                        | X                                                                                       | X                                                                           |
|                                      | Benzo(b)fluoranthene   | SB-WWP-03    | BORE             | 0   | 4300 | µg/kg | X                                                                                        |                                                                                         |                                                                             |
|                                      | Indeno(1,2,3-cd)pyrene | SB-WWP-03    | BORE             | Ō   | 1800 | µg/kg | X                                                                                        |                                                                                         |                                                                             |
| Subsurface Soil (0.5 to 15 feet BLS) | 1,4-Dichlorobenzene    | SB-WWP-03    | BORE             | 0.5 | 480  | µg/kg |                                                                                          |                                                                                         | X                                                                           |
|                                      | Benzo(a)anthracene     | SB-WWP-03    | BORE             | 0.5 | 1700 | µg/kg | X                                                                                        |                                                                                         | x                                                                           |
|                                      | Benzo(a)pyrene         | SB-WWP-03    | BORE             | 0.5 | 1500 | µg/kg | X                                                                                        | X                                                                                       | ×                                                                           |
|                                      | Benzo(b)fluoranthene   | SB-WWP-03    | BORE             | 0.5 | 2300 | µg/kg | X                                                                                        |                                                                                         | · · · · · · · · · · · · · · · · · · ·                                       |
|                                      | Indeno(1,2,3-cd)pyrene | SB-WWP-03    | BORE             | 0.5 | 1000 | µg/kg | x                                                                                        |                                                                                         |                                                                             |

-...

\* Constituent concentrations that exceed screening criteria are listed in ascending order (lowest to highest).

<sup>b</sup> X indicates detected concentration exceeds the screening criteria.

\* EPA Region III RBCs.

5.1-19

e e

One organic compound (benzo[a]pyrene) was detected in the soils at Site 1 at concentrations that exceed the Region III RBC for industrial land use (784  $\mu$ g/kg). This polynuclear aromatic hydrocarbon (PAH) was detected in both the surface and subsurface soils at concentrations (3,100 and 1,500  $\mu$ g/kg, respectively); however, detected concentrations of the compound above the criteria were limited to the soils in the sludge drying beds (SB-WWP-03).

Four PAHs (benzo[a]anthracene, benzo(a)pyrene, benzo[b]fluoranthene, and indeno[1,2,3-cd]pyrene) were detected in the soils at the Old WWTP at concentrations that exceed the Region III RBC for residential land use. All four of these compounds also were detected in the surface and subsurface soils of the sludge drying beds (SB-WWP-03) at concentrations that exceed the residential screening criteria and, again, detected concentrations above the regulatory criteria for these PAHs were limited to the sludge drying bed soils.

Organic compounds detected in the soils at Site 1 at concentrations that exceed the migration to groundwater screening criteria included 1,4-dichlorobenzene, benzo(a)anthracene, and benzo(a)pyrene. Concentrations of 1,4-dichlorobenzene greater than the migration to groundwater screening criteria were detected in the surface soil at SB-WWP-02 and SB-WWP-03. Concentrations of the two PAHs that exceeded the migration to groundwater screening criteria were detected only in the soils (surface and subsurface) at SB-WWP-03, the sludge beds. The conclusions associated with the distribution of the organic compounds are summarized in Section 5.1.4.

#### 5.1.4 Conclusions and Recommendations

This section presents the conclusions of the LSI for Site 1 - Old Wastewater Treatment Plant and summarizes recommendations for future site activities. Section 5.1.4.1 summarizes results and conclusions associated with completion of the LSI. Section 5.1.4.2 combines conclusions and site historical information to make recommendations for future site activities.

#### 5.1.4.1 Conclusions

Data collected during the LSI indicate that metals are present in the surface and shallow subsurface at concentrations that exceed the human health and migration to groundwater screening criteria. Of the detected metals, arsenic was detected most frequently above screening criteria. The maximum concentrations of arsenic (7.7 mg/kg [surface] and 11.9 mg/kg [subsurface]) detected in the soils at Site 1 are well below the background concentrations of arsenic detected in the Commonwealth of Virginia. The concentrations of arsenic detected at Site 1 are not greater than concentrations of arsenic detected in the surface and subsurface soil at other locations at the WFF (i.e., there is no evidence of a surface release [spill or leak] and there is no persistent source of arsenic at Site 1). Data suggest that arsenic detected is the result of natural conditions or minor releases of arsenic at the sludge beds.

The remaining metals (iron and silver) detected at concentrations that exceed regulatory criteria were detected only in the sludge bed soils and the distribution of the metals (maximum concentrations of all metals detected in the sludge bed soils) suggests that former wastewater treatment activities have released metals to the sludge drying beds, as would be expected. However, the distribution of the detected concentrations suggests that the presence of metals at concentrations that exceed screening criteria is limited to the sludge drying beds and that the concentrations are attenuating with depth.

The distribution of the concentrations of mercury detected during the LSI seems to indicate that the trickling filter process may be the source of mercury. Mercury in the sludge bed soils were detected at concentrations ranging from 24.3 to 32.2 mg/kg. Concentrations of mercury detected at other soil boring locations at Site 1 did not exceed 0.21 mg/kg.

Organic compounds detected at concentrations above regulatory screening criteria at Site 1 consisted of five different SVOCs (four PAHs and one non-PAH SVOC); no VOCs were detected at concentrations greater than screening criteria. Data indicate that the concentrations of the four PAHs detected above screening criteria were limited to the sludge drying beds and that the maximum concentrations of these compounds were detected in the surface soil of the sludge beds and were attenuating with depth. This information indicates that the wastewater treatment plant process was the source of the PAHs and that the elevated concentrations of PAHs should be limited to locations containing residual sludge.

Concentrations of 1,4-dichlorobenzene greater than the migration to groundwater screening criteria were detected in the surface soil at SB-WWP-02 (sludge pile boring) and SB-WWP-03 (sludge bed boring). The compound was not detected in the subsurface soil at SB-WWP-02 (3.5 feet BLS), indicating that the compound has attenuated with depth (is present only in the residual sludge pile material). The presence of this compound in the sludge drying beds seems to indicate that these "sludge piles" probably are residual sludge materials from the sludge drying bed.

The distribution of the concentrations of the organic compounds detected during the LSI seems to indicate that the wastewater is the source of organic compounds and that concentrations greater than the regulatory screening criteria are limited to the areas containing the former sludge (sludge piles and sludge drying beds).

#### 5.1.4.2 Recommendations

Based on information obtained during the completion of the LSI, future Old WWTP activities should address the following:

- Sludge piles and sludge bed concentrations exceeding screening criteria
  - Additional soil sampling adjacent to or beneath the sludge bed is recommended to confirm that concentrations exceeding screening criteria do not exist in the subsurface horizon or have been removed during remediation activities.
  - Installation and sampling of Hydropunch<sup>®</sup> also are recommended based upon the potential for contaminants detected in the soil to migrate to the groundwater.

#### THIS PAGE WAS INTENTIONALLY LEFT BLANK

i

#### 5.2 SITE 3 - TWO 600,000-GALLON FUEL TANKS, BUILDINGS A-46A AND A-46B

This section presents the results of the LSI for the Two 600,000-Gallon Fuel Tanks, Buildings A-46A and A-46B (Site 3). A description and history of the site, a summary of the site conditions and environmental setting, and an overview of the environmental investigation activities previously conducted at Site 3 are provided in Section 5.2.1. Section 5.2.2 discusses the LSI activities conducted at Site 3. Section 5.2.3 presents the laboratory analytical results of the LSI field investigation and summarizes the nature and extent of contamination identified during the investigation of the Two 600,000-Gallon Fuel Tanks. The results of the human health toxicological screening assessment also are presented in Section 5.2.3. Conclusions and recommendations for Site 3 are summarized in Section 5.2.4.

#### 5.2.1 Site Description, History, and Environmental Setting

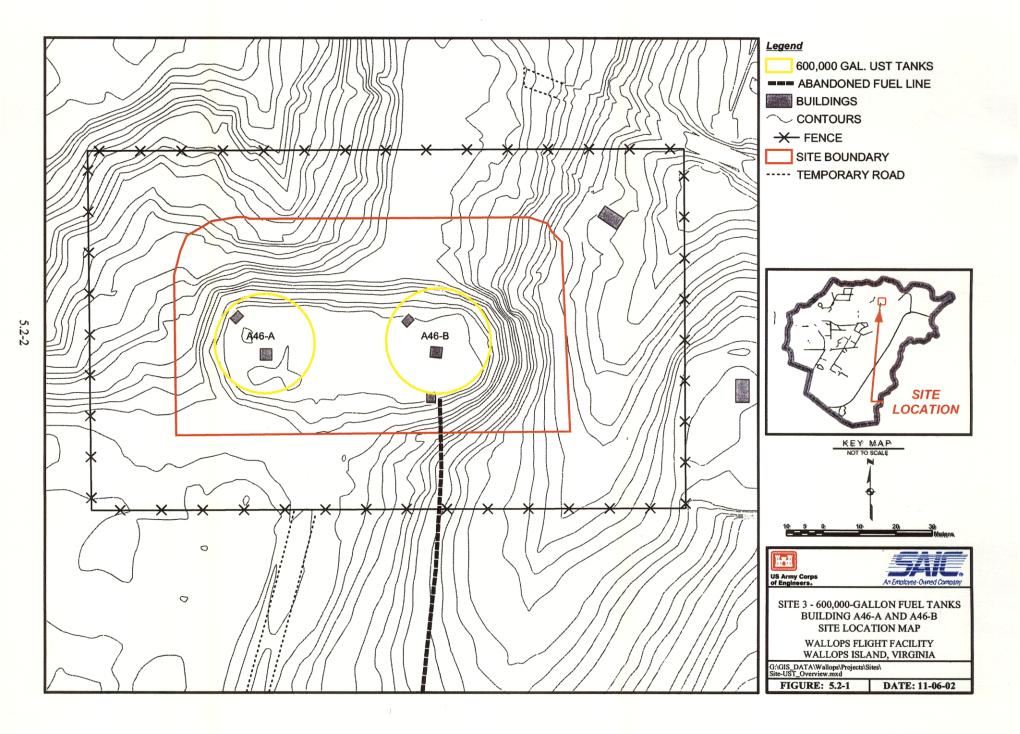
Information pertinent to the physical description of Site 3, the operational history, and the environmental setting for the site was obtained from historical site maps, aerial photographs, anecdotal evidence, site visual inspections, and information and data presented in previous site investigations and studies. Topographic information was obtained from the EG&G, Inc. digital base map.

#### 5.2.1.1 Site Description and History

اتت

During Navy ownership, two 600,000-gallon USTs were constructed north of runway 10-28 (the abandoned flight line). These tanks were constructed of reinforced concrete and were used to store JP-4 fuel for aircraft operations. Fuel stored in the USTs was delivered via an underground pipeline to the Pump House (Building A-44) next to runway 10-28. NASA records indicate that the USTs have not been used since NASA obtained ownership of the land and indicate that the Navy removed residual fuel from the tanks and filled them with salt water prior to their departure. The location of Site 3 is presented in Figure 5.2-1.

#### 5.2.1.2 Site Conditions and Environmental Setting


Site 3 is located at the top of a moderate hill at an elevation of approximately 40 feet above mean sea level (msl). The defined site, as shown in Figure 5.2-1, is approximately 1.6 acres and the elevation surrounding the USTs decreases in all directions. The USTs are secured within a fenced area that is overgrown with woodland brush, young trees, and dense vegetative cover. A dirt road allows access to the fence gate along the southern edge of the site.

The hydrologic conditions at Site 3 have not been characterized during previous investigation activities at the site. Unfortunately, no soil boring lithologic data has been identified during the review of the site-specific data, so a lithologic description of the subsurface soil greater than 4 feet BLS could not be included in this LSI. A photograph depicting the current site conditions at Site 3 is presented in Figure 5.2-2.

#### 5.2.1.3 Background and Previous Site Investigation Activities

Preliminary characterization of Site 3, USTs and the associated pipeline, was conducted as part of the June 1990 remote sensing report (Ebasco Services, Inc. 1990a). Geophysical surveys of the area identified a linear anomaly, the fuel pipeline, extending from the USTs approximately 600 feet to the south, toward the Pump House (Building A-44). Figure 5.2-1 shows the location of the two 600,000-gallon USTs and the approximate location of the associated underground pipeline.

#### THIS PAGE WAS INTENTIONALLY LEFT BLANK



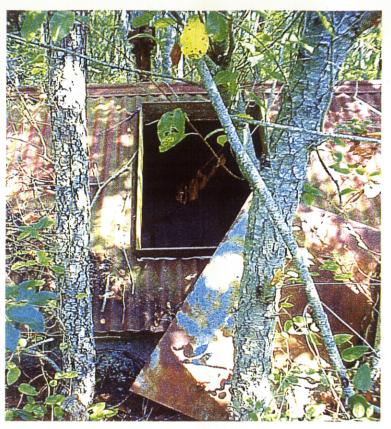



Figure 5.2-2. Site 3 – Two 600,000-Gallon Fuel Tanks – Site Conditions Photograph Wallops Flight Facility, Accomack County, Virginia

The November 1990 ESS identified Site 3 as 1 of 14 WFF sites that had not been investigated during previous activities (Ebasco Services, Inc. 1990b). Supplemental information included in this report indicated that a geophysical survey conducted in conjunction with the evaluation of the Aviation Fuel Tank Farm (AFTF) had detected a pipeline connecting Tank E-77 (at the AFTF) to Pump House (A-46) located north of Runway 10-28 (across the runway).

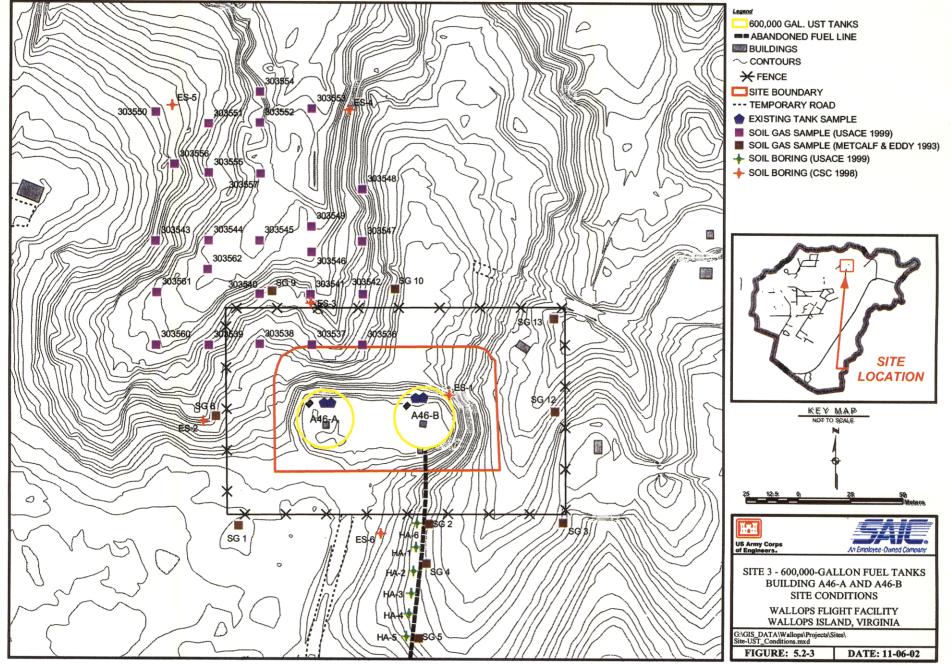
Thirteen soil gas samples (WFF3-SG1 through WFF3-SG13) were collected and analyzed during the March 1993 soil gas survey (Metcalf & Eddy 1993b) at Site 3. Soil gas samples were collected from variable depths (4 to 6 feet BLS) from locations surrounding the two USTs and along the abandoned pipeline. Soil gas results indicate that concentrations of <5 ppm were obtained at 11 of the 12 locations sampled. OVA readings obtained during the installation of the soil gas probes indicate that 37.4 ppm total volatile hydrocarbons were detected during the installation of the soil gas sample (WFF3-SG1) near MW-41. Soil gas survey results are presented in Table 5.2-1.

The 1993 soil gas survey report (Metcalf & Eddy 1993b) provides a summary description of the site and stated that petroleum byproducts recently had been detected in one groundwater sample from MW-41 and indicated that petroleum odors had been noted during a 1993 site survey of the area near Building A-46A. The document also reported that, during the 1991 excavation of the AFTF, an abandoned pipe connected to the two USTs was found to contain product. This pipe reportedly was allowed to drain and was then capped. It is not known whether the line was completely drained.

#### Table 5.2-1. Soil Gas Survey Results<sup>a</sup> Site 3 – Two 600,000-Gallon Fuel Tanks Wallops Flight Facility, Accomack County, Virginia

| Soil Gas<br>Sample I.D. | Collection<br>Date | Sample Depth<br>(feet) | PID Screening<br>Results (ppm) | OVA Screening<br>Results (ppm) <sup>b</sup> | Comments                 |
|-------------------------|--------------------|------------------------|--------------------------------|---------------------------------------------|--------------------------|
| WFF3-SG1                | 3/20/93            | 6                      | 2.6                            | 37.4                                        | 0.6 ppm methane detected |
| WFF3-SG2                | 3/20/93            | 5                      | 1.2                            | ND                                          |                          |
| WFF3-SG3                | 3/20/93            | 6                      | 1.2                            | 4.9                                         | 1.5 ppm methane detected |
| WFF3-SG4                | 3/20/93            | 5                      | 0.2                            | ND                                          |                          |
| WFF3-SG5                | 3/20/93            | 6                      | 0.7                            | ND                                          |                          |
| WFF3-SG6                | 3/20/93            | 5                      | 0.5                            | ND                                          |                          |
| WFF3-SG7                | 3/20/93            | 6                      | 0.5                            | 1.2                                         |                          |
| WFF3-SG8                | 3/21/93            | 4                      | 0.5                            | 1.0                                         | 0.8 ppm methane detected |
| WFF3-SG9                | 3/21/93            | 5                      | 0.7                            | ND                                          |                          |
| WFF3-SG10               | 3/21/93            | 4                      | 0.5                            | 0.6                                         | 0.2 ppm methane detected |
| WFF3-SG11               | 3/21/93            | 4                      | 0.5                            | - ND                                        |                          |
| WFF3-SG12               | 3/22/93            | 4                      | ND                             | ND                                          |                          |
| WFF3-SG13               | 3/22/93            | 5                      | 0.1                            | ND                                          |                          |

ND - Not Detected


<sup>a</sup> Data obtained from Preliminary Report #1, Metcalf & Eddy, Inc. (1993a)

<sup>b</sup> OVA concentrations depicted do not include concentrations of methane detected.

This information, combined with groundwater sampling data (monitoring well data for MW-41 indicating that concentrations of petroleum-related compounds had been detected), suggests that the integrity of the tanks or the associated piping may have been breached and a release of fuel-related compounds may have occurred in the vicinity of the tanks and/or associated piping. As a result of this information, NASA discontinued investigation of Site 3 in March 1993 because the site was associated with former Navy activities (prior to 1959); at that time, Site 3 came under the jurisdiction of USACE for further evaluation.

Currently, Site 3 and adjacent property is being leased to the National Oceanic and Atmospheric Administration (NOAA). NOAA planned to construct several antennas and a roadway in the vicinity of the abandoned Navy USTs and underground pipeline. However, during a 1998 subsurface investigation for the proposed access road, the contractor detected a petroleum-like odor in two samples. CSC Environmental was contracted by NASA to confirm the presence or absence of petroleum contamination. Their activities included the drilling and sampling of six soil borings and the sampling of groundwater at those six locations. Figure 5.2-3 shows the location of the soil and groundwater samples collected during the CSC investigation activities. Table 5.2-2 presents the soil and groundwater analytical results associated with the CSC investigation activities.

Although the environmental sampling performed by NASA was sufficient to confirm the presence or absence of contamination, it was not designed to delineate the extent of petroleum contamination or locate all of the hot spots. As a result, VDEQ requested that USACE conduct additional characterization of the land being leased by NOAA to delineate the extent of potential contamination identified in previous sampling activities.



# Table 5.2-2. Summary of Soil and Groundwater Analytical ResultsSite 3 – Two 600,000-Gallon Fuel Tanks, Buildings A-46A and A-46BWallops Flight Facility, Accomack County, Virginia

| Comple             | Comple              | Analytical Results (ppm) |              |              |              |                 |              |         |  |  |  |
|--------------------|---------------------|--------------------------|--------------|--------------|--------------|-----------------|--------------|---------|--|--|--|
| Sample<br>Location | Sample<br>Matrix    | Benzene                  | Toluene      | Ethylbenzene | Xylenes      | BTEX<br>(Total) | TPH-GRO      | TPH-DRO |  |  |  |
| ES-1               | Soil                | <0.03                    | <0.03        | <0.03        | <0.03        | <0.12           | <6.52        | <21.8   |  |  |  |
|                    | Groundwater         | <2                       | <2           | <2           | <2           | <8              | <0.5         | <0.5    |  |  |  |
| ES-2               | Soil                | <0.02                    | <0.02        | <0.02        | <0.02        | <0.08           | <5.53        | <18.5   |  |  |  |
|                    | Groundwater         | <2                       | <2           | <2           | <2           | <8              | <0.5         | <0.5    |  |  |  |
| ES-3               | Soil<br>Groundwater | <0.02<br><10             | <0.02<br><10 | 2.48<br>3.05 | 1.73<br>8.95 | 4.21<br>12.0    | 867<br>0.041 | 822     |  |  |  |
| ES-4               | Soil                | <0.02                    | <0.02        | <0.02        | <0.02        | <0.08           | <5.65        | <18.9   |  |  |  |
|                    | Groundwater         | <2                       | <2           | <2           | <2           | <8              | <0.5         | <0.5    |  |  |  |
| ES-5               | Soil                | <0.03                    | <0.03        | <0.03        | 0.06         | 0.06            | <6.53        | <21.8   |  |  |  |
|                    | Groundwater         | <2                       | <2           | <2           | <2           | <8              | <0.5         | <0.5    |  |  |  |
| ES-6               | Soil                | <0.02                    | <0.02        | <0.02        | 0.18         | 0.18            | 6.39         | <21.4   |  |  |  |
|                    | Groundwater         | <2                       | <2           | <2           | <2           | <8              | <0.5         | <0.5    |  |  |  |

USACE and VDEQ agreed on the following two-phase approach for the limited site characterization for the area being leased by NOAA:

- *Phase 1* Conduct a soil gas survey over the area leased by NOAA. Collect soil samples using hand auger techniques along the pipeline.
  - Delineate the extent of petroleum contamination and locate hot spots.
  - Compare previous analytical results with the results of the passive soil gas survey.
  - Identify supplemental sampling locations based on results.
- *Phase 2* Collect soil and groundwater samples at identified hot spot locations, and at locations along the perimeter of the identified soil gas plume.
  - Compare analytical results to surface water and drinking water standards.
  - Finalize limited site characterization report.

The results of the Phase I soil gas survey indicated that numerous organic compounds were detected in the survey area (northwest) of the USTs. Figure 5.2-3 shows the location of the soil gas sampling grid at Site 3. Table 5.2-3 presents the results of the passive soil gas sampling at Site 3. A graphical representation of the soil gas plume (soil gas isoconcentration maps for benzene, toluene, ethylbenzene, and xylenes [BTEX]; total petroleum hydrocarbons [TPH]; and undecane, tridecane, and pentadecane) are presented in Appendix B.

Analytical results for the five soil boring samples (HA-1, HA-2, HA-3, HA-6, and HA-7) collected in the vicinity of the underground pipeline (south of Site 3) using hand-auger techniques indicated that BTEX or TPH compounds were not detected during analysis. Figure 5.2-3 shows the location of the hand-auger boring samples collected in conjunction with the limited site characterization (USACE 1999).

Based on BTEX data from the passive soil gas survey, USACE identified four hot spots based on BTEX results, one based on diesel range alkanes, and one based on TPH. Results obtained for the low-lying area downgradient from the tanks indicated the presence of all of the above-mentioned compounds. The passive soil gas report noted that the plume appeared to extend beyond the boundaries

#### Table 5.2-3. Summary of Passive Soil Gas Survey Results Limited Site Characterization Report (USACE 1999) Site 3 – Two 600,000-Gallon Fuel Tanks, Buildings A-46A and A-46B Wallops Flight Facility, Accomack County, Virginia

| Sample<br>I.D. | трн     | Toluene | m-xylene,<br>p-xylene | o-xylene | Undecane,<br>Tridecane<br>and<br>Pentadecane | 1,3,5-TMB<br>and<br>1,2,4-TMB | Naphthalene | 2-Methyl-<br>naphthalene | Octane |
|----------------|---------|---------|-----------------------|----------|----------------------------------------------|-------------------------------|-------------|--------------------------|--------|
| 303536         | 1.76    | 0.23    | ND                    | ND       | 0.19                                         | ND                            | 0.1         | 0.23                     | ND     |
| 303537         | 1.54    | ND      | ND                    | ND       | 0.09                                         | ND                            | ND          | 0.11                     | ND     |
| 303538         | 4.03    | 0.55    | ND                    | ND       | 0.05                                         | ND                            | ND          | ND                       | ND     |
| 303540         | 1.06    | ND      | ND                    | ND       | ND                                           | ND                            | ND          | ND                       | ND     |
| 303541         | 4.95    | 0.34    | ND                    | ND       | 0.48                                         | ND                            | ND          | ND                       | ND     |
| 303542         | 1.06    | ND      | ND                    | ND       | ND                                           | ND                            | ND          | ND                       | ND     |
| 303543         | 0.99    | ND      | ND                    | ND       | ND                                           | ND                            | ND          | ND                       | ND     |
| 303544         | 0.9     | ND      | ND                    | ND       | ND                                           | - ND                          | ND          | ND                       | ND     |
| 303545         | 1.11    | 0.03    | ND                    | ND       | ND                                           | ND                            | ND          | ND                       | ND     |
| 303546         | 0.95    | ND      | ND                    | ND       | ND                                           | ND                            | ND          | ND                       | ND     |
| 303547         | 0.85    | ND      | ND                    | ND       | ND                                           | ND                            | ND          | ND                       | ND     |
| 303548         | 0.89    | ND      | ND                    | ND       | ND                                           | ND                            | ND          | ND                       | ND     |
| 303549         | 0.85    | ND      | ND                    | ND       | ND                                           | ND                            | ND          | ND                       | ND     |
| 303550         | 1.49    | 0.1     | ND                    | ND       | ND                                           | ND                            | ND          | ND                       | ND     |
| 303551         | 0.9     | ND      | ND                    | ND       | ND                                           | <sup>™</sup> ND               | ND          | ND                       | ND     |
| 303552         | 0.78    | ND      | ND                    | ND       | ND                                           | ND                            | ND          | ND                       | ND     |
| 303553         | 0.75    | ND      | ND                    | ND       | ND                                           | ND                            | ND          | ND                       | ND     |
| 303554         | 0.67    | ND      | ND                    | ND       | ND                                           | ND                            | ND          | ND                       | ND     |
| 303555         | 0.78    | ND      | ND                    | ND       | ND                                           | ND                            | ND          | ND                       | ND     |
| 303556         | 0.77    | ND      | ND                    | ND       | ND                                           | ND                            | ND          | ND                       | ND     |
| 303557         | 1026.38 | 0.25    | 0.07                  | 0.04     | 38.21                                        | 0.07                          | ND          | ND                       | 1.3    |
| 303560         | 1.88    | ND      | ND                    | ND       | ND                                           | ND                            | ND          | ND                       | ND     |
| 303561         | 1.21    | ND      | ND                    | ND       | ND                                           | ND                            | ND          | ND                       | ND     |
| 303562         | 0.89    | ND      | ND                    | ND       | ND                                           | ND                            | ND          | ND                       | NĎ     |

ND - Not Detected

of the soil gas survey, and additional sample points would be required in order to fully delineate its areal extent. USACE recommended the collection of soil and groundwater samples from each of the hot spots and a few locations around the perimeter of the plume. This sampling activity had not been conducted when the limited site characterization report was completed.

In December 1999, an analytical summary report was submitted to USACE for the sampling activities performed at Site 3 (Earth Tech, Inc. 1999). This report provided site information, a discussion of site activities, laboratory analysis and results, and recommendations for the UST site near the NOAA roadway. Earth Tech advanced two hand-auger borings and contracted Tidewater, Inc. to perform six DPT soil borings. Five soil samples and four groundwater samples were collected from locations north of the UST site. Three soil and three groundwater samples were collected to the south of the UST site along the underground JP-4 fuel pipeline. Sample locations were selected based on the soil gas survey results (USACE 1999). All soil samples were screened using a PID. Petroleum odors were noted in UST-04 and UST-06. Analytical results for UST-01 through UST-08 detected TPH-GRO at concentrations ranging from non-detect to 5,690 mg/kg in soil, and TPH-Gasoline Range Organics (GRO) in groundwater from non-detect to 10,800  $\mu$ g/L. Analytical results for the soil and groundwater samples collected are presented in Tables 5.2-4 and 5.2-5.

# Table 5.2-4.Summary of Soil Boring Analytical Results (Earth Tech, Inc., 1999)Site 3 – Two 600,000-Gallon Fuel Tanks, Buildings A-46A and A-46BWallops Flight Facility, Accomack County, Virginia

| Sample<br>I.D. | Parameter              | Analytical<br>Method | Depth<br>(feet BLS) | Results<br>(mg/kg) | Reporting<br>Limits (mg/kg) |
|----------------|------------------------|----------------------|---------------------|--------------------|-----------------------------|
| UST-01         | TPH (gasoline)         | 8015M/5030           | 14                  | 60.0               | 5.0                         |
| UST-02         | TPH (diesel)           | 8015B/3550           | 16                  | 10.6               | 9.96                        |
| UST-04         | TPH (gasoline)         | 8015M/5030           | 23                  | 5.690              | 500                         |
|                | TPH (diesel)           | 8015B/3550           | 23                  | 225                | 4916                        |
|                | sec-Butylbenzene       | 8260B                | 23                  | 0.26               | 0.1                         |
|                | Isopropylbenzene       | 8260B                | 23                  | 0.1950             | 0.1                         |
|                | 4-Isopropyltoluene     | 8260B                | 23                  | 0.3350             | 0.1                         |
|                | Naphthalene            | 8260B                | 23                  | 0.5350             | 0.1                         |
|                | n-Propylbenzene        | 8260B                | 23                  | 0.280              | 0.1                         |
|                | 1,2,4-Trimethylbenzene | 8260B                | 23                  | 2.058              | 0.1                         |
|                | 1,3,5-Trimethylbenzene | 8260B                | 23                  | 1.0                | 0.1                         |
|                | Xylenes                | 8260B                | 23                  | 0.74               | 0.1                         |
| UST-05         | TPH (gasoline)         | 8015M/5030           | 12                  | 41.7               | 5.0                         |
| UST-06         | TPH (gasoline)         | 8015M/5030           | 18                  | 4,760              | 500                         |
|                | TPH (diesel)           | 8015M/5030           | 18                  | 344                | 98.8                        |
|                | Ethylbenzene           | 8260B                | 18                  | 0.145              | 0.1                         |
|                | Isopropylbenzene       | 8260B                | 18                  | 0.120              | 0.1                         |
|                | 4-Isopropyltoluene     | 8260B                | 18                  | 0.37               | 0.1                         |
|                | n-Propylbenzene        | 8260B                | 18                  | 0.125              | 0.1                         |
|                | 1,2,4-Trimethylbenzene | 8260B                | 18                  | 0.435              | 0.1                         |
|                | 1,3,5-Trimethylbenzene | 8260B                | 18                  | 0.38               | 0.1                         |
|                | Xylenes                | 8260B                | 18 ·                | 0.45               | 0.1                         |
| UST-07         | TPH (gasoline)         | 8015M/5030           | 3                   | 12.3               | 5.0                         |

#### Table 5.2-5. Summary of Groundwater Analytical Results (Earth Tech, Inc., 1999) Site 3 – Two 600,000-Gallon Fuel Tanks, Buildings A-46A and A-46B Wallops Flight Facility, Accomack County, Virginia

| Sample<br>I.D. | Parameter              | Analytical<br>Method | Results<br>(µg/kg) | Reporting<br>Limits (μg/kg) |
|----------------|------------------------|----------------------|--------------------|-----------------------------|
| UST-04         | TPH (gasoline)         | 8015M/5030           | 5,090              | 100                         |
|                | Ethylbenzene           | 8260B                | 71.3               | 2.0                         |
|                | Isopropylbenzene       | 8260B                | 49.0               | 2.0                         |
|                | Naphthalene            | 8260B                | 74.1               | 2.0                         |
|                | n-Propylbenzene        | 8260B                | 46.7               | 2.0                         |
|                | 1,2,4-Trimethylbenzene | 8260B                | 190                | 2.0                         |
|                | 1,3,5-Trimethylbenzene | 8260B                | 60.9               | 2.0                         |
|                | Xylenes                | 8260B                | 399                | 2.0                         |
| UST-06         | TPH (gasoline)         | 8015M/5030           | 10,800             | 2,000                       |
|                | Ethylbenzene           | 8260B                | 493                | 20.0                        |
|                | Isopropylbenzene       | 8260B                | 45                 | 20.0                        |
|                | Naphthalene            | 8260B                | 116                | 20.0                        |
|                | n-Propylbenzene        | 8260B                | 41.0               | 20.0                        |
| 1.0            | 1,2,4-Trimethylbenzene | 8260B                | 255                | 20.0                        |
|                | 1,3,5-Trimethylbenzene | 8260B                | 84.0               | 20.0                        |
|                | Xylenes                | 8260B                | 1,920              | 20.0                        |
| UST-08         | TPH (gasoline)         | 8015M/5030           | 250                | 100                         |
|                | Ethylbenzene           | 8260B                | 3.8                | 2.0                         |
|                | 1,2,4-Trimethylbenzene | 8260B                | 2.1                | 2.0                         |
|                | Xylenes                | 8260B                | 15.4               | 2.0                         |

Results of the previous investigation activities at Site 3 indicated that additional sampling activities were required to characterize the liquids currently present in the USTs and to determine if residual petroleum products are present in the USTs as a result of historical activities. The following section summarize LSI field investigation activities conducted to characterize site conditions at Site 3 and to sample liquids present in the USTs.

#### 5.2.2 Field Investigation

The LSI field activities followed site-specific project plans that included field sampling and laboratory chemical analyses conducted under project-specific QA/QC and health and safety protocols. The following paragraphs identify the objectives, approach, and field activities conducted during the field investigation of the Two 600,000-Gallon Fuel Tanks, Buildings A-46A and A-46B (Site 3). The rationale for sampling, the analyte selection, and a discussion of the sampling methodologies are included below.

#### 5.2.2.1 SAIC Field Investigation

As a result of previous investigation activities, additional evaluation of the liquids in the USTs at Site 3 is required to better characterize these liquids. The objective of the LSI at Site 3 was to investigate the potential presence of chemical constituents (hydrocarbons) in the UST liquids as a result of past disposal practices and to determine if chemical constituents exist in the liquids at concentrations that exceed human health screening criteria for water.

To assess the current conditions, the site-specific sampling plan included in the FSP (SAIC 2002a) proposed the collection of two samples (at the top and bottom of the water column) from each of the two USTs (Buildings A-46A and A-46B). In accordance with this approach, two samples (WA-UST-01 [surface] and WA-UST-02 [bottom]) were collected from Building A-46A (western UST) and two samples (WA-UST-03 [surface] and WA-UST-04 [bottom]) were collected from Building A-46B (eastern UST). All samples were collected using a stainless steel bomb sampler. Samples collected from the surface of the UST liquids (WA-UST-01 and WA-UST-03) were collected from approximately 1 foot below the surface of the water. Samples collected from the bottom of the water column were collected from directly above the base of the structures. All samples were analyzed for chemical constituents potentially associated with past fuel storage at the USTs (VOCs, SVOCs, and metals). Table 5.2-6 summarizes the samples collected from the Site 3 USTs. Figure 5.2-3 shows the LSI UST sampling locations at Site 3.

## Table 5.2-6. LSI UST SamplesSite 3 – Two 600,000-Gallon Fuel Tanks, Buildings A-46A and A-46BWallops Flight Facility, Accomack County, Virginia

| Sample I.D. | Depth Below<br>Water<br>Surface (feet) | Field Sample Number | Sample<br>Interval (Depth) |
|-------------|----------------------------------------|---------------------|----------------------------|
| WA-UST-01   | 1                                      | SAIC01              | 0 - 0.5                    |
| WA-UST-01   | 13                                     | SAIC 01             | 12.5 - 13.0                |
| WA-UST-01   | 1                                      | SAIC 01             | 0 - 0.5                    |
| WA-UST-01   | 11                                     | SAIC 01             | 10.5 - 11.0                |

Note:

All UST samples collected from Site 3 were analyzed for VOCs, SVOCs, and metals.

# 

#### 5.2.3 Investigation Results and Nature and Extent

This section presents the results of the LSI sampling and analysis. The data collected during the LSI were used to provide a basis for evaluating the magnitude and extent of contamination and conducting the human health screen. Complete analytical results for the liquid samples collected at Site 3 are presented in Appendix G and summarized in Table 5.2-7.

The LSI included a screening-level evaluation in which sample data collected from Site 3 were subject to a human health toxicity screen. The toxicity screen is used to evaluate human health effects by comparing site data to screening criteria (e.g., Region III RBC for tap water and MCLs).

The following paragraphs summarize the chemical constituents detected in the USTs at Site 3 and the results of the screening-level evaluation of the detected constituents. Screening criteria comparisons for the inorganic and organic constituents detected in the USTs at Site 3 are presented in Tables 5.2-8 and 5.2-9.

#### 5.2.3.1 UST Sample Results and Nature and Extent

Four samples (two from each UST) were collected during the investigation of Site 3. Within each UST, one sample was collected from the surface interval (top foot of water in tank) and one sample was collected from the bottom of the tank (bottom foot of water in tank). The inorganic (metals) and organic (VOCs and SVOCs) constituents detected at Site 3 are summarized below.

*Inorganic Constituents*—Ten inorganic constituents were detected in the liquids present in the USTs. The following paragraphs identify the metals that exceed the Region III RBCs or MCLs in the UST liquids:

- EPA Region III RBC tap water thallium
- MCL thallium.

The concentrations and distribution of inorganic constituents detected in the USTs at Site 3 are presented in Figure 5.2-4. Table 5.2-8 presents the inorganic constituents detected in the USTs at Site 3 that exceed the Region III RBCs for tap water or Federal MCLs criteria and lists the UST sample location where the constituent concentration exceed the screening criteria in the water, the detected concentrations that exceed the screening criteria, and the screening criteria that the detected concentration exceeds. The following sections summarize the results of the toxicity screen and characterize the distribution of the inorganic constituents that were detected at concentrations that exceed the human health screening criteria at Site 3.

Thallium was detected at concentrations greater than the Region III RBC for tap water (2.6  $\mu$ g/L) and the MCL (2.0  $\mu$ g/L) at sample location WA-UST-03 (surface water of UST A-46B). No other inorganic constituents detected in either of the two 600,000-gallon USTs exceeded either the Region III RBC for tap water or the MCLs.

**Organic Constituents**—Seven organic compounds (two SVOCs and five VOCs) were detected in the USTs at Site 3. None of these compounds was detected in samples collected from the western UST (Building A-46A). Five of the compounds (di-N-butyl phthalate [DNBP], benzene, xylenes [meta and/or para], xylene [ortho], and toluene) were detected in the surface sample (WA-UST-03) collected from the eastern UST (A-46B), and three compounds (2-methylnaphthalene, ethylbenzene and xylenes [meta and/or para]) were detected in the sample (WA-UST-04) collected from the bottom of the eastern UST (A-46B). The following paragraph list the type of organic constituents detected and identifies the organic compounds that exceed the Region III RBCs for tap water and MCLs:

- EPA Region III RBC for tap water benzene, ethylbenzene, and 2-methylnaphthalene
- MCL benzene.

## Table 5.2-7. Data Summary: UST Liquids Results, Site 3 - Two 600,000-Gallon Fuel TanksWallops Flight Facility, Accomack County, Virginia

| Site ID              |         |          | WA-UST-01 |     | WA-UST-02 |    | WA-UST-03 |          | WA-UST-04 |    |
|----------------------|---------|----------|-----------|-----|-----------|----|-----------|----------|-----------|----|
| Field Sample Number  |         |          | SAIC01    |     | SAIC01    |    | SAIC01    |          | SAIC01    |    |
| Site Type            |         |          | SWTR      |     | SWTR      |    | SWTR      |          | SWTR      |    |
| Collection Date      |         |          | 08/08/02  |     | 08/08/02  |    | 08/08/02  |          | 08/08/02  |    |
| Depth (ft)           | ·       |          | 0.00      |     | 13.00     |    | 0.00      |          | 11.00     |    |
| METALS(6010)         |         |          |           |     |           |    |           |          |           |    |
| Parameter            | Units   | RL       |           |     |           |    |           |          |           |    |
| Arsenic              | ug/L    | 10       | 3.6       | U   | 3.4       | U  | 3.4       | U        | 4.1       | U  |
| Barlum               | ug/L    | 200      | 3.3       | В,  | 2.9       | 8  | 16.1      |          | 13.5      |    |
| Caicium              | ug/L    | 1000     | 8160      |     | 7640      |    | 8490      |          | 8230      |    |
| Cobalt               | ug/L    | 50       | 0.6       | UJ  | 0.6       | UJ | 0.6       | UJ       | 0.83      | J  |
| Copper               | ug/L    | . 10     | 2.5       | U   | 2.9       | U  | 2         | U.       | 3.2       | U. |
| Iron                 | ug/L    | 100      | 40.1      | в   | 817       |    | 2110      |          | 5070      |    |
| Magnesium            | ug/L    | 1000     | 5400      |     | 5180      |    | 5930      |          | 5760      |    |
| Manganese            | ug/L    | 15       | 72.8      |     | 123       |    | 335       |          | 367       |    |
| Nickel               | ug/L    | 10       | 1.1       | U   | 2         | B  | 1.1       | U        | 1.5       | в  |
| Potassium            | ug/L    | 1000     | 3740      |     | 3910      |    | 3920      | <i>*</i> | 3910      |    |
| Sodium               | ug/L    | 1000     | 12300     |     | 12300     |    | 14100     |          | 13900     |    |
| Thallium             | ug/L    | 10       | 2.7       | U   | 3.6       | U  | 2.8       | в        | 2.8       | U  |
| Zinc                 | ug/L    | 20       | 5.2       | U   | - 5       | U  | 4         | U        | 4         | Ū  |
| SEMIVOLATILE ORG     | ANIC CO | MPOUNDS  | (8270)    |     |           |    |           |          |           |    |
| Parameter            | Units   | RL       |           |     |           |    |           |          |           |    |
| 2-Methylnaphthalene  | ug/L    | 10       | 250       | U   | 130       | U  | 13        | U        | 1000      | J  |
| Di-n-butyl phthalate | ug/L    | 10       | 250       | U   | 130       | U  | 1.7       | J        | 2900      | U  |
| VOLATILE ORGANIC     | сомро   | UNDS(826 | 0)        |     |           |    |           |          |           |    |
| Parameter            | Units   | RL       | •         |     |           |    |           |          |           |    |
| Acetone              | ug/L    | 5        | 25        | -υ- | 25        | U  | 5         | U        | 140       | Ū. |
| Benzene              | ug/L    | 1        | . 5       | U   | 5         | U  | 8.7       |          | 25        | UJ |
| Carbon disulfide     | ug/L    | .1       | 5         | U   | 5         | บ  | 1         | υ        | 42        | ບປ |
| Ethylbenzene         | ug/L    | 1        | 5         | U   | . 5       | U  | 1         | U        | 28        | J  |
| m-and/or p-Xylene    | ug/L    | 1        | . 5       | U   | 5         | U  | 4.1       |          | 33        | J  |
| Methylene Chloride   | ug/L    | 1        | 7.4       | U   | 6.4       | U  | 1.1       | U        | 31        | Ū. |
| o-xylene             | ug/L    | . 1      | 5         | U   | 5         | U  | 1.5       |          | 25        | ÚJ |
| Toluene              | ug/L    | 1        | 5         | U   | 5         | U  | 5.1       |          | 25        | Ū  |

Limited Site Investigation - Final Report

5.2-11

May 2003

## Table 5.2-7. Data Summary: UST Liquids Results, Site 3 - Two 600,000-Gallon Fuel Tanks Wallops Flight Facility, Accomack County, Virginia (continued)

#### Footnotes:

Limited Site Investigation - Final Report

B - Metals: Reported value was less than the contract required detection limit but greater than or equal to the instrument detection limit.

- B Organics: Analyte was found in the associated method blank. Validation of the data did not result in this compound being qualified as nondetect due to blank contamination.
  - Therefore this result is considered to be site related.
- D The value for the target analyte was calculated from a dilution.
- E Metals: The reported value is estimated because of the presence of interferents.
- E Organics: Concentration range exceeded for this analyte,
- J Value is estimated.
- N Metais: Spiked sample recovery not within control limits.
- N Organics: Tentatively identified compound based on mass spectral library search.
- P There is greater than 25% difference for detected concentrations between the two GC columns for the associated pesticide/PCB target analyte.
- R Value is rejected.

U - Compound was analyzed for but not detected.

- UJ Compound was analyzed for but not detected and is considered an estimate.
- X The mass spectrum does not meet EPA CLP criteria for confirmation, but compound presence is strongly suspected.
- \* Duplicate analysis not within control limits.

N/A - Compound not analyzed for.

NF - Data not found.

- RL Reporting Limit for each method. For SW846 methods, the samples are reported down to the method detection limits (MDL). For metals, the samples are reported down to the instrument detection limit (IDL).
- MDL Method Detection Limit.

SAICXXR - An SAIC field sample number followed by an "R" designates a recollected sample.

1,2-Dichlorobenzene; 1,3-Dichlorobenzene; 1,4-Dichlorobenzene; and 1,2,4-Trichlorobenzene - For samples analyzed prior to February 2000, these four compounds are reported as part of the

semivolatile organic compound list. For samples analyzed after February 2000, these four compounds are reported as part of the volatile organic compound list.

1,2-Dichloroethene (total); Cis-1,2-Dichloroethene and Trans-1,2-Dichloroethene – For samples analyzed prior to February 2000, cis-1,2-dichloroethene and trans-1,2-dichloroethene (not 1,2-dichloroethene (total)) are reported as part of the volatile organic compound list. For samples analyzed after February 2000, 1,2-dichloroethene (total) (not cis-1,2-dichloroethene (total)) are reported as part of the volatile organic compound list.

S

2-12

#### Table 5.2-8. Site 3 - Two 600,000-Gallon Fuel Tanks Metal Constituents Detected Above Screening Criteria in UST Liquids Wallops Flight Facility, Accomack County, Virginia

|             |              | Field            |   | Concentration <sup>a</sup> |       | Protection of I                         | Human Health                         |
|-------------|--------------|------------------|---|----------------------------|-------|-----------------------------------------|--------------------------------------|
| Constituent | Sample<br>ID | Sample<br>Number |   |                            | Units | Concentration Exceeds<br>Region III RBC | Concentration Exceeds<br>Federal MCL |
|             | <del>0</del> |                  |   |                            |       | Screening<br>Value <sup>b,c</sup>       | Value <sup>b,d</sup>                 |
| Thallium    | WA-UST-03    | SWTR             | 0 | 2.8                        | µg/L  | 2.6                                     | 2                                    |

<sup>a</sup> Constituent concentrations that exceed screening criteria are listed in ascending order (lowest to highest).

<sup>b</sup> Concentration listed is applicable screening criteria.

<sup>c</sup> EPA Region III RBCs.

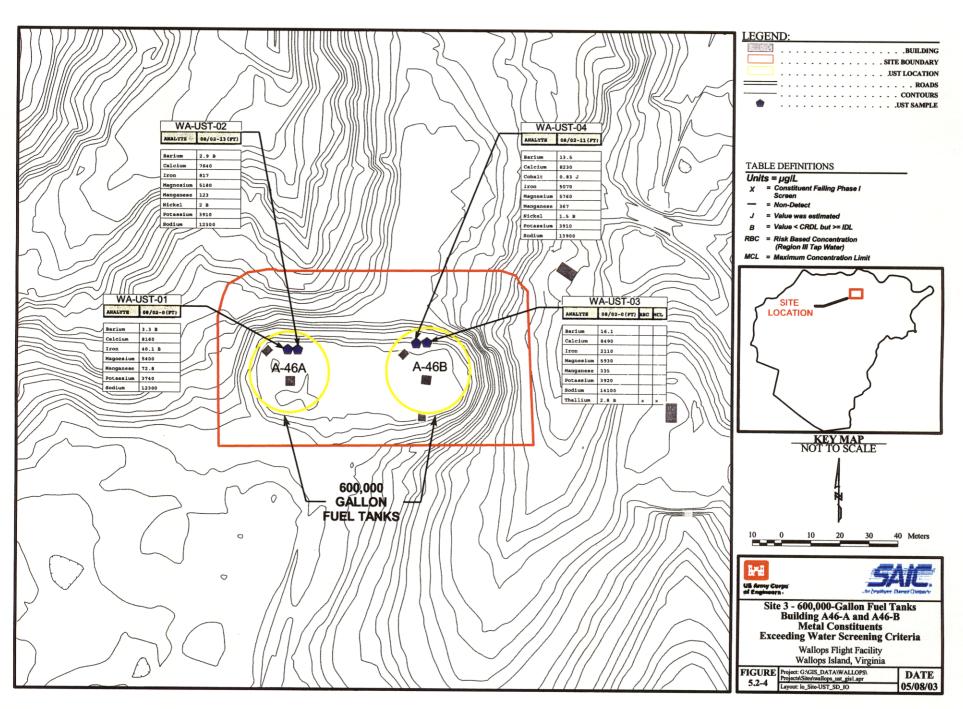
<sup>d</sup> Federal MCL.

## 

#### Table 5.2-9. Site 3 - Two 600,000-Gallon Fuel Tanks Metal Constituents Detected Above Screening Criteria in UST Liquids Wallops Flight Facility, Accomack County, Virginia

|                     |              | Field |    |                            |       | Protection of                                                                | Human Health                                                 |
|---------------------|--------------|-------|----|----------------------------|-------|------------------------------------------------------------------------------|--------------------------------------------------------------|
| Constituent         | Sample<br>ID |       |    | Concentration <sup>a</sup> | Units | Concentration Exceeds<br>Region III RBC<br>Screening<br>Value <sup>b.c</sup> | Concentration Exceeds<br>Federal MCL<br>Value <sup>b,d</sup> |
| 2-Methylnaphthalene | WA-UST-04    | SWTR  | 11 | 1000                       | µg/L  | X                                                                            |                                                              |
| Benzene             | WA-UST-03    | SWTR  | 0  | 8.7                        | µg/L  | X                                                                            | X                                                            |
| Ethylbenzene        | WA-UST-04    | SWTR  | 11 | 28                         | µg/L  | X                                                                            |                                                              |

<sup>a</sup> Constituent concentrations that exceed screening criteria are listed in ascending order (lowest to highest).


<sup>b</sup> X indicates detected concentration exceeds the screening criteria.

<sup>c</sup> EPA Region III RBCs.

<sup>d.</sup> Federal MCL

#### THIS PAGE WAS INTENTIONALLY LEFT BLANK

**1**.



5.2-15

 $\Lambda_{1}$ 

The concentrations and distribution of organic constituents detected in the USTs at Site 3 are presented in Figure 5.2-5. Table 5.2-9 presents the organic constituents detected in the USTs that exceed the Region III RBC for tap water or MCL screening criteria and lists the sample location where the constituent concentration exceeds the screening criteria, the detected concentrations that exceed the screening criteria, and the screening criteria that the detected concentration exceeds. The following sections summarize the results of the toxicity screen and characterize the distribution of the organic constituents that were detected at concentrations that exceed the screening criteria at Site 3.

Benzene was detected in the surface water sample (WA-UST-03) collected from the eastern UST at a concentration (8.7  $\mu$ g/L) that exceeds both the Region III RBC for tap water (0.32  $\mu$ g/L) and the MCL (5  $\mu$ g/L), but was not detected in any of the other samples collected from the USTs. An SVOC (2-methylnaphthalene) and a VOC (ethylbenzene) were detected in the water sample (WA-UST-04) collected from the base of the eastern UST (A-46B) at concentrations that exceeded the Region III RBC for tap water. 2-Methylnaphthalene was detected at an estimated concentration of 1,000  $\mu$ g/L (Region III RBC tap water criteria = 121.7  $\mu$ g/L) and ethylbenzene was detected at 28  $\mu$ g/L (Region III RBC tap water criteria = 3.3  $\mu$ g/L).

#### 5.2.4 Conclusions and Recommendations

This section presents the conclusions and recommendations of the LSI for Site 3. Section 5.2.4.1 summarizes results and conclusions of the LSI. Section 5.2.4.2 combines conclusions and historical information to make recommendations for future site activities.

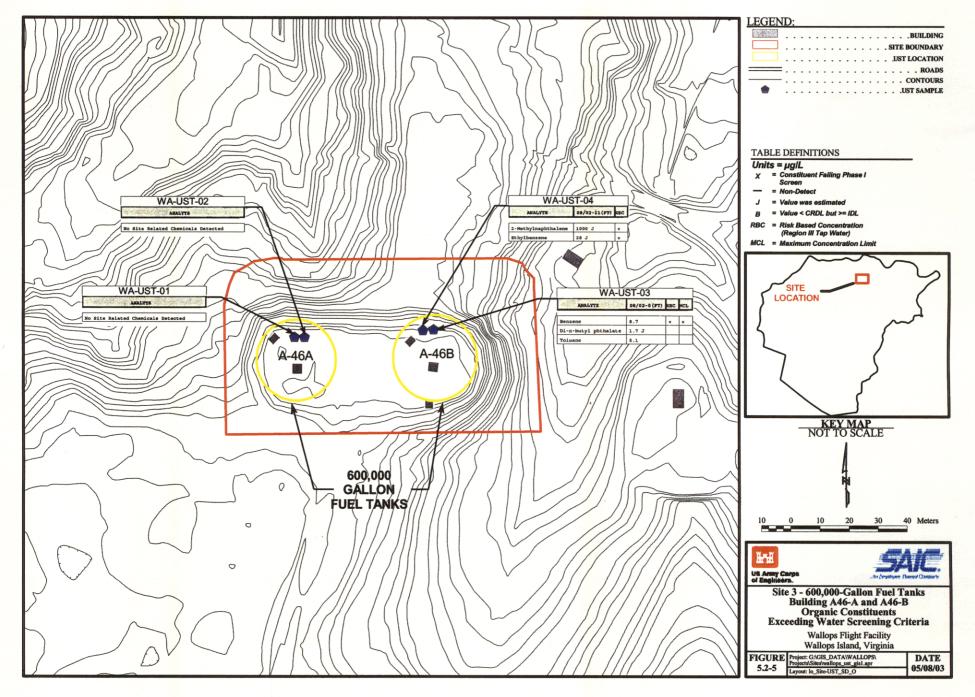
#### 5.2.4.1 Conclusions

г ) }

أهتسمه

فستعط

Data collected during the LSI investigation indicates that residual fuel related compounds are still present in the waters contained in the Site 3 USTs. Sampling and analysis of the liquids present in the USTs indicated that the primary contaminants present are metals (thallium), VOCs (benzene and ethylbenzene) and an SVOC (2-methylnaphthalene). Sample results indicate that concentrations of benzene are greater than the Region III RBCs and MCLs in the eastern UST (Building A-46B) and that concentrations of 2-methylnaphthalene and ethylbenzene are greater than the Region III RBCs for Tap Water in that UST. Site-specific observations made during the sampling of the USTs and PID monitoring results indicate that the western UST also contains residual fuel related compounds.


#### 5.2.4.2 Recommendations

Future efforts at Site 3 should focus on the closure of the tanks following the UST or CERCLA regulations. Additional site-specific tasks should include:

- Collect a second round of samples from USTs to confirm analytical results (presence and absence of contamination in USTs) and characterize liquids for disposal.
- Remove liquids and abandon tanks in accordance with Commonwealth of Virginia regulations.
- Review and consolidate data to ensure soil and groundwater data are sufficient to support recommendation of no further action.
- Evaluate the source of contamination identified by soil gas, soil, and groundwater sampling. If required, collect additional samples to fill data gaps. If sufficient soil and groundwater are available, no further sampling is recommended at this site.

#### THIS PAGE WAS INTENTIONALLY LEFT BLANK

}



#### 5.3 INDUSTRIAL WASTE/SANITARY LANDFILL

This section presents the results of the LSI for the IWL. A description and history of the site, a summary of the site conditions and environmental setting, and an overview of environmental investigation activities conducted at the site during previous investigations is provided in Section 5.3.1. Section 5.3.2 discusses the LSI activities conducted at the IWL. Section 5.3.3 presents the laboratory analytical results of the LSI field investigation, the nature and extent of detected contamination at the IWL, and the results of the human health toxicological screen associated with the constituents identified during the investigation. Conclusions and recommendations for the IWL are summarized in Section 5.3.4.

#### 5.3.1 Site Description, History, and Environmental Setting

Information pertinent to the physical description of the IWL and the environmental setting for the site was obtained from historical site maps, aerial photographs, anecdotal evidence, site visual inspections, and information and data presented in previous site investigations and studies. Topographic information was obtained from the EG&G, Inc. digital base map.

#### 5.3.1.1 Site Description and History

، است

أسنا

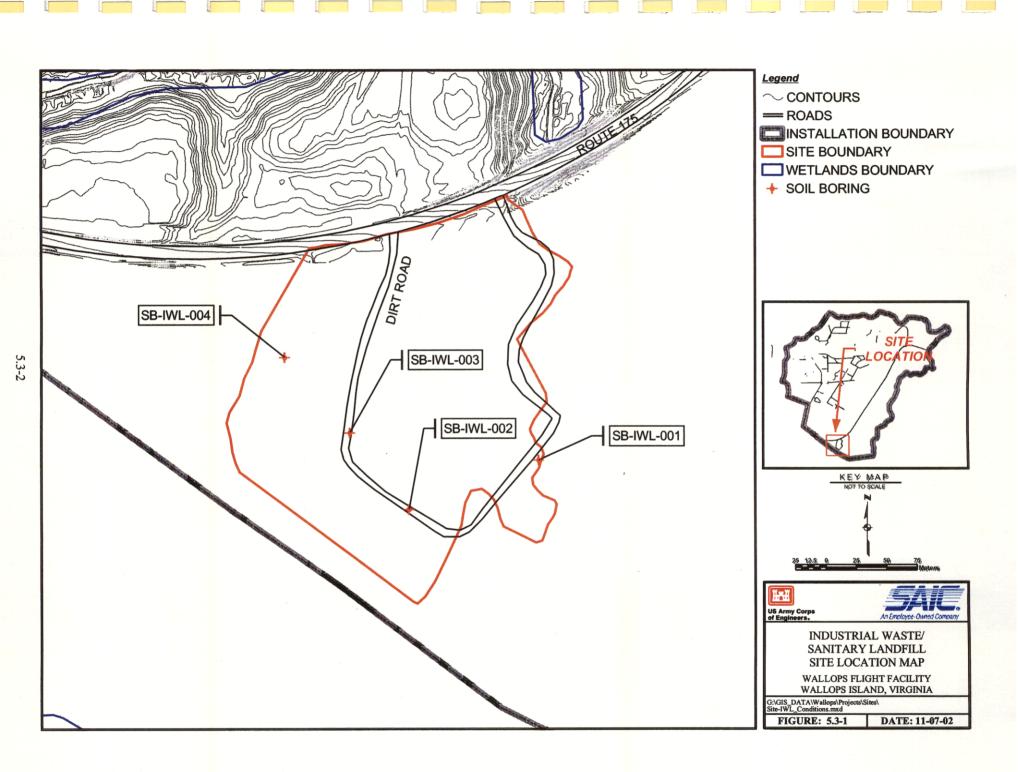
Little historical information about the IWL is available and the information that is available seems to be limited to interpretation of historical aerial photographs by the EPA Environmental Photographic Interpretation Center (EPIC). The IWL site features initially were identified as an area of potential concern (Area of Concern [AOC] A) after reviewing historical aerial photographs. During the assessment of the October 14, 1957 aerial photograph, EPIC identified AOC A as a probable landfill and determined that the site was active. Review of the photographs indicated that much of the surface area appeared to have been filled and graded and that two trenches, several piles of mounded material, and a probable pit existed at this location.

Review of the 1959 photograph (October 5, 1959 Aerial Photograph) indicated that the trenches, mound and probable pit evident in 1957 were no longer visible. In the photograph, the site appears to have been filled in and graded. In addition, the area contained more vegetation than in 1957 and the dirt access road is less apparent.

Transfer of ownership of this property to the U.S. Department of the Interior (DOI), U.S. Fish and Wildlife Service (USFWS) took place on July 10, 1975. Employees of the Wallops Island National Wildlife Refuge currently use the site as a maintenance operations facility and storage yard. The landfill features are indistinguishable from the existing terrain. Figure 5.3-1 shows the location of the IWL at the WFF.

#### 5.3.1.2 Site Conditions and Environmental Setting

The IWL is located along the southern extreme of the WFF adjacent to the southern side of State Route 175. The site is approximately 15 acres with little topographic relief. A dirt road travels along the eastern edge and center of the IWL and provides access to a large portion of the site. The site is surrounded by woodland brush, young trees, and dense vegetative cover. The photograph presented in Figure 5.3-2 shows the current conditions of the IWL and the physical features of the surrounding area.


The hydrologic conditions at the IWL have not been characterized based on data previously collected at the site. No soil boring lithologic data have been identified during the review of the site-specific data, so the lithologic description of the subsurface soil is based only on data obtained during this field investigation.

#### THIS PAGE WAS INTENTIONALLY LEFT BLANK

.

\_\_\_\_

T



OIZOAB94



Figure 5.3-2. Industrial Waste/Sanitary Landfill – Site Conditions Photograph

#### 5.3.1.3 Background and Previous Site Investigation Activities

In January 2000, Earth Tech, Inc. submitted a summary report to NASA (Earth Tech, Inc. 2000) for work conducted at the WFF. The report identified potential environmental impacts at the identified FUDS sites and evaluated the need for future environmental studies. Work performed at the IWL as part of this report included: a site visit, personnel interviews, drilling and sampling of one DPT soil boring, and laboratory analysis of soil and groundwater samples collected during the investigation. An RRE performed using existing data found the relative risk to be high. Tables 5.3-1 and 5.3-2 present the laboratory analytical results for soil and groundwater samples collected during the EarthTech investigation.

In December 2001, a status summary report in letter format was submitted to USACE for the sampling activities performed at sites located on the Main Base (Earth Tech, Inc. 2001). Sampling activities performed as part of this investigation involved several sites, including the IWL. As shown in Table 5.3-1, arsenic was detected in soil and groundwater sample W-01 at 3.85 mg/kg and 0.201 mg/L, respectively. The detected arsenic concentration in soil exceeds the Region III RBC for residential land use (0.426 mg/kg) and the Region III RBC for migration to groundwater (DAF 20) (0.03 mg/kg). In addition, laboratory analytical results for the groundwater sample (W-01) collected at the IWL indicated that aluminum, arsenic, iron, lead, and manganese were detected at concentrations that exceed their respective secondary MCLs. The analytical results for constituents detected in the groundwater at the IWL that exceeded secondary MCLs during the previous sampling activities are summarized in Table 5.3-2.

## Table 5.3-1. Summary of Soil Analytical Results – Soil Boring Sample Location W-01<sup>a</sup> Industrial Waste/Sanitary Landfill Wallops Flight Facility, Accomack County, Virginia

| Parameter <sup>b</sup> | Detected Concentration<br>(mg/kg) |  |  |  |  |
|------------------------|-----------------------------------|--|--|--|--|
| Aluminum               | 5,560                             |  |  |  |  |
| Arsenic                | 3.85°                             |  |  |  |  |
| Barium                 | 12.2                              |  |  |  |  |
| Calcium                | 148                               |  |  |  |  |
| Chromium               | 12.2                              |  |  |  |  |
| Copper                 | 2.64                              |  |  |  |  |
| Iron                   | 10,200                            |  |  |  |  |
| Lead                   | 19.1                              |  |  |  |  |
| Magnesium              | 63.3                              |  |  |  |  |
| Manganese              | 1.62                              |  |  |  |  |
| Mercury                | 0.21                              |  |  |  |  |
| Potassium              | 258                               |  |  |  |  |
| Vanadium               | 19.9                              |  |  |  |  |
| 4,4-DDE                | - 0.1565                          |  |  |  |  |
| 4,4-DDT                | 0.01032                           |  |  |  |  |

<sup>a</sup> W-01 is soil boring sampled during Earth Tech environmental investigation of the IWL.

Laboratory analysis for total metals was conducted using Method 6010B, analysis for pesticides was conducted using Method 8081A.

<sup>c</sup> Detected arsenic concentration in soil exceeds Region III RBC for residential land use (0.426 mg/kg) and Region III RBC for migration to groundwater (DAF 20) (0.03 mg/kg).

## Table 5.3-2. Summary of Groundwater Analytical Results – Sample Location W-01<sup>a</sup> Industrial Waste/Sanitary Landfill Wallops Flight Facility, Accomack County, Virginia

| Parameter <sup>b</sup><br>(Total Metals) | Detected Concentration<br>(mg/kg) |  |  |  |  |  |
|------------------------------------------|-----------------------------------|--|--|--|--|--|
| Aluminum <sup>c</sup>                    | 64.3                              |  |  |  |  |  |
| Arsenic <sup>c</sup>                     | 0.201                             |  |  |  |  |  |
| Barium                                   | 0.401                             |  |  |  |  |  |
| Calcium                                  | 24.8                              |  |  |  |  |  |
| Chromium                                 | 0.094                             |  |  |  |  |  |
| Copper                                   | 0.058                             |  |  |  |  |  |
| lron <sup>°</sup>                        | 75.4                              |  |  |  |  |  |
| Lead <sup>c</sup>                        | 0.033                             |  |  |  |  |  |
| Magnesium                                | 6.96                              |  |  |  |  |  |
| Manganese <sup>c</sup>                   | 0.513                             |  |  |  |  |  |
| Nickel                                   | 0.022                             |  |  |  |  |  |
| Potassium                                | 3.76                              |  |  |  |  |  |
| Sodium                                   | 18.4                              |  |  |  |  |  |
| Vanadium                                 | 0.093                             |  |  |  |  |  |
| Zinc                                     | 0.177                             |  |  |  |  |  |

<sup>a</sup> W-01 is groundwater sample identification for groundwater sample collected during Earth Tech environmental investigation of the Industrial Waste Landfill.

<sup>b</sup> Laboratory analysis for metals was conducted using Method 6010B.

<sup>c</sup> Analytical results for the groundwater sample detected at concentrations that exceed their respective secondary MCLs.

#### 5.3.2 Field Investigation

The LSI field activities followed site-specific project plans that include field sampling and laboratory chemical analyses conducted under project-specific QA/QC and health and safety protocols. The following paragraphs identify the objectives, approach, and field activities conducted during the field investigation of the IWL. The rationale for sampling, the analyte selection, and a discussion of the sampling methodologies are included below.

#### 5.3.2.1 SAIC Field Investigation

Based on the lack of information associated with the IWL, additional evaluation of the IWL for potential environmental concerns was warranted. The objective of the LSI at the IWL was to investigate the potential presence of chemical constituents at the IWL as a result of past disposal practices and to determine if chemical constituents exist in the soils or groundwater at concentrations that exceed human health screening criteria for soils or groundwater.

To assess whether contamination had been released at the IWL, the site-specific sampling plan included in the FSP (SAIC 2002a) proposed the collection of samples from four soil boring locations to characterize current conditions at the IWL. Based on a review of the aerial photographs, surface and subsurface soil samples were collected throughout the IWL at four discrete locations.

Two soil samples, one groundwater sample (using the Hydropunch<sup>®</sup> technique), and the appropriate QC samples (duplicates) were collected from each of the four soil borings. Soil samples were analyzed for chemical constituents potentially associated with the materials discarded at the IWL (VOCs, SVOCs, and metals). Figure 5.3-1 shows the LSI soil boring locations at the IWL. Tables 5.3-3 and 5.3-4 summarize the soil and groundwater samples collected from the IWL during the LSI field investigation activities.

#### 5.3.3 Investigation Results and Nature and Extent

This section presents the results of the LSI sampling and analysis. The data collected during the LSI were used to provide a basis for evaluating the magnitude and extent of contamination and conducting the human health screen. Complete analytical results for the soil and groundwater (Hydropunch<sup>®</sup>) samples collected during the LSI are presented in Appendix G and summarized in Tables 5.3-5 and 5.3-6, respectively.

The LSI included a screening-level evaluation in which soil data collected from the IWL were subject to a human health toxicity screen. The toxicity screen was used to evaluate potential human health effects by comparing site soil data to screening criteria (e.g., RBCs and SSLs for protection of groundwater).

The following paragraphs summarize the chemical constituents detected in the soil and groundwater at the IWL and the results of the screening-level evaluation of the detected constituents. Results of the screening criteria comparisons for the inorganic constituents detected in the soil at the IWL are presented in Table 5.3-7.

#### 5.3.3.1 Soil Boring Results and Nature and Extent

Eight samples (two from each boring) were collected from four soil borings (SB-IWL-01 through SB-IWL-04) at the IWL. Surface soil samples were collected at three of the soil boring locations (SB-IWL-01 through SB-IWL-03) and five subsurface soil samples ( $\geq$ 13 feet BLS) were collected from the four soil borings. The inorganic (metals) and organic (VOCs and SVOCs) constituents detected at the IWL are summarized below.

## Table 5.3-3. Industrial Waste/Sanitary Landfill LSI Soil Boring Samples Wallops Flight Facility, Accomack County, Virginia

| Borehole I.D. | Borehole<br>Depth (feet) | Field Sample Number | Sample<br>Interval (feet) |
|---------------|--------------------------|---------------------|---------------------------|
| SB-IWL-01     | 20                       | SAIC01              | 0.0 - 0.5                 |
|               |                          | SAIC02              | 16.5 – 17.0               |
| SB-IWL-02     | 20                       | SAIC 01             | 0 – 0.5                   |
|               |                          | SAIC 02             | 16.0 - 16.5               |
| SB-IWL-03     | 20                       | SAIC 01             | 0 0.5                     |
|               |                          | SAIC 02             | 19.0 - 19.5               |
| SB-IWL-04     | 20                       | SAIC 01             | 13.0 – 13.5               |
|               |                          | SAIC 02             | 19.0 - 19.5               |

Notes:

All soil samples collected from the IWL were analyzed for VOCs, SVOCs, and metals. QA/QC sampling followed protocols specified in the FSP (SAIC 2002a).

#### Table 5.3-4. Industrial Waste/Sanitary Landfill LSI Hydropunch<sup>®</sup> Samples Wallops Flight Facility, Accomack County, Virginia

| Borehole<br>(Hydropunch <sup>®</sup> )<br>I.D. | Borehole<br>Depth (feet) | Field Sample Number | Screened<br>Interval (feet) |
|------------------------------------------------|--------------------------|---------------------|-----------------------------|
| SB-IWL-01<br>(HP-IWL-01)                       | 20                       | SAIC01<br>SAIC01D   | 16.5 – 20.0                 |
| SB-IWL-02<br>(HP-IWL-02)                       | 20                       | SAIC01              | 16.0 – 20.0                 |
| SB-IWL-03<br>(HP-IWL-03)                       | 20                       | SAIC01              | 19.0 to 20.0                |
| SB-IWL-04<br>(HP-IWL-04)                       | 20                       | SAIC01              | 19.0 to 20.0                |

Notes:

All groundwater samples collected from the IWL were analyzed for VOCs, SVOCs, and metals. QA/QC sampling followed protocols specified in the FSP (SAIC 2002a). Duplicate samples were identified using a "D."

| Table 5.3-5. Data Summary: Soil Boring Results, | Industrial Waste/Sanitary Landfill |
|-------------------------------------------------|------------------------------------|
| Wallops Flight Facility, Accomac                | k County, Virginia                 |

C. C. L

· ].

| ite ID                    | · · · · · · · · · · · · · · · · · · · |     | SB-IWL-01                             |    | SB-IWL-01 |    | SB-IWL-02                             |    | SB-IWL-02 |     | SB-IWL-03 |    | SB-IWL-03 |     | SB-IWL-04 |     |
|---------------------------|---------------------------------------|-----|---------------------------------------|----|-----------|----|---------------------------------------|----|-----------|-----|-----------|----|-----------|-----|-----------|-----|
| ield Sample Number        |                                       |     | SAIC01                                |    | SAIC02    |    | SAIC01                                |    | SAIC02    |     | SAIC01    |    | SAIC02    |     | SAIC01    |     |
| ite Type                  |                                       |     | BORE                                  |    | BORE      |    | BORE                                  |    | BORE      |     | BORE      |    | BORE      |     | BORE      |     |
| ollection Date            |                                       |     | 08/06/02                              |    | 08/06/02  |    | 08/06/02                              |    | 08/06/02  |     | 08/06/02  |    | 08/06/02  |     | 08/07/02  |     |
| epth (ft)                 |                                       |     | 0.00                                  |    | 16.50     |    | 0.00                                  |    | 16.00     |     | 0.00      |    | 19.00     |     | 13.00     |     |
| 1ETALS(6010)              |                                       |     |                                       |    | · ·       |    |                                       |    |           |     |           |    |           |     |           |     |
| arameter                  | Units                                 | RL  | · · · · · · · · · · · · · · · · · · · |    |           |    | · · · · · · · · · · · · · · · · · · · |    |           | ·   |           |    |           |     |           |     |
| luminum                   | MG/KG                                 | 20  | 4450                                  |    | 2440      |    | 3980                                  |    | 6590      |     | 3350      |    | 508       |     | 2610      |     |
| ntimony                   | MG/KG                                 | 0.6 | 0.25                                  | UJ | 0.22      | UJ | 0.2                                   | UJ | 0.2       | UJ. | 0.2       | IJ | 0.2       | IJ  | 0.23      | ι   |
| visenic                   | MG/KG                                 | 1   | 1.8                                   | •• | 2         |    | 1.5                                   |    | 2         | 00  | 1.1       | B  | 0.2       | B   | 1.2       | E   |
| arium                     | MG/KG                                 | 20  | 10.5                                  |    | 3.3       |    | 9,5                                   |    | 18.3      |     | 4.3       | в. |           | в   |           | E   |
| leryllium                 | MG/KG                                 | 0.5 | 0.11                                  | B  | 0.06      | в  | 0.09                                  | в  | 0.12      | в   |           |    | 1.1       | _   | 4.4       |     |
| Cadmium                   | MG/KG                                 | 0.5 | 0.02                                  | В  | 0.02      | ŭ  | 0.02                                  | ŭ  | 0.02      | u.  | 0.08      | В  | 0.02      | 8   | 0.07      | B   |
| Calcium                   | MG/KG                                 | 100 | 97.8                                  | 0  | 101       | U  | 48.1                                  | B  |           | U   | 0.02      | U  | 0.02      | U   | 0.02      | ι   |
| hromium                   | MG/KG                                 | 1   | 4.2                                   |    | 2.1       |    |                                       | Ð  | 144       |     | 59.2      | В  | 23.3      | В   | 108       |     |
| obalt                     | MG/KG                                 | 5   | 4.2                                   |    |           |    | 3.3                                   |    | 4.2       |     | 3.6       |    | 0.8       | U   | 11.2      |     |
|                           |                                       | -   | 1                                     | J  | 0.19      | ŪJ | 0.6                                   | J  | 0.9       | J   | 0.7       | J  | 0.08      | IJ  | 0.62      |     |
| opper                     | MG/KG                                 | 1   | 3.1                                   |    | 0.5       | В  | 3.2                                   |    | 1         |     | 2,7       |    | 0.38      | B   | 2         |     |
| on                        | MG/KG                                 | 10  | 2900                                  |    | 1110      |    | 1900                                  |    | 1710      |     | 2010      |    | 683       |     | 2020      |     |
| ead                       | MG/KG                                 | 0.3 | 3.5                                   |    | 0.7       |    | 2.8                                   |    | 2.1       |     | 4.5       |    | 0.5       | 8   | 1.4       |     |
| lagnesium                 | MG/KG                                 | 100 | 253                                   |    | 145       |    | 145                                   |    | 205       |     | 180       |    | 30.8      |     | 143       |     |
| langanese                 | MG/KG                                 | 1.5 | 34.4                                  |    | 5.8       |    | 21.9                                  |    | 28        |     | 18.7      |    | - 4       |     | 38.3      |     |
| lickel                    | MG/KG                                 | 1   | 2.3                                   | J  | 0.62      | J  | 1.3                                   | J  | 1         | . J | 2.1       | J  | 0.2       | J   | 1.7       |     |
| otassium                  | MG/KG                                 | 100 | 162                                   |    | 146       |    | 114                                   |    | 204       |     | 118       |    | 29        | U   | 131       |     |
| lilver                    | MG/KG                                 | 1   | 0.1                                   | в  | 0.06      | U  | 0.06                                  | в  | 0.06      | U   | 0.06      | U  | 0.06      | Ŭ   | 0.05      |     |
| lodium                    | MG/KG                                 | 100 | 51.3                                  | UJ | 55        | UJ | 46.3                                  | UJ | 57.4      | IJ  | 45.9      | UJ | 42.6      | บ็ม | 75.3      |     |
| /anadium                  | MG/KG                                 | 5   | 6.7                                   | J  | 2.6       | J  | 4.6                                   | J  | 4.9       | J   | 4.7       | Ĵ  | 0.8       | Ĵ   | 3.2       |     |
| Linc                      | MG/KG                                 | 2   | 7.1                                   |    | 3.8       |    | 4.9                                   |    | 3.9       |     | 6.7       |    | 1.7       | •   | 3.3       |     |
| METALS(7471)              |                                       |     |                                       |    |           |    |                                       |    |           |     |           |    |           |     |           |     |
| Parameter                 | Units                                 | RL  |                                       |    |           |    |                                       |    |           |     |           |    |           |     |           | -   |
| fercury                   | MG/KG                                 | 0.1 | 0.02                                  | В  | 0.02      | U  | 0.02                                  | U  | 0.02      | U   | 0.02      | U  | 0.02      | υ   | 0.02      | 2   |
| SEMIVOLATILE ORGAI        | NIC COMPOUN                           |     | · · · ·                               |    |           |    | -                                     | _  |           |     |           |    |           |     |           |     |
| Parameter                 | Units                                 | RL  |                                       |    |           |    |                                       |    |           |     |           |    |           |     |           |     |
| bis(2-Ethylhexyl)phthalat | te ug/kg                              | 330 | 340                                   | U  | 33        | J  | 360                                   | U  | 400       | U   | 340       | Ű  | 390       | U   | 350       | )   |
| OLATILE ORGANIC C         |                                       |     |                                       |    |           |    |                                       |    |           |     |           |    |           |     |           |     |
| Parameter                 | Units                                 | RL  |                                       |    |           | -  |                                       |    |           |     |           |    |           |     |           |     |
| 2-Hexanone                | ug/kg                                 | 10  | 12                                    |    | 12        |    | 13                                    |    | 10        |     | 20        |    | 12        | U   | 10        | )   |
| Acetone                   | ug/kg                                 | 10  | 12                                    |    | 12        |    | 14                                    |    | 10        |     | 32        |    | 12        | U   | 41        | i i |
| Methyl ethyl ketone       | ug/kg                                 | 10  | 12                                    | UJ | 12        |    | 13                                    | UJ | 10        | UJ  | 14        | UJ | . 12      | UJ  | 5.7       | 1   |
| Methylene Chloride        | ug/kg                                 | 5   | 6.2                                   | U  | 5.8       | U  | 6.4                                   | ប  | 5.1       | U   | 6.8       | υ  | 6         | Ũ   | - 5       |     |
| Trichloroethene           | ug/kg                                 | 5   | 6.2                                   | U  | 5.8       | U  | 6.4                                   | U  | 5.1       | Ŭ   | 6.8       |    | 6         | Ū   | 5         |     |

· [....]

1

#### Table 5.3-5. Data Summary: Soil Boring Results, Industrial Waste/Sanitary Landfill Wallops Flight Facility, Accomack County, Virginia

| Site ID                      |                |          | SB-IWL-04 |         |
|------------------------------|----------------|----------|-----------|---------|
| ield Sample Number           |                |          | SAIC02    |         |
| Site Type<br>Sellection Date |                |          | BORE      |         |
| Collection Date              |                |          | 08/07/02  |         |
| Depth (ft)                   |                |          | 19.00     |         |
| METALS(6010)                 |                |          |           |         |
| Parameter                    | Units          | RL       |           |         |
| Aluminum                     | MG/KG          | 20       | 1080      |         |
| Antimony                     | MG/KG          | 0.6      |           | IJ      |
| Arsenic                      | MG/KG          | 1        | 1.3       |         |
| Barium                       | MG/KG          | 20       | 1.2       |         |
| Beryllium                    | MG/KG          | 0.5      | 0.03 E    | 3       |
| Cadmium                      | MG/KG          | 0.5      | 0.02 L    | -       |
| Calcium                      | MG/KG          | 100      | 33 E      | 3       |
| Chromium                     | MG/KG          | 1        | 1.3       |         |
| Cobalt                       | MG/KG          | 5        | 0.24 L    | J.,     |
| Copper                       | MG/KG          | 1        | 0.42      | J       |
| Iron                         | MG/KG          | 10       | 641       |         |
| Lead                         | MG/KG          | 0.3      | 0.41      | 3       |
| Magnesium                    | MG/KG          | 100      | 68.6      |         |
| Manganese                    | MG/KG          | 1.5      | 13.4      |         |
| Nickel                       | MG/KG          | 1        | 0.49      | j       |
| Potassium                    | MG/KG          | 100      |           | Ū       |
| Silver                       | MG/KG          | 1        | 0.05      | U       |
| Sodium                       | MG/KG          | 100      | . 51      | ŪJ      |
| Vanadium                     | MG/KG          | 5        | 1.6       | -       |
| Zinc                         | MG/KG          | 2        | 1.6       |         |
| METALS(7471)                 |                | ·        |           |         |
| Parameter                    | Units          | RL       |           |         |
| Mercury                      | MG/KG          | 0.1      | 0.01      | Ū       |
| SEMIVOLATILE ORGANIC         | COMPOUN        | DC/89701 |           |         |
| Parameter                    | Units          | RL       |           |         |
| bis(2-Ethylhexyi)phthalate   | ug/kg          | 330      | 380       | U       |
| VOLATILE ORGANIC CON         |                | 2601     | •         |         |
| Parameter                    | Units          | RL       | · · · ·   |         |
| 2-Hexanone                   | ug/kg          | 10       | 10        | U       |
| Acetone                      | ug/kg          | 10       | 10        | υ       |
| Methyl ethyl ketone          | ug/kg<br>ug/kg | 10       | 10        | UJ<br>U |
| Methylene Chloride           |                | 5        | 5.2       |         |
| Trichloroethene              | ug/kg          | -        |           | U.      |
| Inchiorosinene               | ug/kg          | 5        | 5.2       | U       |

Created on 5/27/2003

## Table 5.3-5. Data Summary: Soil Boring Results, Industrial Waste/Sanitary Landfill Wallops Flight Facility, Accomack County, Virginia (continued)

2

## Footnotes:

Limited Site Investigation - Final Report

B - Metals: Reported value was less than the contract required detection limit but greater than or equal to the instrument detection limit,

- B Organics: Analyte was found in the associated method blank. Validation of the data did not result in this compound being qualified as nondetect due to blank contamination. Therefore this result is considered to be site related.
- D The value for the target analyte was calculated from a dilution.
- E Metals: The reported value is estimated because of the presence of interferents.
- E Organics: Concentration range exceeded for this analyte,
- J Value is estimated.
- N Metals: Spiked sample recovery not within control limits.
- N Organics: Tentatively identified compound based on mass spectral library search.
- P There is greater than 25% difference for detected concentrations between the two GC columns for the associated pesticide/PCB target analyte.
- R Value is rejected.
- U Compound was analyzed for but not detected.
- UJ Compound was analyzed for but not detected and is considered an estimate.
- X The mass spectrum does not meet EPA CLP criteria for confirmation, but compound presence is strongly suspected.
- \* Duplicate analysis not within control limits.
- N/A Compound not analyzed for.
- NF Data not found.
- RL Reporting Limit for each method. For SW846 methods, the samples are reported down to the method detection limits (MDL). For metals, the samples are reported down to the instrument detection limit (IDL).
- MDL Method Detection Limit.
- SAICXXR An SAIC field sample number followed by an "R" designates a recollected sample.

σ

## Table 5.3-6. Data Summary: Groundwater Results, Industrial Waste/Sanitary LandfillWallops Flight Facility, Accomack County, Virginia

| Site ID             |       |          | HP-IWL-01 |      | HP-IWL-01                             | · . | HP-IWL-02 |     | HP-IWL-03 |    | HP-IWL-04 |    |
|---------------------|-------|----------|-----------|------|---------------------------------------|-----|-----------|-----|-----------|----|-----------|----|
| Field Sample Number |       |          | SAIC01    |      | SAIC01D                               |     | SAIC01    |     | SAIC01    |    | SAIC01    |    |
| Site Type           |       |          | PNCH      |      | PNCH                                  |     | PNCH      |     | PNCH      |    | PNCH      |    |
| Collection Date     |       |          | 08/06/02  |      | 08/06/02                              |     | 08/06/02  |     | 08/06/02  |    | 08/07/02  |    |
| Depth (ft)          |       |          | 16.50     |      | 16.50                                 |     | 16.00     |     | 19.00     |    | 19.00     |    |
| METALS(6010)        |       | •        |           |      |                                       |     |           |     |           |    |           |    |
| Parameter           | Units | RL       |           |      |                                       |     |           |     |           |    |           |    |
| Barium              | ug/L  | 200      | 14.5      |      | 14.1                                  |     | 8.6       |     | 12.6      |    | 19.3      |    |
| Calcium             | ug/L  | 1000     | 26600     | N    | 26800                                 | J   | 11500     | J   | 15000     | J  | 29300     |    |
| Cobalt              | ug/L  | 50       | - 1       | в    | 0.8                                   | υ   | 1.8       | B   | 0.8       | 8  | 0.6       | UJ |
| Copper              | ນ໘/ໂ. | 10       | 1.5       | U    | 1.4                                   | U   | -1        | U   | 1.7       | ប  | 2.8       | υ  |
| Iron                | ug/L  | 100      | 187       |      | 116                                   | В   | 660       |     | 952       |    | 568       |    |
| Magnesium           | ug/L  | 1000     | 5210      |      | 6250                                  |     | 3460      | •   | 5160      |    | 7820      |    |
| Manganese           | ug/L  | 15       | 128       |      | 80.8                                  |     | 91.7      |     | 35.8      |    | 52.3      |    |
| Nickel              | ug/L  | 10       | 1.1       | U    | 1.1                                   | u   | 2.8       | в   | 3.9       | в  | 1.5       | в  |
| Potassium           | ug/L  | 1000     | 4360      |      | 4240                                  |     | 1560      |     | 1730      |    | 2190      |    |
| Sodium              | ug/L  | 1000     | 12900     | J    | 12800                                 | IJ  | 7420      | J   | 6290      | J  | 7300      |    |
| Zinc                | ug/L  | 20       | 4.2       | U    | 4                                     | U   | 7.2       | υ   | 26.6      | U  | 8.6       | U  |
| VOLATILE ORGANIC    | сомро | UNDS(826 | 50)       |      |                                       |     |           |     |           |    |           |    |
| Parameter           | Units | RL       |           |      |                                       |     |           |     |           |    |           |    |
| Acetone             | ug/L  | 5        | 7.1       | UJ   | 5                                     | UJ  | 5         | UJ  | 5         | UJ | 5         | Ū  |
| Carbon disulfide    | ug/L  | 1        | 1         | UJ   | 1                                     | UJ  | 1         | UJ  | 1         | ŬĴ | 1         | Ū  |
| m-and/or p-Xylene   | ug/L  | 1        | 1         | UJ   | 1                                     | UJ  | 0.7       | J   | 1         | UJ | 1         | Ū  |
| Methylene Chloride  | ug/L  | 1        | 1         | UJ - | 1                                     | UJ  | 1         | UJ  | Í.        | ŰĴ | 2.3       | Ũ  |
| Toluene             | ug/L  | 1        | 0.6       | 1    | · · · · · · · · · · · · · · · · · · · | UJ  | 1.7       | - i | 1.2       | 1  |           | ū  |

Limited Site Investigation - Final Report

### Table 5.3-6. Data Summary: Groundwater Results, Industrial Waste/Sanitary Landfill

Wallops Flight Facility, Accomack County, Virginia (continued)

#### Footnotes: B - Metals: Reported value was less than the contract required detection limit but greater than or equal to the instrument detection limit. B - Organics: Analyte was found in the associated method blank. Validation of the data did not result in this compound being qualified as nondetect due to blank contamination. Therefore this result is considered to be site related. D - The value for the target analyte was calculated from a dilution. E - Metals: The reported value is estimated because of the presence of interferents. E - Organics: Concentration range exceeded for this analyte. J - Value is estimated. N - Metals: Spiked sample recovery not within control limits. N - Organics: Tentatively identified compound based on mass spectral library search. P - There is greater than 25% difference for detected concentrations between the two GC columns for the associated pesticide/PCB target analyte. R - Value is rejected. U - Compound was analyzed for but not detected. UJ - Compound was analyzed for but not detected and is considered an estimate. X - The mass spectrum does not meet EPA CLP criteria for confirmation, but compound presence is strongly suspected. \* - Duplicate analysis not within control limits. N/A - Compound not analyzed for.

NF - Data not found.

RL - Reporting Limit for each method. For SW846 methods, the samples are reported down to the method detection limits (MDL). For metals, the samples are reported down to the instrument detection limit (IDL).

MDL - Method Detection Limit.

SAICXXR - An SAIC field sample number followed by an "R" designates a recollected sample.

May 2003

Limited Site Investigation - Final Report

5.3-11

|                                      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                            |       | Protection of                                                                  | Human Health                                                                  | Migration to Groundwater                                                     |
|--------------------------------------|-------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------|-------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Sample<br>Interval<br>(Depth)        | Constituent | Sample<br>ID | Field<br>Sample<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Depth<br>(BLS) | Concentration <sup>a</sup> | Units | Concentration Exceeds<br>Residential RBCs<br>Screening<br>Value <sup>b.c</sup> | Concentration Exceeds<br>Industrial RBCs<br>Screening<br>Value <sup>b.c</sup> | Concentration Exceeds<br>Region III RBC<br>Screening<br>Value <sup>b,c</sup> |
| Surface Soil (0 to <0.5 feet BLS)    | Arsenic     | SB-IWL-03    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0              | 1.1                        | MG/KG | X                                                                              |                                                                               | X                                                                            |
|                                      |             | SB-IWL-02    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0              | 1.5                        | MG/KG | X                                                                              | · ·                                                                           | X                                                                            |
|                                      |             | SB-IWL-01    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0              | 1.8                        | MG/KG | X                                                                              |                                                                               | X                                                                            |
|                                      | Barium      | SB-IWL-03    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0              | 4.3                        | MG/KG |                                                                                |                                                                               |                                                                              |
|                                      | 1           | SB-IWL-02    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0              | 9.5                        | MG/KG |                                                                                |                                                                               |                                                                              |
| х.<br>-                              |             | SB-IWL-01    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0              | 10.5                       | MG/KG |                                                                                |                                                                               |                                                                              |
|                                      | Cadmium     | SB-IWL-01    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0              | 0.02                       | MG/KG |                                                                                |                                                                               |                                                                              |
|                                      | Chromium    | SB-IWL-02    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0              | 3.3                        | MG/KG | · · · · · · · · · · · · · · · · · · ·                                          |                                                                               | [                                                                            |
|                                      |             | SB-IWL-03    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0              | 3.5                        | MG/KG |                                                                                |                                                                               |                                                                              |
|                                      | ·           | SB-IWL-01    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0              | 4.2                        | MG/KG | 1                                                                              | · ·                                                                           |                                                                              |
|                                      | Cobalt      | SB-IWL-02    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0              | 0.6                        | MG/KG |                                                                                |                                                                               |                                                                              |
|                                      |             | SB-IWL-03    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0              | 0.7                        | MG/KG |                                                                                |                                                                               | 1 · · · · · · · · · · · · · · · · · · ·                                      |
|                                      |             | SB-IWL-01    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0              | 1                          | MG/KG |                                                                                |                                                                               |                                                                              |
|                                      | Copper      | SB-IWL-03    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0              | 2.7                        | MG/KG |                                                                                |                                                                               |                                                                              |
|                                      | 1           | SB-IWL-01    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0              | 3.1                        | MG/KG |                                                                                |                                                                               |                                                                              |
|                                      |             | SB-IWL-02    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0              | 3.2                        | MG/KG | 1 ·                                                                            |                                                                               |                                                                              |
|                                      | Lead        | SB-IWL-02    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0              | 2.8                        | MG/KG |                                                                                |                                                                               |                                                                              |
|                                      |             | SB-IWL-01    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0              | 3.5                        | MG/KG | l                                                                              |                                                                               |                                                                              |
|                                      |             | SB-IWL-03    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0              | 4.5                        | MG/KG | •                                                                              |                                                                               |                                                                              |
|                                      | Vanadium    | SB-IWL-02    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0              | 4.6                        | MG/KG |                                                                                | 1                                                                             | · · · · · · · · · · · · · · · · · · ·                                        |
|                                      |             | SB-IWL-03    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0              | 4.7                        | MG/KG |                                                                                |                                                                               | 1                                                                            |
|                                      |             | SB-IWL-01    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0              | 6.7                        | MG/KG |                                                                                | and the second second second                                                  |                                                                              |
|                                      | Zinc        | SB-IWL-03    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0              | 6.7                        | MG/KG |                                                                                |                                                                               | +                                                                            |
|                                      |             | SB-IWL-01    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ō              | 7.1                        | MG/KG |                                                                                |                                                                               |                                                                              |
| Subsurface Soil (0.5 to 20 feet BLS) | Arsenic     | SB-IWL-03    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 0.7                        | MG/KG |                                                                                |                                                                               | X                                                                            |
|                                      |             | SB-IWL-04    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 1.2                        | MG/KG |                                                                                |                                                                               | x x                                                                          |
|                                      |             | SB-IWL-04    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 1.3                        | MG/KG |                                                                                |                                                                               | x i                                                                          |
|                                      |             | SB-IWL-01    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                            | MG/KG |                                                                                |                                                                               | x                                                                            |
|                                      |             | SB-IWL-02    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 2                          | MG/KG |                                                                                |                                                                               | x x                                                                          |
|                                      | Barium      | SB-IWL-03    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 1.1                        | MG/KC |                                                                                |                                                                               | <u> </u>                                                                     |
|                                      |             | SB-IWL-04    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 1.2                        | MG/KC |                                                                                |                                                                               |                                                                              |
|                                      |             | SB-IWL-0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                            | MG/KG |                                                                                |                                                                               | 4                                                                            |
|                                      |             | SB-IWL-04    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 4.4                        | MG/KG |                                                                                | 1                                                                             | l · · · ·                                                                    |
|                                      | 1           | SB-IWL-0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 18.3                       | MG/KC |                                                                                | 1                                                                             |                                                                              |
|                                      | Chromium    | SB-IWL-0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 1.3                        | MG/KG |                                                                                |                                                                               |                                                                              |
|                                      |             | SB-IWL-0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                            | MG/KC |                                                                                |                                                                               |                                                                              |
|                                      |             | SB-IWL-0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 4.2                        | MG/KC |                                                                                | a an                                      |                                                                              |
|                                      |             | SB-IWL-0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 11.2                       | MG/KC |                                                                                |                                                                               |                                                                              |
|                                      | Cobalt      | SB-IWL-0     | and the second se |                | 0.62                       | MG/KC |                                                                                |                                                                               |                                                                              |
|                                      | Cobait      | SB-IWL-0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 0.82                       | MG/KC |                                                                                | 1                                                                             |                                                                              |
| I                                    |             | OD-INAL-O    | el duke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 10           | 1 U.A                      |       | 7                                                                              | 1                                                                             | 1                                                                            |

# Table 5.3-7. Industrial Waste/Sanitary Landfill Metal Constituents Detected Above Screening Criteria in Soil Wallops Flight Facility, Accomack County, Virginia

Limited Site Investigation - Final Report

5.3-12

May 2003

### 

# Table 5.3-7. Industrial Waste/Sanitary Landfill Metal Constituents Detected Above Screening Criteria in Soil Wallops Flight Facility, Accomack County, Virginia

| Sample                                |             |              | Field            |      |                 |       | Protection of H                                                                | luman Health                                                                  | Migration to Groundwater                                                     |
|---------------------------------------|-------------|--------------|------------------|------|-----------------|-------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Interval<br>(Depth)                   | Constituent | Sample<br>ID | Sample<br>Number |      | Concentration * | Units | Concentration Exceeds<br>Residential RBCs<br>Screening<br>Value <sup>b.c</sup> | Concentration Exceeds<br>Industrial RBCs<br>Screening<br>Value <sup>b.c</sup> | Concentration Exceeds<br>Region III RBC<br>Screening<br>Value <sup>b.c</sup> |
|                                       | Copper      | SB-IWL-03    |                  | 19   | 0.38            | MG/KG |                                                                                |                                                                               |                                                                              |
| · · · · · · · · · · · · · · · · · · · |             | SB-IWL-01    | BORE             | 16.5 | 0.5             | MG/KG |                                                                                |                                                                               | · · · ·                                                                      |
|                                       | 1           | SB-IWL-02    | BORE             | 16   | 1               | MG/KG |                                                                                |                                                                               |                                                                              |
|                                       |             | SB-IWL-04    | BORE             | 13   | 2               | MG/KG |                                                                                | · · · · · · · · · · · · · · · · · · ·                                         |                                                                              |
|                                       | Lead        | SB-IWL-04    | BORE             | 19   | 0.41            | MG/KG |                                                                                |                                                                               |                                                                              |
|                                       |             | SB-IWL-03    | BORE             | 19   | 0.5             | MG/KG | •                                                                              |                                                                               |                                                                              |
|                                       | P           | SB-IWL-01    | BORE             | 16.5 | 0.7             | MG/KG |                                                                                |                                                                               |                                                                              |
|                                       |             | SB-IWL-04    | BORE             | 13   | 1.4             | MG/KG |                                                                                |                                                                               |                                                                              |
|                                       |             | SB-IWL-02    | BORE             | 16   | 2.1             | MG/KG | •                                                                              |                                                                               | `                                                                            |
|                                       | Vanadium    | SB-IWL-01    | BORE             | 16.5 | 2.6             | MG/KG |                                                                                |                                                                               |                                                                              |
| · · · · ·                             | 1.          | SB-IWL-04    | BORE             | 13   | 3.2             | MG/KG |                                                                                |                                                                               |                                                                              |
|                                       |             | SB-IWL-02    | BORE             | 16   | 4.9             | MG/KG |                                                                                |                                                                               |                                                                              |

\* Constituent concentrations that exceed screening criteria are listed in ascending order (lowest to highest).

<sup>b</sup> X indicates detected concentration exceeds the screening criteria.

<sup>c</sup> EPA Region III RBCs.

Limited Site Investigation - Final Report

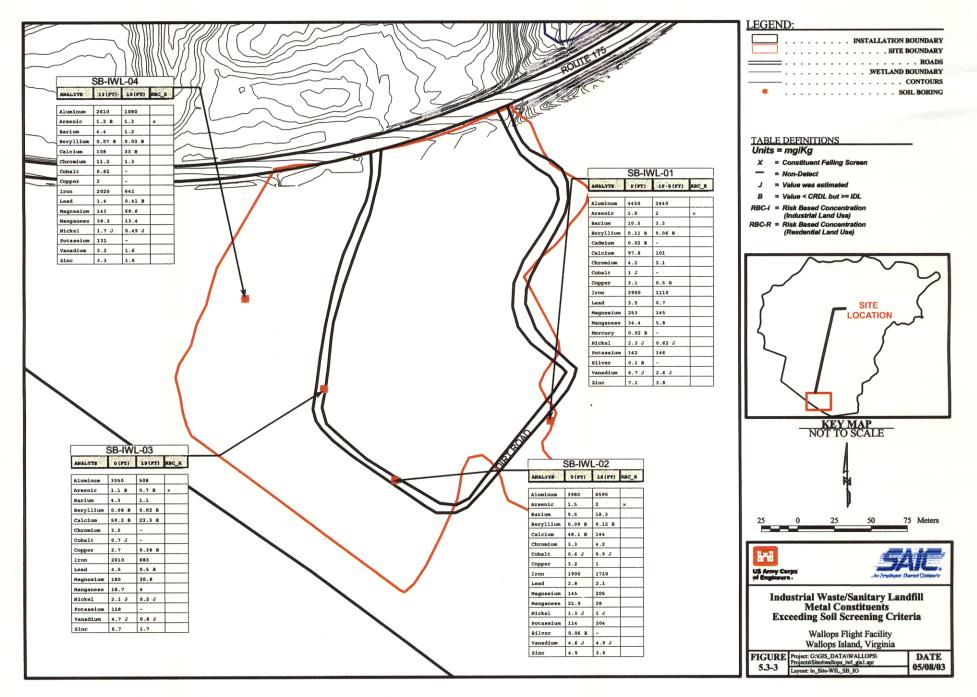
5.3-13

May 2003

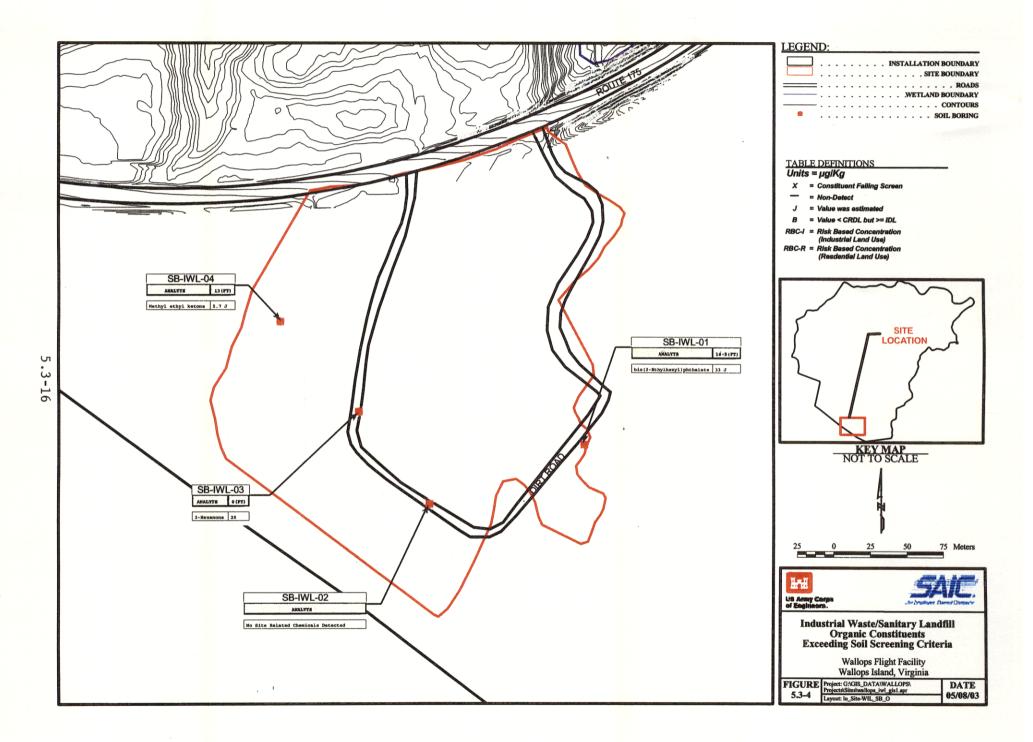
*Inorganic Constituents*—Nineteen inorganic constituents were detected in the surface soil (0 to <0.5 feet BLS) and 16 inorganic constituents were detected in the shallow subsurface soils (>13 to 20 feet BLS) at the IWL. The following paragraphs identify the metals that exceed the industrial, residential, and protection of groundwater RBCs in the different soil horizons:

- Surface soil (0 to <0.5 feet BLS)
  - Industrial none
  - Residential arsenic
  - Migration to groundwater arsenic
- Shallow subsurface soil (0.5 to 29 feet BLS)
  - Industrial none
  - Residential arsenic
  - Migration to groundwater arsenic.

The concentrations and distribution of inorganic constituents detected in the soil at the IWL are presented in Figure 5.3-3. Table 5.3-7 presents the inorganic constituents detected in the soil borings at the IWL that exceed the human health screening criteria and lists the soil boring (sample identification [I.D.] and depth) where the constituent concentration exceeds the screening criteria in the surface and subsurface soil, the detected concentrations that exceed the screening criteria, and the screening criteria that the detected concentration exceeds. The following sections summarize the results of the toxicity screen and characterize the distribution of the inorganic constituents that were detected at concentrations that exceed the human health screening criteria at the IWL.


Arsenic was detected in all samples collected from the IWL surface soil at concentrations that exceeded the human health Region III RBCs for residential land use (0.426 mg/kg) and migration to groundwater (0.03 mg/kg). The maximum concentration of arsenic (1.8 mg/kg) detected in the surface soil was detected in the sample collected at SB-IWL-01. Concentrations of arsenic detected in the surface soil at the IWL are consistent, ranging from 1.1 to 1.8 mg/kg.

Arsenic concentrations detected in the subsurface soil also exceeded the Region III RBCs for residential land use and migration to groundwater at all soil boring locations and in all samples collected from the subsurface soils. The maximum concentration (2 mg/kg) of arsenic in the subsurface soil was detected at 16 feet BLS or greater, in samples collected from SB-IWL-01 and SB-IWL-02. No other inorganic constituents were detected at concentrations that exceeded the Region III RBCs for the protection of human health.


**Organic Constituents**—Surface and shallow subsurface soil samples at the IWL were analyzed for VOCs and SVOCs. The following presents the organic constituents that were detected and the screening criteria that were exceeded:

- Surface soil (0 to <0.5 feet BLS)
  - Industrial none
  - Residential none
  - Migration to groundwater none
- Shallow subsurface soil (0.5 to 20 feet BLS)
  - Industrial none
  - Residential none
  - Migration to groundwater none.

The concentrations and distribution of organic constituents detected in the soil at the IWL are presented in Figure 5.3-4.



OIZO A BIOV



# 5.3.3.2 Groundwater Results and Nature and Extent

As discussed in Section 5.3.2, four Hydropunch<sup>®</sup> probes (HP-IWL-01 through HP-IWL-04) were installed and sampled at the IWL soil boring sample locations during the WFF LSI. All samples were analyzed for VOCs, SVOCs, and metals. The following sections present the Hydropunch<sup>®</sup> laboratory analytical results and summarize the nature and extent of constituents detected in the groundwater at the IWL.

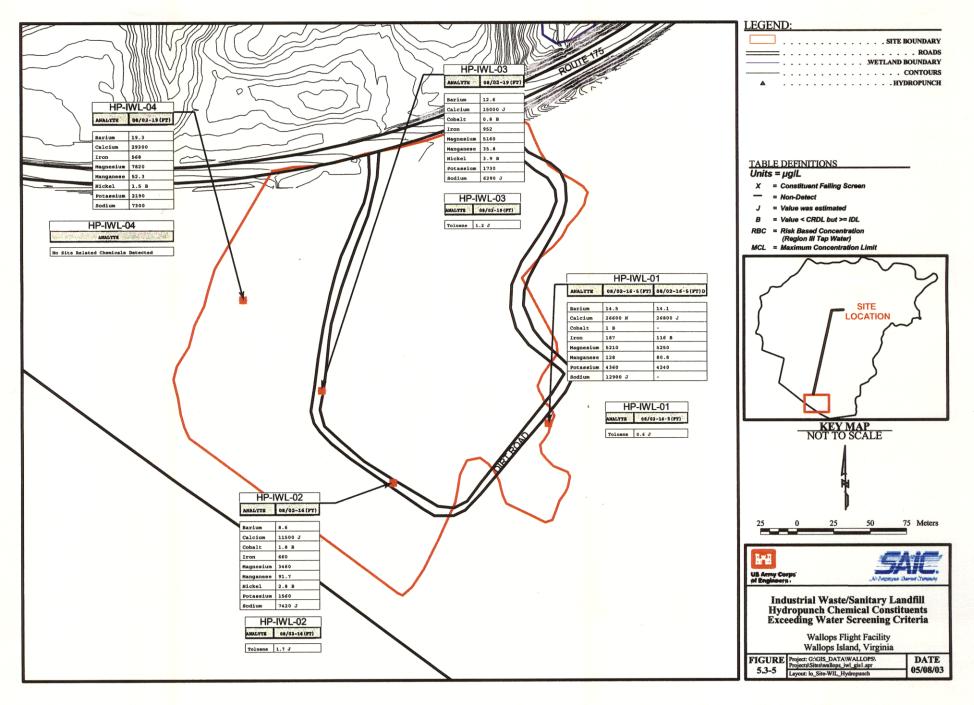
**Detected Groundwater Constituents**—Nine inorganic and two organic constituents were detected in the groundwater at the IWL. However, none of these metal or organic constituents detected exceeded the Region III RBCs for tap water or the MCL screening criteria. The concentrations and distribution of inorganic and organic constituents detected in the groundwater at the IWL are presented in Figure 5.3-5.

### 5.3.4 Conclusions and Recommendations

This section presents the conclusions of the LSI for the Industrial Waste/Sanitary Landfill and summarizes recommendations for future site activities. Section 5.3.4.1 summarizes results and conclusions associated with completion of the LSI. Section 5.3.4.2 combines conclusions and site historical information to make recommendations for future site activities.

# 5.3.4.1 Conclusions

Data collected during the LSI investigation does not indicate that metals or organic compounds have been released to the soils at the IWL. The maximum concentrations of arsenic (2.0 mg/kg) detected in the soils at the IWL are well below the background concentrations of arsenic detected in the State of Virginia. Analytical results for organic compounds detected at the IWL indicate that no organic compounds were detected in the soils at concentrations that exceed the screening criteria.


LSI investigation data also does not indicate that metals or organic compounds have been released to the groundwater at the IWL. The concentrations of metals or organic compounds detected at the IWL are not greater than concentrations of metals or organic compounds detected in the groundwater at other locations at WFF (i.e., there is no evidence that past IWL activities have affected the groundwater quality in any way). Data suggest that concentrations of metals detected in the groundwater are the result of natural conditions. Only two organic compounds (toluene and xylenes) were detected in the groundwater at the IWL and maximum concentrations of these compounds were 1.7J and  $0.7 \mu g/L$  at HP-IWL-02.

# 5.3.4.2 Recommendations

Constituent concentrations show few exceedances of human health screening criteria. However, based on information presented in the Draft Desktop Audit Summary Report, limited information is available about historical activities conducted at the site. Therefore, the following activities are recommended at the IWL:

- The final Desktop Audit Summary Report should be reviewed to ensure all relevant historical information associated with the IWL is presented.
- The existing and new soil data should be re-evaluated by comparing analytical results to a sitespecific background database.

If no additional sampling is required, based on review of the Final Desktop Audit Summary Report and completion of the background comparison, No Further Action should be recommended. THIS PAGE WAS INTENTIONALLY LEFT BLANK



OIZOAILY

# i س

# 5.4 CONSTRUCTION DEBRIS LANDFILL

This section presents the results of the LSI for the CDL. A description and history of the site, a summary of the site conditions and environmental setting, and an overview of previous environmental investigations conducted at the site are provided in Section 5.4.1. Section 5.4.2 discusses the LSI activities conducted at the CDL. Section 5.4.3 presents the laboratory analytical results of the LSI field investigation and the nature and extent of contamination at the CDL. The results of the human health toxicological screen associated with the constituents identified during the investigation are presented in Section 5.4.4. Conclusions and recommendations for the CDL are summarized in Section 5.4.5.

# 5.4.1 Site Description, History, and Environmental Setting

Information pertinent to the physical description of the CDL and the environmental setting for the site was obtained from historical site maps, aerial photographs, anecdotal evidence, site visual inspections, and information and data presented in previous site investigations and studies. Topographic information was obtained from the EG&G, Inc. digital base map. Relevant site-specific data and information were very limited because former investigation activities were not conducted within the area currently identified as the CDL.

# 5.4.1.1 Site Description and History

The current area identified as the CDL was identified during a recent review of historical aerial EPIC photographs (EPA 1996). Those photographs indicated that a possible dump site/burning dump disposal area may have existed along the northeastern boundary of the WFF. The map also depicts various ground features present in the vicinity of the CDL in 1954. The PRP Analysis (NASA 2001) concluded that DOD and USACE should assume responsibility for the CDL under the FUDS program. Figure 5.4-1 shows the location of the current CDL at the WFF.

# 5.4.1.2 Site Conditions and Environmental Setting

The CDL is located along the northeastern boundary of the WFF. The former landfill is situated along the northeastern slope of a hillside that grades into the tidal marshes. The change in topographic relief, approximately 30 feet, is greatest along the northern portion of the site. A man-made channel skirts the northern boundary of the site. The site is approximately 6 acres and is overgrown by dense woodland brush, young trees, and dense vegetative cover. A temporary access road was created through the central portion of the site by WFF personnel prior to the arrival of the SAIC sampling team. The photograph presented in Figure 5.4-2 shows the current conditions of the CDL and the physical features of the surrounding area.

The hydrologic conditions at the CDL have not been characterized based on data collected previously at the site. No soil boring lithologic data have been identified during the review of the site-specific data, so a lithologic description of the subsurface soil is limited to data collected during this LSI.

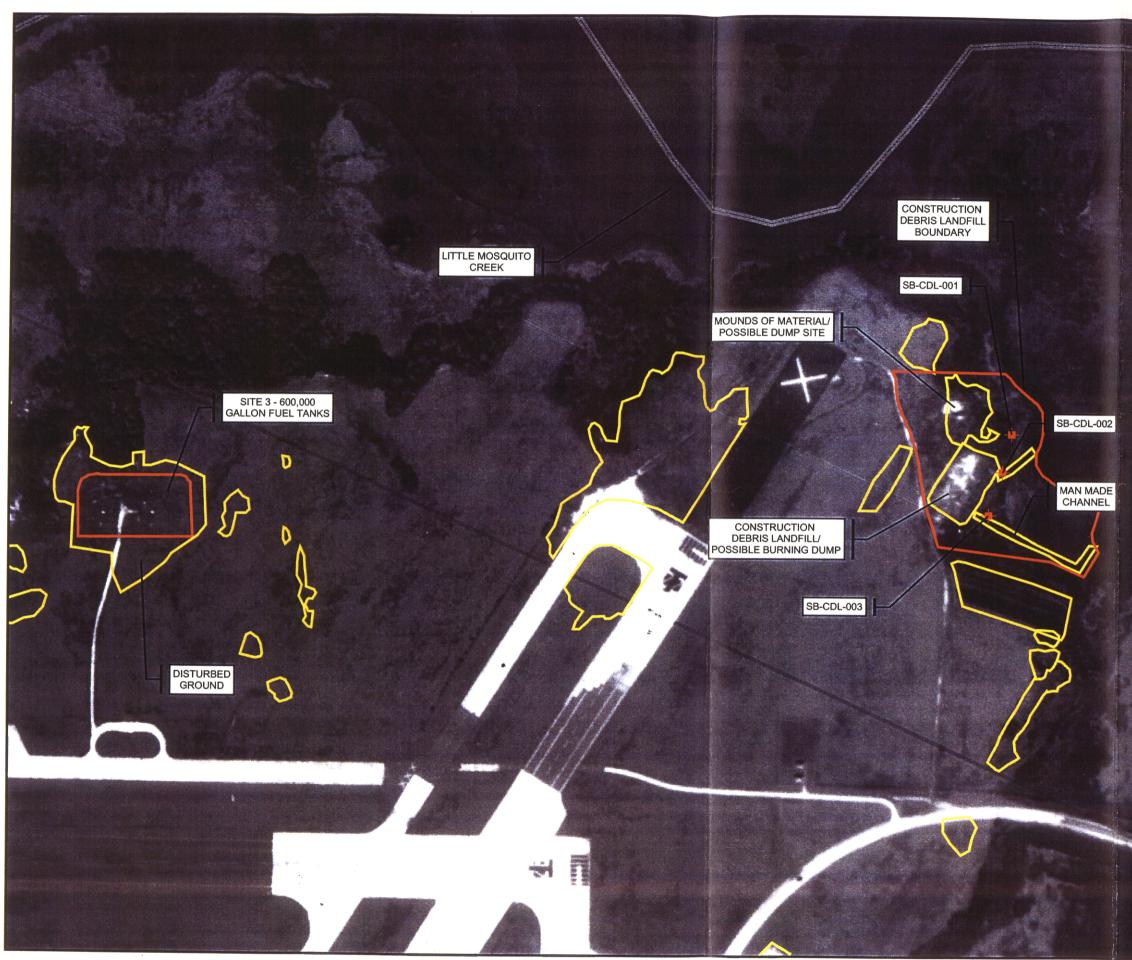
# 5.4.1.3 Background and Previous Site Investigation Activities

In November 1990, an ESS Report provided an overview of sites known to have impacted the environment, their investigation status, and identified additional sites for future investigation. The ESS identified 24 separate sites with the potential to have been affected by past activities. The CDL was identified as 1 of 14 sites that had not been investigated to date and the report indicated that no information currently was available for the site. As a result, the ESS concluded that additional investigation at the CDL was warranted.

In January 2000, Earth Tech, Inc. submitted a summary report to NASA (Earth Tech, Inc. 2000) for work conducted at the WFF. The report identified potential environmental impacts at the identified FUDS sites and evaluated the need for future environmental studies. Work performed at the CDL as part of this report included: a site visit, personnel interviews, drilling and sampling of one DPT soil boring, and laboratory analysis on a soil and groundwater sample collected during the investigation. An RRE performed using existing data found the relative risk to be high. Tables 5.4-1 and 5.4-2 present the laboratory analytical results for soil and groundwater samples collected from soil boring W-02 during the investigation, respectively.

In December 2001, a status summary report was submitted to USACE for the sampling activities performed at sites located on the Main Base (Earth Tech, Inc. 2001). Sampling activities performed as part of this investigation involved several sites, including the CDL. As shown in Table 5.4-1, arsenic was detected in soil sample W-02 at 2.7 mg/kg. The detected concentration exceeds the Region III RBC of 0.426 mg/kg for residential land use. In addition, laboratory analytical results for the groundwater sample (W-02) collected at the CDL indicated that aluminum, iron, and manganese were detected at concentrations that exceed their respective secondary MCLs. The analytical results for constituents detected in the groundwater at the CDL that exceeded Region III RBCs or secondary MCLs during the previous sampling activities are summarized in Table 5.4-2.

# 5.4.2 Field Investigation


The LSI field activities followed site-specific project plans that include field sampling and laboratory chemical analyses conducted under project-specific QA/QC and health and safety protocols. The following paragraphs identify the objectives, approach, and field activities conducted during the field investigation of the CDL. The rationale for sampling, the analyte selection, and a discussion of the sampling methodologies also are included.

# 5.4.2.1 SAIC Field Investigation

Because of the lack of information associated with the possible dump site/burning dump disposal area, environmental evaluation of the site for potential environmental concerns was required. The objective of the LSI was to investigate the potential presence of chemical constituents at the CDL as a result of past disposal practices and to determine if chemical constituents exist in the soils or groundwater at concentrations that exceed human health screening criteria.

To assess whether contamination had been released at the CDL, the site-specific sampling plan included in the FSP (SAIC 2002a) proposed the collection of samples from three soil boring locations to characterize current conditions at the CDL. Based on a review of the aerial photographs, surface and subsurface soil samples were collected at three discrete locations. One soil boring (SB-CDL-01) was located directly downslope (downgradient) from the area identified as the former disposal area. One boring (SB-CDL-02) was located adjacent to the northern man-made channel and one soil boring (SB-CDL-03) was located adjacent to the southern man-made channel. Two soil samples, one groundwater sample (Hydropunch<sup>®</sup> sample), and the appropriate QC samples (duplicates) were collected from each of the three soil borings. Soil samples were analyzed for chemical constituents potentially associated with the materials discarded at the CDL (VOCs, SVOCs, and metals). Figure 5.4-1 shows the LSI soil boring locations at the CDL. Tables 5.4-3 and 5.4-4 summarize the soil and groundwater samples, respectively, collected from the CDL during the LSI field investigation activities.

During the drilling of SB-CDL-01, a zone of black, saturated sand was encountered at approximately 7.5 feet BLS. The material generated a very strong hydrocarbon odor and registered elevated PID reading, resulting in the instruments alarm to sound during the monitoring of the interval of greatest discoloration, 7.5 to 8 feet BLS. During the collection of the next core barrel (8 to 12 feet BLS),





li sa

Notes: NAD 1983 UTM Zone 18N Aerial Photo taken 10/5/1959

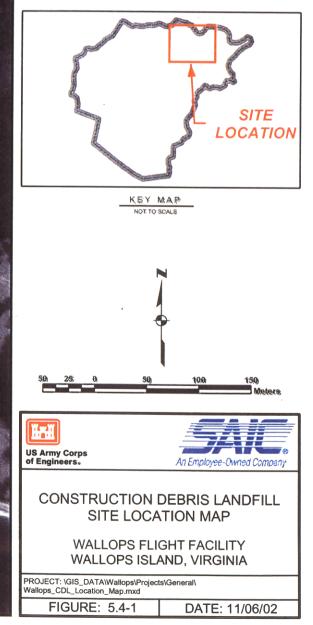





Figure 5.4-2. Construction Debris Landfill – Site Conditions Photograph

| Table 5.4-1. Soil Boring Location W-2 <sup>a</sup>                       |
|--------------------------------------------------------------------------|
| Summary of Soil Boring Analytical Results – Construction Debris Landfill |
| Wallops Flight Facility, Accomack County, Virginia                       |

| Parameter <sup>b</sup> | Detected Concentration<br>(mg/kg) |
|------------------------|-----------------------------------|
| Aluminum               | 2,740                             |
| Arsenic                | 2.7 <sup>c</sup>                  |
| Barium                 | 3.67                              |
| Calcium                | 18.9                              |
| Chromium               | 15.3                              |
| Copper                 | 2.32                              |
| Iron                   | 12,800                            |
| Lead                   | 9.65                              |
| Magnesium              | 12.9                              |
| Manganese              | 3.28                              |
| Potassium              | 143                               |
| Vanadium               | 15.8                              |

<sup>a</sup> W-02 is soil boring identification for boring installed during Earth Tech environmental investigation of the CDL.

<sup>b</sup> Laboratory analysis for total metals was conducted using Method 6010B.

<sup>c</sup> Detected arsenic concentration in soil exceeds Region III RBC for residential land use (0.426 mg/kg) and Region III RBC for migration to groundwater (DAF 20) (0.03 mg/kg). Table 5.4-2. Groundwater Sample Location W-02ªSummary of Groundwater Analytical Results – Construction Debris LandfillWallops Flight Facility, Accomack County, Virginia

| Parameter <sup>b</sup> | Detected Concentration<br>(mg/kg) |
|------------------------|-----------------------------------|
| Aluminum (Total)       | 35.3°                             |
| Barium (Total)         | 0.053                             |
| Calcium (Total)        | 32.7                              |
| Chromium (Total)       | 0.047                             |
| Copper (Total)         | 0.035                             |
| Iron (Total)           | 8.65 <sup>c</sup>                 |
| Lead (Total)           | 0.01                              |
| Magnesium (Total)      | 1.91                              |
| Manganese (Total)      | 0.073°                            |
| Nickel (Total)         | 0.013                             |
| Sodium (Total)         | 4.43                              |
| Zinc (Total)           | 0.027                             |

W-02 is groundwater sample identification for groundwater sample collected during Earth Tech environmental investigation of the CDL.

<sup>b</sup> Laboratory analysis for total metals was conducted using Method 6010B.

<sup>c</sup> Analytical results for the groundwater sample detected at concentrations that exceed their respective secondary MCLs.

# Table 5.4-3. Construction Debris Landfill Soil Boring Samples Wallops Flight Facility, Accomack County, Virginia

| Borehole I.D.                         | Borehole<br>Depth (feet) | Field Sample Number | Sample<br>Interval (feet) |  |  |  |
|---------------------------------------|--------------------------|---------------------|---------------------------|--|--|--|
| SB-CDL-01                             | 16                       | SAIC01              | 6.5 - 7.0                 |  |  |  |
| SB-CDL-01                             | 10                       | SAIC02              | 9.0 - 9.5                 |  |  |  |
| · · · · · · · · · · · · · · · · · · · |                          | SAIC 01             | 0-0.5                     |  |  |  |
| SB-CDL-02                             | 8                        | SAIC01D             | 0-0.5                     |  |  |  |
| ·                                     |                          | SAIC 02             | 7.0 - 7.5                 |  |  |  |
| SB-CDL-03                             | 4                        | SAIC 01             | 0 - 0.5                   |  |  |  |
| 3B-CDL-03                             | 4                        | SAIC 02             | 4.0 - 4.5                 |  |  |  |

Notes:

All soil samples collected from the CDL were analyzed for VOCs, SVOCs, and metals. QA/QC sampling followed protocols specified in the FSP (SAIC 2002a). Duplicate samples were identified using a "D."

# Table 5.4-4. Construction Debris Landfill Hydropunch<sup>®</sup> Samples Wallops Flight Facility, Accomack County, Virginia

| Borehole (Hydropunch®)<br>I.D. | Borehole<br>Depth (feet) | Field Sample Number | Screened<br>Interval (feet) |
|--------------------------------|--------------------------|---------------------|-----------------------------|
| SB-CDL-01 (HP-CDL-01)          | 16                       | SAIC01              | 14 – 16                     |
| SB-CDL-02 (HP-CDL-02)          | 8                        | SAIC 01             | 6-8                         |
| SB-CDL-03 (HP-CDL-03)          | 4                        | SAIC 01             | 2-4                         |

Notes:

All groundwater samples collected from the CDL were analyzed for VOCs, SVOCs, and metals. QA/QC sampling followed protocols specified in the FSP (SAIC 2002a). Duplicate samples were identified using a "D."

the water table was encountered and the discoloration of the soils became more pronounced. In an effort to determine the vertical extent of the discolored material, a fourth Geoprobe<sup>®</sup> sample (12 to 16 feet BLS) was collected from SB-CDL-01; however the sands remained discolored to the total depth of the boring. Because of these results, a surface soil was not collected at SB-CDL-01. Instead, a sample was collected from the soil groundwater interface at the interval directly above the discolored soil (zone of transition above contamination) and an interval of complete discoloration and saturation (greatest contamination) at approximately 9 feet BLS. Additional information about the site conditions at SB-CDL-01 is presented in the soil boring logs (Appendix A).

# 5.4.3 Investigation Results and Nature and Extent

. اسب

المسا

This section presents the results of the LSI sampling and analysis. The data collected during the LSI were used to provide a basis for evaluating the magnitude and extent of contamination at the site and to conduct the human health screen to determine if constituent concentrations are present that could pose a risk to human receptors. Complete analytical results for the soil and groundwater samples are presented in Appendix G and summarized in Tables 5.4-5 and 5.4-6, respectively, at the end of Section 5.4.

The LSI included a screening-level evaluation in which soil and groundwater data collected from the CDL were subject to a human health toxicity screen. The soil toxicity screen was used to evaluate potential human health effects by comparing site soil data to screening criteria (e.g., RBCs and SSLs for protection of groundwater). A groundwater toxicity screen was used to evaluate potential effects to human health by comparing constituent concentrations detected in the groundwater at the CDL against EPA Region III RBCs for tap water and the Federal MCLs.

The following paragraphs summarize the chemical constituents detected in the soil and groundwater at the CDL and the results of the screening-level evaluation of the detected constituents. Results of the screening criteria comparisons for the soil (inorganic and organic) and groundwater (inorganic and organic) constituents at the CDL are presented in Tables 5.4-7 through 5.4-10, respectively

### 5.4.3.1 Soil Boring Results and Nature and Extent

Seven soil samples (two from each boring and one duplicate) were collected during the installation of three soil borings (SB-CDL-01 through SB-CDL-03) at the CDL. The inorganic (metals) and organic (VOCs and SVOCs) constituents detected at the CDL are summarized below.

Inorganic Constituents—Twenty-one inorganic constituents were detected in the surface soil (0 to <0.5 feet BLS) and shallow subsurface soils (0.5 to 15 feet BLS) at the CDL. No samples were collected from the deep subsurface soils (>15 feet BLS) during the investigation of the CDL. Soil boring depth was limited to <16 feet BLS; therefore, no deep subsurface soil samples were collected at the site. The following paragraphs identify the metals that exceed the industrial, residential, and protection of groundwater RBCs in the different soil horizons:

- Surface soil (0 to <0.5 feet BLS)
  - Industrial arsenic
  - Residential arsenic and iron
  - Migration to groundwater arsenic and silver
- Shallow subsurface soil (0.5 to 15 feet BLS)
  - Industrial arsenic
  - Residential arsenic and iron
  - Migration to groundwater arsenic

# Table 5.4-5. Data Summary: Soil Boring Results, Construction Debris LandfillWallops Flight Facility, Accomack County, Virginia

| le ID                                                                                                                                                       |                                                             |                                                             | SB-CDL-01                                 |                                        | SB-CDL-01                                           |                                 | S   | B-CDL-02                               |                   | SB-CDL-02                              |                                      | SB-CDL-02                        |                                 | SB-CDL-03                              |                  | SB-CDL-03                              |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|----------------------------------------|-----------------------------------------------------|---------------------------------|-----|----------------------------------------|-------------------|----------------------------------------|--------------------------------------|----------------------------------|---------------------------------|----------------------------------------|------------------|----------------------------------------|-------------|
| eld Sample Number                                                                                                                                           |                                                             |                                                             | SAIC01                                    |                                        | SAIC02                                              |                                 |     | SAIC01                                 |                   | SAIC01D                                |                                      | SAIC02                           |                                 | SAIC01                                 |                  | SAIC02                                 |             |
| te Type                                                                                                                                                     |                                                             |                                                             | BORE                                      |                                        | BORE                                                |                                 |     | BORE                                   |                   | BORE                                   |                                      | BORE                             |                                 | BORE                                   |                  | BORE                                   |             |
| ollection Date                                                                                                                                              |                                                             |                                                             | 08/07/02                                  |                                        | 08/07/02                                            |                                 |     | 08/07/02                               |                   | 08/07/02                               |                                      | 08/07/02                         |                                 | 08/07/02                               |                  | 08/07/02                               |             |
| epth (ft)                                                                                                                                                   |                                                             |                                                             | 6.50                                      | · · ·                                  | 9.00                                                |                                 |     | 0.00                                   |                   | 0.00                                   |                                      | 7.00                             | <u> </u>                        | 0.00                                   |                  | 4.00                                   | <del></del> |
| ETALS(6010)                                                                                                                                                 |                                                             |                                                             |                                           |                                        |                                                     |                                 |     |                                        |                   |                                        | ·                                    |                                  |                                 |                                        |                  |                                        |             |
| arameter                                                                                                                                                    | Units                                                       | RL                                                          |                                           |                                        |                                                     |                                 |     |                                        |                   |                                        |                                      |                                  |                                 |                                        |                  |                                        |             |
| luminum                                                                                                                                                     | MG/KG                                                       | 20                                                          | 7170                                      |                                        | 4140                                                |                                 |     | 29100                                  |                   | 31200                                  |                                      | 6770                             |                                 | 44400                                  |                  | 11000                                  |             |
| ntimony                                                                                                                                                     | MG/KG                                                       | 0.6                                                         | 0.21                                      | UJ                                     | 0.22                                                | UJ                              |     | 1.2                                    | UJ -              | 1.7                                    | บม                                   | 0.24                             | UJ                              |                                        | 1                | 3.4                                    | UJ          |
| rsenic                                                                                                                                                      | MG/KG                                                       | 1                                                           | 1.6                                       |                                        | 0.54                                                | B                               |     | 5                                      | 8                 | 6.9                                    | В                                    | 1.9                              |                                 |                                        | 8                | 6.9                                    |             |
| arium                                                                                                                                                       | MG/KG                                                       | 20                                                          | 15.9                                      |                                        | 5.2                                                 |                                 |     | 371                                    | _                 | 325                                    | -                                    | 30.6                             | 1                               | 240                                    |                  | 55.3                                   |             |
| eryllium                                                                                                                                                    | MG/KG                                                       | 0.5                                                         | 0.17                                      | _                                      | 0.15                                                |                                 |     | 0.41                                   | в                 | 0.4                                    | 8                                    | 0.34                             | _                               |                                        | B                | 0.28                                   |             |
| admium                                                                                                                                                      | MG/KG                                                       | 0.5                                                         | 0.03                                      | 8                                      | 0.02                                                | U                               |     | 25.9                                   |                   | 29.7                                   |                                      | 0.04                             | в                               | 23.9                                   |                  | 4.9                                    |             |
| alcium                                                                                                                                                      | MG/KG                                                       | 100                                                         | 3480                                      |                                        | 546                                                 |                                 |     | 2940                                   |                   | 2710                                   |                                      | 626                              |                                 | 1750                                   |                  | 871                                    |             |
| hromium                                                                                                                                                     | MG/KG                                                       | 1                                                           | 7.6                                       |                                        | 3.7                                                 |                                 |     | 26.8                                   |                   | 29.7                                   |                                      | 6.7                              |                                 | 53                                     |                  | 19.7                                   |             |
| obalt                                                                                                                                                       | MG/KG                                                       | 5                                                           | 1.3                                       |                                        | 1.2                                                 |                                 |     | 3                                      |                   | 3.8                                    |                                      | 1.6                              |                                 | 3. <del>6</del>                        |                  | 4.3                                    |             |
| opper                                                                                                                                                       | MG/KG                                                       | 1                                                           | 3.5                                       |                                        | 1.5                                                 | U                               |     | 1110                                   |                   | 1240                                   |                                      | 2.5                              |                                 | 2660                                   |                  | 155                                    |             |
| on                                                                                                                                                          | MG/KG                                                       | 10                                                          | 3740                                      |                                        | 2100                                                |                                 |     | 7740                                   |                   | 34300                                  |                                      | 4420                             |                                 | 10700                                  |                  | 39200                                  |             |
| ead                                                                                                                                                         | MG/KG                                                       | 0.3                                                         | 9.8                                       |                                        | 12.4                                                |                                 |     | 266                                    |                   | 253                                    |                                      | . 4                              |                                 | 947                                    |                  | 141                                    |             |
| fagnesium                                                                                                                                                   | MG/KG                                                       | 100                                                         | 288                                       |                                        | 134                                                 |                                 |     | 1450                                   |                   | 1390                                   |                                      | 660                              |                                 | 1950                                   |                  | 843                                    |             |
| Nanganese                                                                                                                                                   | MG/KG                                                       | 1.5                                                         | 30.8                                      |                                        | 6.7                                                 |                                 |     | 407                                    |                   | 642                                    |                                      | 45.3                             |                                 | 387                                    |                  | 185                                    |             |
| lickel                                                                                                                                                      | MG/KG                                                       | 1                                                           | 4.2                                       | 1                                      | 2.2                                                 | .1                              |     | 10.8                                   | 1                 | 12.7                                   | 3                                    | 3.9                              | J                               | 110                                    | U                | 15.4                                   | J           |
| otassium                                                                                                                                                    | MG/KG                                                       | 100                                                         | 179                                       |                                        | 99                                                  |                                 |     | 565                                    |                   | 518                                    |                                      | 255                              |                                 | 389                                    |                  | 387                                    |             |
| Selenium                                                                                                                                                    | MG/KG                                                       | 0.5                                                         | 0.23                                      |                                        | 0.22                                                | U                               |     | 1.2                                    | U                 | 1.3                                    | 8                                    | 0.37                             | 8                               | 2                                      | B                | 1                                      |             |
| ilver                                                                                                                                                       | MG/KG                                                       | 1                                                           | 0.05                                      |                                        | 0.05                                                | U                               |     | 0.29                                   | U                 | 0.33                                   | B                                    | 0.06                             | U                               | 16.8                                   |                  | 1.6                                    |             |
| Sodium                                                                                                                                                      | MG/KG                                                       | 100                                                         | 73.5                                      |                                        | 62.4                                                | UJ                              |     | 163                                    | UJ                | 113                                    | UJ                                   | 76.4                             | UJ                              | 150                                    | IJ               | 39.6                                   | ι           |
| [hallium                                                                                                                                                    | MG/KG                                                       | 1 .                                                         | 0.47                                      | -                                      | 0.49                                                | U                               |     | 2.8                                    | U                 | 2.8                                    | U                                    | 0.53                             | U                               | 2.7                                    | υ                | 1.4                                    | E           |
| Vanadium                                                                                                                                                    | MG/KG                                                       | 5                                                           | 7.5                                       |                                        | 3.9                                                 |                                 |     | 14.1                                   |                   | 14.7                                   |                                      | 9.7                              |                                 | 13.2                                   |                  | 15.6                                   |             |
| Zinc                                                                                                                                                        | MG/KG                                                       | 2                                                           | 14.5                                      |                                        | 3.2                                                 |                                 |     | 1400                                   |                   | 1420                                   |                                      | 15.9                             |                                 | 1030                                   |                  | 258                                    |             |
| METALS(7471)                                                                                                                                                |                                                             |                                                             |                                           |                                        |                                                     |                                 |     |                                        |                   |                                        |                                      |                                  |                                 |                                        |                  |                                        |             |
| Parameter                                                                                                                                                   | Units                                                       | RL                                                          | · · · · · · · · · · · · · · · · · · ·     |                                        |                                                     |                                 |     |                                        |                   |                                        |                                      |                                  |                                 |                                        |                  |                                        |             |
| Mercury                                                                                                                                                     | MG/KG                                                       | 0.1                                                         | 0.04                                      | L .                                    | 0.02                                                | U                               |     | 0.33                                   |                   | 0.08                                   |                                      | 0.02                             | B                               | 0.32                                   |                  | 0.04                                   |             |
| SEMIVOLATILE ORGANIC                                                                                                                                        | COMPOUN                                                     | IDS(8270)                                                   |                                           |                                        |                                                     |                                 |     |                                        |                   |                                        |                                      |                                  |                                 |                                        |                  |                                        |             |
| Parameter                                                                                                                                                   | Units                                                       | RL                                                          | 07                                        | <del></del>                            |                                                     |                                 |     |                                        |                   |                                        |                                      |                                  |                                 |                                        |                  |                                        |             |
| 2-Methylnaphthalene                                                                                                                                         | ug/kg                                                       | 330                                                         | 37(                                       |                                        | 2500                                                |                                 | •   | 360                                    |                   | 360                                    |                                      | 400                              |                                 | 380                                    | Ū                | 410                                    |             |
| Acenaphthene                                                                                                                                                | ug/kg                                                       | 330                                                         | 77                                        |                                        | 400                                                 |                                 |     | 360                                    |                   | 360                                    |                                      | 400                              | -                               | 380                                    | ັບ               | 410                                    | )           |
| Anthracene                                                                                                                                                  | ug/kg                                                       | 330                                                         | 15                                        |                                        | 400                                                 | -                               |     | 360                                    |                   | 360                                    |                                      | 400                              |                                 | 380                                    | U                | 410                                    | )           |
| Benzo(a)anthracene                                                                                                                                          | ug/kg                                                       | 330                                                         | 27                                        |                                        | 400                                                 |                                 |     | 360                                    | -                 | 360                                    |                                      | 400                              | -                               | 380                                    | U                | 410                                    | )           |
| Benzo(a)pyrene                                                                                                                                              | ug/kg                                                       | 330                                                         | 22                                        |                                        | 400                                                 | -                               |     | 360                                    | -                 | 360                                    |                                      | 40                               |                                 | 37                                     | J                | 410                                    | )           |
|                                                                                                                                                             | ug/kg                                                       | 330                                                         | 26                                        |                                        | 400                                                 |                                 |     | 360                                    |                   | 360                                    |                                      | 40                               | ) U                             | 360                                    | U                | 410                                    | )           |
|                                                                                                                                                             |                                                             | 330                                                         | 15                                        | 0 J                                    | 400                                                 | -                               |     | 360                                    | -                 | - 360                                  |                                      | 40                               | ט כ                             | 380                                    | U                | 410                                    | )           |
| Benzo(g,h,i)perylene                                                                                                                                        | ug/kg                                                       |                                                             |                                           |                                        |                                                     |                                 |     | 360                                    | -                 | 360                                    |                                      | 40                               | <b>U</b> (                      | 380                                    | U                | 410                                    | J           |
| Benzo(b)fluoranthene<br>Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene                                                                                        | ug/kg                                                       | 330                                                         | 9                                         | • •                                    | 400                                                 |                                 |     |                                        |                   | 26                                     | 5 1                                  | 40                               | ט כ                             | ÷.                                     |                  | 410                                    | j           |
| Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene<br>bis(2-Ethylhexyi)phthalate                                                                                  | ug/kg<br>ug/kg                                              | 330<br>330                                                  | 37                                        | Ō Ū                                    | 400                                                 | Ū                               |     | 360                                    | -                 |                                        |                                      |                                  |                                 | 65                                     | 3                | 910                                    |             |
| Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene<br>bis(2-Ethylhexyl)phthalate<br>Carbazole                                                                     | ug/kg<br>ug/kg<br>ug/kg                                     | 330<br>330<br>330                                           | 37<br>7                                   | 9 J                                    | 400                                                 | U C                             |     | 360                                    | Ū                 | 360                                    | ) U                                  | 40                               |                                 | 380                                    | ม<br>ป           | 410                                    | ۱.          |
| Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene<br>bis(2-Ethylhexyi)phthalate                                                                                  | ug/kg<br>ug/kg                                              | 330<br>330<br>330<br>330<br>330                             | 37<br>7<br>21                             | 0 U<br>9 J<br>0 J                      | 400<br>400<br>400                                   | 0<br>0<br>0<br>0<br>0           | • . | 360<br>360                             | Ŭ                 |                                        | ) U                                  |                                  | D U                             |                                        | -                | 410                                    |             |
| Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene<br>bis(2-Ethylhexyl)phthalate<br>Carbazole                                                                     | ug/kg<br>ug/kg<br>ug/kg                                     | 330<br>330<br>330<br>330<br>330<br>330                      | 37<br>7<br>21<br>4                        | 0 U<br>9 J<br>0 J<br>4 J               | 400<br>400<br>400<br>400                            | 0<br>0<br>0<br>0<br>0<br>0<br>0 | • . | 360<br>360<br>360                      | 0 U<br>0 U<br>0 U | 360                                    | ) U<br>) U                           | 40                               | 0 U<br>0 U                      | 380<br>380                             | Ŭ                | 410<br>410                             | )           |
| Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene<br>bis(2-Ethylhexyi)phthalate<br>Carbazole<br>Chrysene                                                         | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                            | 330<br>330<br>330<br>330<br>330<br>330<br>330               | 37<br>7<br>21<br>4<br>37                  | 0 U<br>9 J<br>0 J<br>4 J<br>0 U        | 400<br>400<br>400<br>400<br>400                     |                                 |     | 360<br>360                             |                   | 360<br>360                             | ) U<br>) U<br>) U                    | 40<br>40                         | 0 U<br>0 U<br>0 U               | 380                                    | Ŭ<br>U           | 410<br>410<br>410                      | )<br>)      |
| Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene<br>bis(2-Ethylhexyi)phthalate<br>Carbazole<br>Chrysene<br>Dibenzofuran                                         | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                   | 330<br>330<br>330<br>330<br>330<br>330<br>330<br>330        | 37<br>7<br>21<br>4<br>37<br>43            | 0 U<br>9 J<br>0 J<br>4 J<br>0 U        | 400<br>400<br>401<br>401<br>401<br>401<br>401       |                                 |     | 360<br>360<br>360                      |                   | 360<br>360<br>360                      |                                      | 40<br>40<br>40                   | U<br>U<br>U<br>U<br>U<br>U<br>U | 380<br>380<br>380                      | U<br>U<br>U      | 410<br>410<br>410<br>410               | )<br>)<br>) |
| Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene<br>bis(2-Ethylhexyl)phthalate<br>Carbazole<br>Chrysene<br>Dibenzofuran<br>Di-n-butyl phthalate                 | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg          | 330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330 | 37<br>7<br>21<br>4<br>37<br>43<br>7       | 0 U<br>9 J<br>0 J<br>4 J<br>0 U<br>8 J | 400<br>400<br>401<br>401<br>401<br>401<br>401<br>99 |                                 | •   | 360<br>360<br>360<br>360<br>360<br>360 |                   | 360<br>360<br>360<br>360               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 40<br>40<br>40<br>40             |                                 | 380<br>380<br>380<br>380<br>380        | U<br>U<br>U<br>U | 410<br>410<br>410                      | )<br>)<br>) |
| Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene<br>bis(2-Ethylhexyl)phthalate<br>Carbazole<br>Chrysene<br>Dibenzofuran<br>Di-n-butyl phthalate<br>Fluoranthene | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg | 330<br>330<br>330<br>330<br>330<br>330<br>330<br>330        | 37<br>7<br>21<br>4<br>37<br>43<br>7<br>11 | 0 U<br>9 J<br>0 J<br>4 J<br>0 U<br>8 J | 400<br>400<br>401<br>401<br>401<br>401<br>401       |                                 | •   | 360<br>360<br>360<br>360<br>360        |                   | 360<br>360<br>360<br>360<br>360<br>360 |                                      | 40<br>40<br>40<br>40<br>40<br>40 |                                 | 380<br>380<br>380<br>380<br>380<br>380 |                  | 410<br>410<br>410<br>410<br>410<br>410 |             |

Limited Site Investigation - Final Report

5.4-8

May 2003

|                                                                                                                         |                                           |                                                                                                                 |                        |        |                         |        |          |                   |          |             | Virg        |             | 1       |              |             |           |            |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|--------|-------------------------|--------|----------|-------------------|----------|-------------|-------------|-------------|---------|--------------|-------------|-----------|------------|
| Site ID                                                                                                                 |                                           | · · · · · ·                                                                                                     | SB-CDL-01              |        | SB-CDL-01               |        | SB-CDL-C |                   |          | SB-CDL-02   |             | SB-CDL-02   |         | SB-CDL-03    | 1           | SB-CDL-03 |            |
| Field Sample Number                                                                                                     |                                           |                                                                                                                 | SAIC01                 |        | SAIC02                  |        | SAICO    |                   |          | SAIC01D     |             | SAIC02      |         | SAIC01       |             | SAIC02    |            |
| Site Type                                                                                                               |                                           |                                                                                                                 | BORE                   |        | BORE                    |        | BOR      |                   |          | BORE        |             | BORE        |         | BORE         |             | BORE      |            |
| Collection Date                                                                                                         |                                           |                                                                                                                 | 08/07/02               |        | 08/07/02                |        | 08/07/0  |                   |          | 08/07/02    |             | 08/07/02    |         | 08/07/02     |             | 08/07/02  |            |
| Depth (ft)                                                                                                              |                                           |                                                                                                                 | 6.50                   |        | 9.00                    |        | 0.0      | 0                 |          | 0.00        |             | 7.00        |         | 0.00         |             | 4.00      |            |
| METALS(6010)                                                                                                            |                                           |                                                                                                                 | ·                      |        |                         |        |          |                   |          |             |             |             |         |              |             |           |            |
| Parameter                                                                                                               | Units                                     | RL                                                                                                              |                        |        |                         |        |          |                   |          |             |             |             |         |              |             |           |            |
| Aluminum                                                                                                                | MG/KG                                     | 20                                                                                                              | 7170                   |        | 4140                    |        | 291      |                   | ,        | 31200       |             | 6770        |         | 44400        |             | 11000     |            |
| Antimony                                                                                                                | MG/KG                                     | 0.6                                                                                                             | 0.21                   | ÛĴ 🗌   |                         | UJ     | 1        | .2 U.             |          |             | UJ          | 0.24        | UJ      | 23.5         | J           | 3.4       |            |
| Arsenic                                                                                                                 | MG/KG                                     | 1                                                                                                               | 1.6                    |        | 0.54                    | В      |          | 5 B               |          | 6.9         | в           | 1.9         |         | 5.3          | в           | 6.9       | •          |
| Barium                                                                                                                  | MG/KG                                     | 20                                                                                                              | 15.9                   |        | 5.2                     |        | -        | 1                 |          | 325         |             | 30.6        |         | 240          |             | 55.3      | ļ –        |
| Beryllium                                                                                                               | MG/KG                                     | 0.5                                                                                                             | 0.17                   |        | 0.15                    |        |          | II B              |          | 0.4         | B           | 0.34        |         | 0.4          | В           | 0.28      | 1          |
| Cadmium                                                                                                                 | MG/KG                                     | 0.5                                                                                                             | 0.03                   | 8      | 0.02                    | υ.     | 2        | .9                |          | 29.7        |             | 0.04        | B       | 23.9         |             | 4,9       | )          |
| Calcium                                                                                                                 | MG/KG                                     | 100                                                                                                             | 3480                   |        | 546                     |        | 29       |                   |          | 2710        |             | 626         |         | 1750         |             | 871       | 1          |
| Chromium                                                                                                                | MG/KG                                     | 1                                                                                                               | 7.6                    |        | 3.7                     |        | 2        | .8                |          | 29.7        |             | 6.7         |         | 53           |             | 19.7      | ,          |
| Cobalt                                                                                                                  | MG/KG                                     | 5                                                                                                               | 1.3                    |        | 1.2                     |        |          | 3 🕤               |          | 3.8         |             | 1.6         |         | 3.6          |             | 4.3       |            |
| Copper                                                                                                                  | MG/KG                                     | 1                                                                                                               | 3.5                    |        | 1.5                     | υ      | 11       | 10                |          | 1240        |             | 2.5         |         | 2660         |             | 155       |            |
| fron                                                                                                                    | MG/KG                                     | 10                                                                                                              | 3740                   |        | 2100                    |        | 77       | 40                |          | 34300       |             | 4420        |         | 10700        |             | 39200     |            |
| Lead                                                                                                                    | MG/KG                                     | 0.3                                                                                                             | 9.8                    |        | 12.4                    |        |          | 66                |          | 253         |             | 4           |         | 947          |             | 141       |            |
| Magnesium                                                                                                               | MG/KG                                     | 100                                                                                                             | 288                    |        | 134                     |        |          | 50                |          | 1390        |             | 660         |         | 1950         | •           | 843       |            |
| Manganese                                                                                                               | MG/KG                                     | 1.5                                                                                                             | 30.8                   |        | 6.7                     |        |          | 07                |          | 642         |             | 45.3        |         | 387          |             | 185       |            |
| Nickel                                                                                                                  | MG/KG                                     | 1                                                                                                               | 4.2                    | J      | 2.2                     | J      |          | <br>).8 · J       |          | 12.7        | J           | 3.9         | J       | 110          | U           | 15.4      |            |
| Potassium                                                                                                               | MG/KG                                     | 100                                                                                                             | 179                    | v      | 99                      | •      |          | 65                |          | 518         | •           | 255         | 3       | 389          | U           |           | -          |
| Selenium                                                                                                                | MG/KG                                     | 0.5                                                                                                             | 0.23                   | B      | 0.22                    | U      |          | 1.2 U             | ı I      | 1.3         | в           | 0.37        | в       |              | в           | 387       |            |
| Silver                                                                                                                  | MG/KG                                     | 1                                                                                                               | 0.05                   | บั     | 0.05                    | บั     |          | 29 U              |          | 0.33        | 8           | 0.06        | ប       | 2<br>16.8    | Ο.          | 1         |            |
| Sodium                                                                                                                  | MG/KG                                     | 100                                                                                                             | 73.5                   | IJ     | 62.4                    | ŬJ     |          | 63 U              | -        | 113         | ŬJ -        | 76.4        | บม      |              |             | 1.0       |            |
| Thallium                                                                                                                | MG/KG                                     | 1                                                                                                               | 0.47                   | U      | 0.49                    | U      |          | 2.8 U             |          | 2.8         | U           |             | UJ<br>U | 150          | ÛĴ          | 39.0      |            |
| Vanadium                                                                                                                | MG/KG                                     | 5                                                                                                               | .7.5                   | U      | 3.9                     | Υ.     |          | 1.0 U<br>1.1      | ,        | 2.0<br>14.7 | 0           | 0.53        | U       | 2.7          | υ           | 1.4       |            |
| Zinc                                                                                                                    | MG/KG                                     | . 2                                                                                                             | 14.5                   |        | 3.2                     |        |          | 00                |          | 1420        |             | 9.7<br>15.9 |         | 13.2<br>1030 |             | 15.0      |            |
| METALS(7471)                                                                                                            |                                           |                                                                                                                 |                        |        |                         |        |          |                   |          |             |             |             |         |              |             |           | -          |
| Parameter                                                                                                               | Units                                     | RL                                                                                                              |                        |        |                         |        |          |                   |          |             |             |             |         |              |             |           |            |
| Mercury                                                                                                                 | MG/KG                                     | 0.1                                                                                                             | 0.04                   |        | 0.02                    | U      |          | .33               |          | 80.0        | ···         | 0.02        |         |              |             |           |            |
| mercury                                                                                                                 | WIGHTG                                    | 0.1                                                                                                             |                        |        | 0.02                    | 0      |          |                   |          | 0.06        |             | 0.02        | B       | 0.32         |             | 0.0       | 4          |
| SEMIVOLATILE ORGANIC                                                                                                    |                                           | the second se |                        |        |                         |        |          |                   |          | ·           |             | <u> </u>    |         |              |             |           |            |
| Parameter<br>2-Methylnaphthalene                                                                                        | Units<br>ug/kg                            | RL<br>330                                                                                                       | 370                    | U      | 2500                    |        |          | 360 (             | <u>.</u> | 360         | U           | 400         | U       | 380          | U           | 41        | 0 1        |
| Acenaphthene                                                                                                            | ug/kg                                     | 330                                                                                                             | 72                     |        | 400                     | U      |          | 360 L             | Ū        | 360         | Ũ           | 400         | Ũ       | 380          | Ŭ           | 41        |            |
| Anthracene                                                                                                              | ug/kg                                     | 330                                                                                                             | 150                    | Ĵ      | 400                     | ū      |          |                   | Ū        | 360         | Ŭ.          | 400         | ŭ       | 380          | ŭ           | 41        |            |
| Benzo(a)anthracene                                                                                                      | ug/kg                                     | 330                                                                                                             | 270                    | -      | 400                     | Ŭ      |          |                   | U<br>U   | 360         | Ŭ           | 400         | . Ŭ     | 380          | Ŭ           |           |            |
| Benzo(a)pyrene                                                                                                          | ug/kg                                     | 330                                                                                                             | 220                    | Ĵ      | 400                     | ŭ      |          |                   | ŭ        | 360         | ŭ           | 400         | U       |              | -           | 41        |            |
| Benzo(b)fluoranthene                                                                                                    | ug/kg<br>ug/kg                            | 330                                                                                                             | 260                    | -      | 400                     | ŭ      |          |                   | 0        | 360         | Ŭ           |             | U.      | 37           | 3           | 41        |            |
| Benzo(g,h,i)perylene                                                                                                    | ug/kg                                     | 330                                                                                                             | 150                    | •      | 400                     | ŭ      |          |                   | Ŭ        | 360         | U           | 400         |         | 380          | U           | 41        |            |
| Benzo(g,n,i)perviene<br>Benzo(k)fluoranthene                                                                            | • •                                       |                                                                                                                 | 94                     |        | 400                     | υ      |          |                   | U        |             | -           | 400         | U       | 380          | U           | 41        |            |
|                                                                                                                         | ug/kg                                     | 330                                                                                                             |                        | -      |                         | -      |          |                   | -        | 360         | U.          | 400         | U       | 380          | U           | 41        |            |
|                                                                                                                         | ug/kg                                     | 330                                                                                                             | 370                    |        | 400                     | U      |          |                   | U        | 25          | 1           | 400         | U       | 65           |             | 41        |            |
| bis(2-Ethylhexyl)phthalate                                                                                              |                                           | 330                                                                                                             | 79                     |        | 400                     | U      |          |                   | U        | 360         | U           | 400         | U       | 380          | -           | 41        |            |
| bis(2-Ethylhexyl)phthalate<br>Carbazole                                                                                 | ug/kg                                     |                                                                                                                 |                        |        | 400                     | U      |          |                   | U        | 360         | U           | 400         | U       | 380          |             | 41        |            |
| bis(2-Ethylhexyl)phthalate<br>Carbazole<br>Chrysene                                                                     | ug/kg                                     | 330                                                                                                             | 210                    |        |                         |        |          |                   |          |             |             |             |         |              |             |           |            |
| bis(2-Ethylhexyl)phthalate<br>Carbazole<br>Chrysene<br>Dibenzofuran                                                     | ug/kg<br>ug/kg                            | 330                                                                                                             | 44                     | J      | 400                     | U      |          |                   | U        | 360         | U           | 400         | U       | 380          | U           | 41        | 10 - I     |
| bis(2-Ethylhexyl)phthalate<br>Carbazole<br>Chrysene<br>Dibenzofuran<br>Di-n-butyl phthalate                             | ug/kg<br>ug/kg<br>ug/kg                   | 330<br>330                                                                                                      | 44<br>370              | J      | 400<br>400              | Ū      |          | 360               | U        | 360         | U           | 400         | U<br>U  | 380<br>380   | U<br>U      | 41        |            |
| bis(2-Ethylhexyl)phthalate<br>Carbazole<br>Chrysene<br>Dibenzofuran<br>Di-n-butyl phthalate<br>Fluoranthene             | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg          | 330<br>330<br>330                                                                                               | 44<br>370<br>430       | IJ     | 400<br>400<br>400       | Ŭ<br>U |          | 360  <br>360      | U<br>U   | 360<br>360  | U<br>U      |             |         |              | -           |           | 0 1        |
| bis(2-Ethylhexyl)phthalate<br>Carbazole<br>Chrysene<br>Dibenzofuran<br>Di-n-butyl phthalate<br>Fluoranthene<br>Fluorene | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg | 330<br>330<br>330<br>330                                                                                        | 44<br>370<br>430<br>78 | J<br>J | 400<br>400<br>400<br>95 | Ū<br>J |          | 360<br>360<br>360 | U        | 360         | U<br>U      | 400         | U       | 380          | Ŭ           | 41        | 0 1        |
| bis(2-Ethylhexyl)phthalate<br>Carbazole<br>Chrysene<br>Dibenzofuran<br>Di-n-butyl phthalate<br>Fluoranthene             | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg          | 330<br>330<br>330                                                                                               | 44<br>370<br>430       | J<br>J | 400<br>400<br>400       | Ŭ<br>U |          | 360<br>360<br>360 | U<br>U   | 360<br>360  | U<br>U<br>U | 400         | U<br>U  | 380<br>380   | U<br>U<br>U | 41        | 0 1<br>0 1 |

### any Soil Baring Desults Construction Debrie Landfill Table 6 D 4. Ω.

# Table 5.4-5. Data Summary: Soil Boring Results, Construction Debris LandfillWallops Flight Facility, Accomack County, Virginia (continued)

| Site ID             |          |       | SB-CDL-01 |          | SB-CDL-01 |    | SB-CDL-02 |   | SB-CDL-02 |    | SB-CDL-02 |    | SB-CDL-03 |    | SB-CDL-03 |     |
|---------------------|----------|-------|-----------|----------|-----------|----|-----------|---|-----------|----|-----------|----|-----------|----|-----------|-----|
| Field Sample Number |          |       | SAIC01    |          | SAIC02    |    | SAIC01    |   | SAIC01D   |    | SAIC02    |    | SAIC01    |    | SAIC02    |     |
| Site Type           |          |       | BORE      |          | BORE      |    | BORE      |   | BORE      |    | BORE      |    | BORE      |    | BORE      |     |
| Collection Date     |          |       | 08/07/02  |          | 08/07/02  |    | 08/07/02  |   | 08/07/02  |    | 08/07/02  |    | 08/07/02  |    | 08/07/02  |     |
| Depth (ft)          |          |       | 6.50      |          | 9.00      |    | 0.00      |   | 0,00      |    | 7.00      |    | 0.00      |    | 4.00      |     |
| Phenanthrene        | ug/kg    | 330   | 530       |          | 63        | J. | 360       | U | 360       | ບ່ | 400       | บ  | 380       | บ  | 410       | U   |
| Pyrene              | ug/kg    | 330   | 510       |          | 400       | U  | 360       | U | 360       | U  | 400       | Ū. | 380       | Ŭ  | 410       |     |
| VOLATILE ORGANIC CO | MPOUNDS( | 8260) |           |          |           |    |           |   |           |    |           |    |           |    |           |     |
| Parameter           | Units    | RL    |           |          |           |    |           |   |           |    |           |    |           |    |           |     |
| 1,2-Dichloropropane | ug/kg    | 5     | 5.5       | U        | 2000      | 1  | 6         | U | 6.4       | U  | 4.8       | U  | 9.5       | U  | 5.7       | 11  |
| Acetone             | ug/kg    | 10    | 12        | U        | 4100      | UJ | 36        | U | 55        | Ū  | 9.5       | Ū  | 55        | Ŭ  | 15        | ň   |
| Carbon disulfide    | ug/kg    | 5     | 5.5       | U        | 2100      | U  | 6         | U | 6.4       | Ũ  | 4.8       | ŭ  | 9.5       | ັ້ | 5.7       | ບ.  |
| Chloromethane       | ug/kg    | 5     | 5.5       | U        | 2100      | Ü  | 6         | Ū | 6.4       | Ū  | 4.8       | ŭ  | 87        | U  |           | -   |
| Ethylbenzene        | ug/kg    | 5     | 5.5       | υ        | 12000     | Ĵ  | 6         | Ū | 6.4       | Ū  | 4.8       | Ŭ  | 9.5       | U  | 5.7       | U U |
| m-and/or p-Xylene   | ug/kg    | 5     | 5.5       | U 1.     | 9600      | J  | -6        | Ū | 6.4       | Ŭ  | 4.8       | ŭ  | 9.5       | ŭ  | 5.7       | U   |
| Methylene Chloride  | ug/kg    | 5     | 5.6       | Ū        | 2200      | Ŭ  | 6         | Ŭ | 6.4       | Ŭ  | 4.8       | Ŭ  |           | -  | 5.7       | U   |
| Tetrachloroethene   | ug/kg    | 5     | 5.5       | ũ        | 1100      | Ĩ  | 6         |   | 6.4       | ŭ  | 4.8       | -  | 9.7       | ÛĴ | 5.7       | U - |
| Trichloroethene     | ug/kg    | 5     | 5.5       | Ŭ        | 2100      | Ŭ  | 6         | - | 6.4       | บั |           | U  | 9.5       | U  | 5.7       | υ   |
|                     | ayng     | 5     | 0.0       | <b>v</b> | 2100      | 0  | Ģ         | 0 | 0.4       | U  | 4.8       | υ  | 9.5       | υ  | 5.7       | U   |

# Table 5.4-5. Data Summary: Soil Boring Results, Construction Debris Landfill Wallops Flight Facility, Accomack County, Virginia (continued)

# Footnotes:

Limited Site Investigation -

Final Report

B - Metals: Reported value was less than the contract required detection limit but greater than or equal to the instrument detection limit.

B - Organics: Analyte was found in the associated method blank. Validation of the data did not result in this compound being qualified as nondetect due to blank contamination.

Therefore this result is considered to be site related.

D - The value for the target analyte was calculated from a dilution.

E - Metals: The reported value is estimated because of the presence of interferents.

E - Organics: Concentration range exceeded for this analyte.

J - Value is estimated.

N - Metals: Spiked sample recovery not within control limits.

N - Organics: Tentatively identified compound based on mass spectral library search.

P - There is greater than 25% difference for detected concentrations between the two GC columns for the associated pesticide/PCB target analyte.

R - Value is rejected.

U - Compound was analyzed for but not detected.

UJ - Compound was analyzed for but not detected and is considered an estimate.

X - The mass spectrum does not meet EPA CLP criteria for confirmation, but compound presence is strongly suspected.

\* - Duplicate analysis not within control limits.

N/A - Compound not analyzed for.

NF - Data not found.

RL – Reporting Limit for each method. For SW846 methods, the samples are reported down to the method detection limits (MDL). For metals, the samples are reported down to the instrument detection limit (IDL).

MDL - Method Detection Limit.

SAICXXR - An SAIC field sample number followed by an "R" designates a recollected sample.

# Table 5.4-6. Data Summary: Groundwater Results, Construction Debris Landfill Wallops Flight Facility, Accomack County, Virginia

| Site ID                                                                                                                                                                                                                                                                                                    |                                                                                                                            |                                                                                                                                              | HP-CDL-01                                                                                         |                                                                         | HP-CDL-02                                                                                                    |                                                                                             | HP-CDL-03                                                                                                   |                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Field Sample Number                                                                                                                                                                                                                                                                                        |                                                                                                                            |                                                                                                                                              | SAIC01                                                                                            |                                                                         | SAIC01                                                                                                       |                                                                                             | SAIC01                                                                                                      |                                                                                             |
| Site Type                                                                                                                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                                              | PNCH                                                                                              |                                                                         | PNCH                                                                                                         |                                                                                             | PNCH                                                                                                        |                                                                                             |
| Collection Date                                                                                                                                                                                                                                                                                            |                                                                                                                            |                                                                                                                                              | 08/07/02                                                                                          |                                                                         | 08/07/02                                                                                                     |                                                                                             | 08/07/02                                                                                                    |                                                                                             |
| Depth (ft)                                                                                                                                                                                                                                                                                                 |                                                                                                                            |                                                                                                                                              | 10.00                                                                                             |                                                                         | 8.00                                                                                                         |                                                                                             | 4.00                                                                                                        |                                                                                             |
| METALS(6010)                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                                                                                                              |                                                                                                   |                                                                         |                                                                                                              |                                                                                             |                                                                                                             |                                                                                             |
| Parameter                                                                                                                                                                                                                                                                                                  | Units                                                                                                                      | RL                                                                                                                                           |                                                                                                   |                                                                         | · · · · · · · · · · · · · · · · · · ·                                                                        |                                                                                             |                                                                                                             |                                                                                             |
| Arsenic                                                                                                                                                                                                                                                                                                    | ug/L                                                                                                                       | 10                                                                                                                                           | 12.7                                                                                              | U                                                                       | 3.4                                                                                                          | U                                                                                           | 3.4                                                                                                         | U                                                                                           |
| Barium                                                                                                                                                                                                                                                                                                     | ug/L                                                                                                                       | 200                                                                                                                                          | 28                                                                                                |                                                                         | 18.7                                                                                                         |                                                                                             | 315                                                                                                         | -                                                                                           |
| Cadmium                                                                                                                                                                                                                                                                                                    | ug/L                                                                                                                       | 5                                                                                                                                            | 0.35                                                                                              | в                                                                       | 0.3                                                                                                          | U                                                                                           | 0.3                                                                                                         | U                                                                                           |
| Calcium                                                                                                                                                                                                                                                                                                    | ug/L                                                                                                                       | 1000                                                                                                                                         | 17000                                                                                             |                                                                         | 33600                                                                                                        |                                                                                             | 54000                                                                                                       |                                                                                             |
| Chromium                                                                                                                                                                                                                                                                                                   | ug/L                                                                                                                       | 10                                                                                                                                           | 1.3                                                                                               | Ð                                                                       | 1.3                                                                                                          | υ                                                                                           | 3.4                                                                                                         | в                                                                                           |
| Copper                                                                                                                                                                                                                                                                                                     | ug/L                                                                                                                       | 10                                                                                                                                           | 2.2                                                                                               | Ú.                                                                      | 5.6                                                                                                          | Ũ                                                                                           | 3                                                                                                           | ū                                                                                           |
| Iron                                                                                                                                                                                                                                                                                                       | ug/L                                                                                                                       | 100                                                                                                                                          | 28600                                                                                             | -                                                                       | 24.3                                                                                                         | Ū                                                                                           | 359                                                                                                         | -                                                                                           |
| Lead                                                                                                                                                                                                                                                                                                       | ug/L                                                                                                                       | 3                                                                                                                                            | 13.6                                                                                              |                                                                         | 1.6                                                                                                          | บั                                                                                          | 1.6                                                                                                         | υ                                                                                           |
| Magnesium                                                                                                                                                                                                                                                                                                  | ug/L                                                                                                                       | 1000                                                                                                                                         | 1110                                                                                              |                                                                         | 8500                                                                                                         | •                                                                                           | 6210                                                                                                        | 2                                                                                           |
| Manganese                                                                                                                                                                                                                                                                                                  | ug/L                                                                                                                       | 15                                                                                                                                           | 791                                                                                               |                                                                         | 105                                                                                                          |                                                                                             | 451                                                                                                         |                                                                                             |
| Nickel                                                                                                                                                                                                                                                                                                     | ug/L                                                                                                                       | 10                                                                                                                                           | 1.1                                                                                               | υ                                                                       | 1.1                                                                                                          | U ·                                                                                         | 14.3                                                                                                        |                                                                                             |
| Potassium                                                                                                                                                                                                                                                                                                  | ug/L                                                                                                                       | 1000                                                                                                                                         | 2220                                                                                              | -                                                                       | 2360                                                                                                         | •                                                                                           | 4300                                                                                                        |                                                                                             |
| Sodium                                                                                                                                                                                                                                                                                                     | ug/L                                                                                                                       | 1000                                                                                                                                         | 9040                                                                                              |                                                                         | 9670                                                                                                         |                                                                                             | 9530                                                                                                        |                                                                                             |
| Vanadium                                                                                                                                                                                                                                                                                                   | ug/L                                                                                                                       | 50                                                                                                                                           | 3.1                                                                                               | в                                                                       | 0.79                                                                                                         | В                                                                                           | 0.7                                                                                                         | а <sup>1</sup>                                                                              |
| Turna and the                                                                                                                                                                                                                                                                                              | 08/1                                                                                                                       | 50                                                                                                                                           | 9.1                                                                                               | _                                                                       | 0.78                                                                                                         |                                                                                             | 0.7                                                                                                         | . U                                                                                         |
| Zinc<br>SEMIVOLATILE ORGA                                                                                                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                                              | 9.3<br>8270)                                                                                      | U                                                                       | 4.5                                                                                                          | U                                                                                           | 87.4                                                                                                        |                                                                                             |
| SEMIVOLATILE ORGAN<br>Parameter                                                                                                                                                                                                                                                                            | NIC COM<br>Units                                                                                                           | POUNDS(I<br>RL                                                                                                                               | 3270)                                                                                             |                                                                         |                                                                                                              |                                                                                             |                                                                                                             |                                                                                             |
| SEMIVOLATILE ORGAN<br>Parameter<br>2,4-Dimethylphenol                                                                                                                                                                                                                                                      | NIC COM<br>Units<br>ug/L                                                                                                   | IPOUNDS(I<br>RL<br>10                                                                                                                        | 10.4                                                                                              | <u> </u>                                                                | 14                                                                                                           | <u> </u>                                                                                    | 13                                                                                                          | U                                                                                           |
| SEMIVOLATILE ORGAN<br>Parameter<br>2,4-Dimethylphenol<br>2-Methylnaphthalene                                                                                                                                                                                                                               | NIC COM<br>Units<br>ug/L<br>ug/L                                                                                           | 10<br>RL<br>10<br>10                                                                                                                         | 3270)<br>10.4<br>49                                                                               |                                                                         | 14                                                                                                           | U<br>U<br>U                                                                                 | 13<br>13                                                                                                    | Ū                                                                                           |
| SEMIVOLATILE ORGAI<br>Parameter<br>2,4-Dimethylphenol<br>2-Methylnaphthalene<br>2-Methylphenol                                                                                                                                                                                                             | NIC COM<br>Units<br>ug/L<br>ug/L<br>ug/L                                                                                   | POUNDS(I<br>RL<br>10<br>10<br>10                                                                                                             | 3270)<br>10.4<br>49<br>27                                                                         |                                                                         | 14<br>14<br>14                                                                                               | UUUU                                                                                        | 13<br>13<br>13                                                                                              | Ŭ<br>U                                                                                      |
| SEMIVOLATILE ORGAN<br>Parameter<br>2.4-Dimethylphenol<br>2-Methylphenol<br>4-Methylphenol                                                                                                                                                                                                                  | NIC COM<br>Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                                           | POUNDS(1<br>RL<br>10<br>10<br>10<br>10                                                                                                       | 10.4<br>49<br>27<br>46                                                                            |                                                                         | 14<br>14<br>14<br>14                                                                                         | UUUUU                                                                                       | 13<br>13<br>13<br>13<br>13                                                                                  | U<br>U<br>U                                                                                 |
| SEMIVOLATILE ORGAI<br>Parameter<br>2,4-Dimethylphenol<br>2-Methylnaphthalene<br>2-Methylphenol                                                                                                                                                                                                             | NIC COM<br>Units<br>ug/L<br>ug/L<br>ug/L                                                                                   | POUNDS(I<br>RL<br>10<br>10<br>10                                                                                                             | 3270)<br>10.4<br>49<br>27                                                                         |                                                                         | 14<br>14<br>14                                                                                               | UUUU                                                                                        | 13<br>13<br>13                                                                                              | Ŭ<br>U                                                                                      |
| SEMIVOLATILE ORGAN<br>Parameter<br>2.4-Dimethylphenol<br>2-Methylphenol<br>4-Methylphenol                                                                                                                                                                                                                  | NIC COM<br>Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                                   | POUNDS(I<br>RL<br>10<br>10<br>10<br>10<br>10<br>10<br>NDS(8260)                                                                              | 10.4<br>49<br>27<br>46<br>120                                                                     |                                                                         | 14<br>14<br>14<br>14                                                                                         | UUUUU                                                                                       | 13<br>13<br>13<br>13<br>13                                                                                  | U<br>U<br>U                                                                                 |
| SEMIVOLATILE ORGAN<br>Parameter<br>2,4-Dimethylphenol<br>2-Methylphenol<br>4-Methylphenol<br>Naphthalene<br>VOLATILE ORGANIC O<br>Parameter                                                                                                                                                                | NIC COM<br>Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>COMPOU<br>Units                                                | POUNDS(I<br>RL<br>10<br>10<br>10<br>10<br>10<br>NDS(8260)<br>RL                                                                              | 10.4<br>49<br>27<br>46<br>120                                                                     | 1                                                                       | 14<br>14<br>14<br>14<br>14                                                                                   | UUUUU                                                                                       | 13<br>13<br>13<br>13<br>13                                                                                  | บ<br>บ<br>บ<br>บ                                                                            |
| SEMIVOLATILE ORGAN<br>Parameter<br>2.4-Dimethylphenol<br>2-Methylphenol<br>4-Methylphenol<br>Naphthalene<br>VOLATILE ORGANIC C<br>Parameter<br>Acetone                                                                                                                                                     | NIC COM<br>Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>COMPOU<br>Units<br>ug/L                                        | POUNDS(I<br>RL<br>10<br>10<br>10<br>10<br>10<br>NDS(8260)<br>RL<br>5                                                                         | 10.4<br>49<br>27<br>46<br>120<br>5                                                                | <u>1</u>                                                                | 14<br>14<br>14<br>14                                                                                         | UUUUU                                                                                       | 13<br>13<br>13<br>13<br>13                                                                                  | บ<br>บ<br>บ<br>บ                                                                            |
| SEMIVOLATILE ORGAN<br>Parameter<br>2,4-Dimethylphenol<br>2-Methylnaphthalene<br>2-Methylphenol<br>4-Methylphenol<br>Naphthalene<br>VOLATILE ORGANIC C<br>Parameter<br>Acetone<br>Benzene                                                                                                                   | NIC COM<br>Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>COMPOU<br>Units<br>ug/L<br>ug/L                                        | POUNDS(I<br>RL<br>10<br>10<br>10<br>10<br>10<br>NDS(8260)<br>RL<br>5<br>1                                                                    | 3270)<br>10.4<br>49<br>27<br>46<br>120<br>5<br>500                                                | 01<br>1                                                                 | 14<br>14<br>14<br>14<br>14                                                                                   | UUUUU                                                                                       | 13<br>13<br>13<br>13<br>13<br>13                                                                            | U<br>U<br>U<br>U                                                                            |
| SEMIVOLATILE ORGAN<br>Parameter<br>2.4-Dimethylphenol<br>2-Methylphenol<br>4-Methylphenol<br>Naphthalene<br>VOLATILE ORGANIC O<br>Parameter<br>Acetone<br>Benzene<br>Chloromethane                                                                                                                         | NIC COM<br>Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>COMPOU<br>Units<br>ug/L                                        | IPOUNDS(I<br>RL<br>10<br>10<br>10<br>10<br>10<br>10<br>NDS(8260)<br>RL<br>5<br>1<br>1                                                        | 10.4<br>49<br>27<br>46<br>120<br>5                                                                | <u>1</u>                                                                | 14<br>14<br>14<br>14<br>14<br>14                                                                             |                                                                                             | 13<br>13<br>13<br>13<br>13<br>13<br>5                                                                       | U<br>U<br>U<br>U<br>U<br>U<br>U                                                             |
| SEMIVOLATILE ORGAN<br>Parameter<br>2.4-Dimethylphenol<br>2-Methylnaphthalene<br>2-Methylphenol<br>4-Methylphenol<br>Naphthalene<br>VOLATILE ORGANIC O<br>Parameter<br>Acetone<br>Benzene<br>Chloromethane<br>cis-1,2-Dichloroethene                                                                        | NIC COM<br>Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>Units<br>Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L                         | POUNDS(I<br>RL<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>NDS(8260)<br>RL<br>5<br>1<br>1<br>1<br>1<br>1                              | 10.4<br>49<br>27<br>46<br>120<br>5<br>500<br>0.7<br>12                                            | 1<br>1<br>1<br>1                                                        | 14<br>14<br>14<br>14<br>14<br>14<br>14<br>5.2<br>0.54<br>1<br>1                                              | υ<br>υ<br>υ<br>υ<br>υ                                                                       | 13<br>13<br>13<br>13<br>13<br>13<br>13<br>5<br>1                                                            | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                |
| SEMIVOLATILE ORGAN<br>Parameter<br>2,4-Dimethylphenol<br>2-Methylphenol<br>4-Methylphenol<br>Naphthalene<br>VOLATILE ORGANIC C<br>Parameter<br>Acetone<br>Benzene<br>Chloromethane<br>cis-1,2-Dichloroethene<br>Ethylbenzene                                                                               | NIC COM<br>Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                  | POUNDS(I<br>RL<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>NDS(8260)<br>RL<br>5<br>1<br>1<br>1<br>1<br>1<br>1                               | 10.4<br>49<br>27<br>46<br>120<br>5<br>500<br>0.7<br>12<br>920                                     | 1<br>1<br>1<br>1<br>1<br>1<br>1                                         | 14<br>14<br>14<br>14<br>14<br>14<br>5.2<br>0.54<br>1<br>1                                                    | ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ                                                   | 13<br>13<br>13<br>13<br>13<br>13<br>13<br>5<br>1<br>1                                                       |                                                                                             |
| SEMIVOLATILE ORGAN<br>Parameter<br>2,4-Dimethylphenol<br>2-Methylnaphthalene<br>2-Methylphenol<br>4-Methylphenol<br>Naphthalene<br>VOLATILE ORGANIC C<br>Parameter<br>Acetone<br>Benzene<br>Chloromethane<br>cis-1,2-Dichloroethene<br>Ethylbenzene<br>m-and/or p-Xylene                                   | NIC COM<br>Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>Units<br>Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | IPOUNDS(I<br>RL<br>10<br>10<br>10<br>10<br>10<br>10<br>NDS(8260)<br>RL<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          | 10.4<br>49<br>27<br>46<br>120<br>5<br>500<br>0.7<br>12<br>920<br>3700                             | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    | 14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>11                                               |                                                                                             | 13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>5<br>1<br>1<br>2.3                                          |                                                                                             |
| SEMIVOLATILE ORGAN<br>Parameter<br>2,4-Dimethylphenol<br>2-Methylnaphthalene<br>2-Methylphenol<br>4-Methylphenol<br>Naphthalene<br>VOLATILE ORGANIC O<br>Parameter<br>Acetone<br>Benzene<br>Chloromethane<br>cis-1,2-Dichloroethene<br>Ethylbenzene<br>m-and/or p-Xylene<br>Methylene Chloride             | NIC COM<br>Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                  | IPOUNDS(I<br>RL<br>10<br>10<br>10<br>10<br>10<br>10<br>NDS(8260)<br>RL<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1           | 10.4<br>49<br>27<br>46<br>120<br>5<br>500<br>0.7<br>12<br>920                                     | 1<br>1<br>1<br>1<br>1<br>1<br>1                                         | 14<br>14<br>14<br>14<br>14<br>14<br>5.2<br>0.54<br>1<br>1                                                    | ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ                                                   | 13<br>13<br>13<br>13<br>13<br>13<br>13<br>5<br>1<br>1<br>2.3<br>1                                           | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| SEMIVOLATILE ORGAN<br>Parameter<br>2.4-Dimethylphenol<br>2-Methylnaphthalene<br>2-Methylphenol<br>4-Methylphenol<br>Naphthalene<br>VOLATILE ORGANIC C<br>Parameter<br>Acetone<br>Benzene<br>Chloromethane<br>cis-1,2-Dichloroethene<br>Ethylbenzene<br>m-and/or p-Xylene<br>Methylene Chloride<br>o-xylene | NIC COM<br>Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>Units<br>Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | IPOUNDS(I<br>RL<br>10<br>10<br>10<br>10<br>10<br>10<br>NDS(8260)<br>RL<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          | 10.4<br>49<br>27<br>46<br>120<br>5<br>500<br>0.7<br>12<br>920<br>3700                             | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    | 14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>11                                               |                                                                                             | 13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>5<br>1<br>1<br>2.3<br>1<br>1                                |                                                                                             |
| SEMIVOLATILE ORGAN<br>Parameter<br>2,4-Dimethylphenol<br>2-Methylnaphthalene<br>2-Methylphenol<br>4-Methylphenol<br>Naphthalene<br>VOLATILE ORGANIC O<br>Parameter<br>Acetone<br>Benzene<br>Chloromethane<br>cis-1,2-Dichloroethene<br>Ethylbenzene<br>m-and/or p-Xylene<br>Methylene Chloride             | NIC COM<br>Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                           | IPOUNDS(I<br>RL<br>10<br>10<br>10<br>10<br>10<br>10<br>NDS(8260)<br>RL<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1           | 10.4<br>49<br>27<br>46<br>120<br>5<br>500<br>0.7<br>12<br>920<br>3700<br>1                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          | 14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>11<br>1<br>1<br>1<br>1<br>1                            | υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ                                                             | 13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>11<br>2.3<br>1<br>1<br>2.3<br>1<br>1<br>2 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                        |
| SEMIVOLATILE ORGAN<br>Parameter<br>2.4-Dimethylphenol<br>2-Methylnaphthalene<br>2-Methylphenol<br>4-Methylphenol<br>Naphthalene<br>VOLATILE ORGANIC C<br>Parameter<br>Acetone<br>Benzene<br>Chloromethane<br>cis-1,2-Dichloroethene<br>Ethylbenzene<br>m-and/or p-Xylene<br>Methylene Chloride<br>o-xylene | NIC COM<br>Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                           | IPOUNDS(I<br>RL<br>10<br>10<br>10<br>10<br>10<br>10<br>NDS(8260)<br>RL<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1           | 10.4<br>49<br>27<br>46<br>120<br>5<br>500<br>0.7<br>12<br>920<br>3700<br>1<br>1700                | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1           | 14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>15.2<br>0.54<br>1<br>1<br>1<br>1<br>1<br>1<br>2.2<br>1 | υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ                                                   | 13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>14<br>1<br>2.3<br>1<br>1<br>2<br>2<br>1   |                                                                                             |
| SEMIVOLATILE ORGAI<br>Parameter<br>2,4-Dimethylphenol<br>2-Methylphenol<br>4-Methylphenol<br>Naphthalene<br>VOLATILE ORGANIC O<br>Parameter<br>Acetone<br>Benzene<br>Chloromethane<br>dis-1,2-Dichloroethene<br>Ethylbenzene<br>m-and/or p-Xylene<br>Methylene Chloride<br>o-xylene<br>Styrene             | NIC COM<br>Units<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                           | POUNDS(I<br>RL<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>NDS(8260)<br>RL<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 2270)<br>10.4<br>49<br>27<br>46<br>120<br>5<br>500<br>0.7<br>12<br>920<br>3700<br>1<br>1700<br>22 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>15<br>20<br>54<br>1<br>1<br>1<br>1<br>2.2<br>1<br>1    | ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ | 13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>1<br>1<br>1<br>2.3<br>1<br>1<br>2<br>2<br>1<br>1      | U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U                                    |

Created on 5/27/2003

# Table 5.4-6. Data Summary: Groundwater Results, Construction Debris Landfill Wallops Flight Facility, Accomack County, Virginia (continued) Footnotes: B - Metals: Reported value was less than the contract required detection limit but greater than or equal to the instrument detection limit. B - Organics: Analyte was found in the associated method blank. Validation of the data did not result in this compound being qualified as nondetect due to blank contamination. Therefore this result is considered to be site related. D - The value for the target analyte was calculated from a dilution. E - Metals: The reported value is estimated because of the presence of interferents. E - Organics: Concentration range exceeded for this analyte. J - Value is estimated. N - Metals: Spiked sample recovery not within control limits. N - Organics: Tentatively identified compound based on mass spectral library search. P - There is greater than 25% difference for detected concentrations between the two GC columns for the associated pesticide/PCB target analyte, R - Value is rejected. U - Compound was analyzed for but not detected. UJ - Compound was analyzed for but not detected and is considered an estimate. X - The mass spectrum does not meet EPA CLP criteria for confirmation, but compound presence is strongly suspected. \* - Duplicate analysis not within control limits. N/A - Compound not analyzed for. NF - Data not found. RL - Reporting Limit for each method. For SW846 methods, the samples are reported down to the method detection limits (MDL). For metals, the samples are reported down to the instrument detection limit (IDL). MDL - Method Detection Limit. SAICXXR - An SAIC field sample number followed by an "R" designates a recollected sample. 1,2-Dichlorobenzene; 1,3-Dichlorobenzene; 1,4-Dichlorobenzene; and 1,2,4-Trichlorobenzene - For samples analyzed prior to February 2000, these four compounds are reported as part of the semivolatile organic compound list. For samples analyzed after February 2000, these four compounds are reported as part of the volatile organic compound list. 1,2-Dichloroethene (total); Cis-1,2-Dichloroethene and Trans-1,2-Dichloroethene - For samples analyzed prior to February 2000, cis-1,2-dichloroethene and trans-1,2-dichloroethene (not 1,2-dichloroethene (total)) are reported as part of the volatile organic compound list. For samples analyzed after February 2000, 1,2-dichloroethene (total) (not cis-1,2-dichloroethene and trans-1,2-dichloroethene) is reported as part of the volatile organic compound list.

G

4-13

May 2003

| Sample                                  |             |           | Field |                |                            |       | Protection of I                                                                           | Human Health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Migration to Groundwater                                                     |
|-----------------------------------------|-------------|-----------|-------|----------------|----------------------------|-------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Interval<br>(Depth)                     | Constituent | ID        |       | Depth<br>(BLS) | Concentration <sup>a</sup> | Units | Concentration Exceeds<br>Region III RBCs<br>Residential Screening<br>Value <sup>b.c</sup> | Concentration Exceeds<br>Region III RBC<br>Industrial Screening<br>Value <sup>b,c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Concentration Exceeds<br>Region III RBC<br>Screening<br>Value <sup>b.e</sup> |
| Surface Soil (0 to <0.5 feet BLS)       | Antimony    | SB-CDL-03 | BORE  | 0              | 23.5                       | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                                                                            |
|                                         | Arsenic     | SB-CDL-02 | BORE  | 0              | 5                          | MG/KG | X                                                                                         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                            |
|                                         |             | SB-CDL-03 | BORE  | 0              | 5.3                        | MG/KG | X                                                                                         | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                            |
|                                         |             | SB-CDL-02 |       | 0              | 6.9                        | MG/KG | X                                                                                         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                            |
|                                         | Barium      | SB-CDL-03 | BORE  | 0              | 240                        | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · ·                                                                        |
|                                         |             | SB-CDL-02 |       | 0              | 325                        | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |
|                                         |             | SB-CDL-02 | BORE  | 0              | 371                        | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |
|                                         | Cadmium     | SB-CDL-03 |       | 0              | 23.9                       | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · ·                                                                        |
|                                         |             | SB-CDL-02 |       | 0              | 25.9                       | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |
|                                         |             | SB-CDL-02 |       | 0              | 29.7                       | MG/KG |                                                                                           | · -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |
|                                         | Chromium    | SB-CDL-02 |       | 0              | 26.8                       | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |
|                                         |             | SB-CDL-02 |       | 0              | 29.7                       | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |
|                                         |             | SB-CDL-03 | BORE  | · 0            | 53                         | MG/KG |                                                                                           | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · ·                                                                    |
| • · · · · · · · · · · · · · · · · · · · | Cobalt      | SB-CDL-02 |       | 0              | 3                          | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |
|                                         |             | SB-CDL-03 | BORE  | 0              | 3.6                        | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |
|                                         |             | SB-CDL-02 | BORE  | 0.             | 3.8                        | MG/KG | 1 N N N N N N N N N N N N N N N N N N N                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |
|                                         | Copper      | SB-CDL-02 |       | 0              | 1110                       | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |
|                                         |             | SB-CDL-02 |       | 0              | 1240                       | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •.                                                                           |
|                                         |             | SB-CDL-03 |       | 0              | 2660                       | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                            |
|                                         | Iron        | SB-CDL-02 | BORE  | 0              | 34300                      | MG/KG | · ×                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |
|                                         | Lead        | SB-CDL-02 |       | 0              | 253                        | MG/KG | •                                                                                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ······································                                       |
|                                         |             | SB-CDL-02 | BORE  | 0              | 266                        | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |
|                                         |             | SB-CDL-03 | BORE  | 0              | 947                        | MG/KG |                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |
|                                         | Mercury     | SB-CDL-03 |       | 0              | 0.32                       | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · ·                                                                        |
|                                         |             | SB-CDL-02 | BORE  | 0              | 0.33                       | MG/KG |                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |
|                                         | Selenium    | SB-CDL-02 |       | 0              | 1.3                        | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · ·                                                                          |
| · · · · ·                               |             | SB-CDL-03 |       | 0              | 2                          | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                            |
| · · ·                                   | Silver      | SB-CDL-03 |       | 0              | 16.8                       | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |
|                                         | Vanadium    | SB-CDL-03 |       | 0              | 13.2                       | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |
|                                         |             | SB-CDL-02 |       | 0              | 14.1                       | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |
|                                         |             | SB-CDL-02 |       | 0              | 14.7                       | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |
| 1                                       | Zinc        | SB-CDL-03 |       | 0              | 1030                       | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ······································                                       |
| 1                                       |             | SB-CDL-02 |       | 0              | 1400                       | MG/KG |                                                                                           | 1 States and the second sec |                                                                              |
|                                         |             | SB-CDL-02 |       | 0              | 1420                       | MG/KG | and the second second                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |
| Subsurface Soil (0.5 to 15 feet BLS)    | Arsenic     | SB-CDL-01 |       | 9              | 0.54                       | MG/KG | X                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x                                                                            |
|                                         |             | SB-CDL-01 |       | 6.5            | 1.6                        | MG/KG | X                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 🔊 🗙 🖓                                                                        |
|                                         | · · .       | SB-CDL-02 |       | 7              | 1.9                        | MG/KG | <b>X</b>                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x                                                                            |
|                                         |             | SB-CDL-03 |       | 4              | 6.9                        | MG/KG | X                                                                                         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x                                                                            |
|                                         | Barium      | SB-CDL-01 |       | 9              | 5.2                        | MG/KG |                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |
|                                         |             | SB-CDL-01 |       | 6.5            | 15.9                       | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |
|                                         | 1           | SB-CDL-02 |       | 7              | 30.6                       | MG/KG | the second second second                                                                  | 1 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |
| ľ                                       | 1           | SB-CDL-03 | BORE  | 4              | 55.3                       | MG/KG |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>I</b>                                                                     |

# Table 5.4-7. Construction Debris Landfill Metal Constituents Detected Above Screening Criteria in Soil Wallops Flight Facility, Accomack County, Virginia

5.4-14

May 2003

print .

# Table 5.4-7. Construction Debris Landfill Metal Constituents Detected Above Screening Criteria in Soil Wallops Flight Facility, Accomack County, Virginia

| Sample                                                                                                         | Constituent | Sample S  | Field<br>Sample<br>Number | Depth<br>(BLS) | Concentration <sup>a</sup> | Units | Protection of H                                                                          | Migration to Groundwater                                                                |                                                                              |
|----------------------------------------------------------------------------------------------------------------|-------------|-----------|---------------------------|----------------|----------------------------|-------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Interval<br>(Depth)                                                                                            |             |           |                           |                |                            |       | Concentration Exceeds<br>Region III RBCs<br>Residential Screening<br>Value <sup>bc</sup> | Concentration Exceeds<br>Region III RBC<br>Industrial Screening<br>Value <sup>b,c</sup> | Concentration Exceeds<br>Region III RBC<br>Screening<br>Value <sup>b.c</sup> |
|                                                                                                                | Cadmium     | SB-CDL-01 | BORE                      | 6.5            | 0.03                       | MG/KG |                                                                                          |                                                                                         |                                                                              |
|                                                                                                                |             | SB-CDL-02 | BORE                      | 7              | 0.04                       | MG/KG |                                                                                          |                                                                                         | · · · · ·                                                                    |
| The second s |             | SB-CDL-03 | BORE                      | 4              | 4.9                        | MG/KG |                                                                                          |                                                                                         |                                                                              |
|                                                                                                                | Chromium    | SB-CDL-01 | BORE                      | 9              | 3.7                        | MG/KG |                                                                                          |                                                                                         |                                                                              |
|                                                                                                                |             | SB-CDL-02 | BORE                      | 7              | 6.7                        | MG/KG |                                                                                          |                                                                                         |                                                                              |
|                                                                                                                |             | SB-CDL-01 | BORE                      | 6.5            | 7.6                        | MG/KG |                                                                                          |                                                                                         |                                                                              |
|                                                                                                                |             | SB-CDL-03 | BORE                      | 4              | 19.7                       | MG/KG |                                                                                          |                                                                                         |                                                                              |
|                                                                                                                | Cobalt      | SB-CDL-01 | BORE                      | 9              | 1.2                        | MG/KG |                                                                                          |                                                                                         |                                                                              |
|                                                                                                                |             | SB-CDL-01 | BORE                      | 6.5            | 1.3                        | MG/KG |                                                                                          |                                                                                         |                                                                              |
|                                                                                                                |             | SB-CDL-02 | BORE                      | 7              | 1.6                        | MG/KG |                                                                                          |                                                                                         | 1                                                                            |
| •                                                                                                              |             | SB-CDL-03 | BORE                      | 4              | 4.3                        | MG/KG |                                                                                          |                                                                                         |                                                                              |
|                                                                                                                | Copper      | SB-CDL-02 | BORE                      | 7              | 2.5                        | MG/KG |                                                                                          | · · · · · · · · · · · · · · · · · · ·                                                   |                                                                              |
|                                                                                                                |             | SB-CDL-01 | BORE                      | 6.5            | 3.5                        | MG/KG | · · · · · · · · · · · · · · · · · · ·                                                    |                                                                                         |                                                                              |
|                                                                                                                |             | SB-CDL-03 | BORE                      | 4              | 155                        | MG/KG |                                                                                          |                                                                                         |                                                                              |
|                                                                                                                | Iron        | SB-CDL-03 | BORE                      | 4              | 39200                      | MG/KG | X                                                                                        |                                                                                         |                                                                              |
|                                                                                                                | Lead        | SB-CDL-02 | BORE                      | 7              | . 4                        | MG/KG |                                                                                          |                                                                                         |                                                                              |
|                                                                                                                | 1           | SB-CDL-01 | BORE                      | 6.5            | 9.8                        | MG/KG |                                                                                          |                                                                                         |                                                                              |
| ς.                                                                                                             | 1           | SB-CDL-01 | BORE                      | . 9            | 12.4                       | MG/KG |                                                                                          |                                                                                         |                                                                              |
|                                                                                                                | I           | SB-CDL-03 | BORE                      | 4              | 141                        | MG/KG |                                                                                          |                                                                                         |                                                                              |
|                                                                                                                | Nickel      | SB-CDL-03 | BORE                      | 4              | 15.4                       | MG/KG |                                                                                          |                                                                                         |                                                                              |
| •                                                                                                              | Selenium    | SB-CDL-01 | BORE                      | 6.5            | 0.23                       | MG/KG |                                                                                          | -                                                                                       |                                                                              |
|                                                                                                                |             | SB-CDL-02 |                           | 7              | 0.37                       | MG/KG |                                                                                          |                                                                                         |                                                                              |
|                                                                                                                |             | SB-CDL-03 |                           | 4              | 1                          | MG/KG |                                                                                          |                                                                                         |                                                                              |
|                                                                                                                | Thallium    | SB-CDL-03 | BORE                      | 4              | 1.4                        | MG/KG |                                                                                          |                                                                                         |                                                                              |
|                                                                                                                | Vanadium    | SB-CDL-01 | BORE                      | 9              | 3.9                        | MG/KG |                                                                                          |                                                                                         |                                                                              |
|                                                                                                                |             | SB-CDL-01 |                           | 6.5            | 7.5                        | MG/KG |                                                                                          |                                                                                         |                                                                              |
|                                                                                                                |             | SB-CDL-02 |                           | 7              | 9.7                        | MG/KG |                                                                                          | - · · ·                                                                                 |                                                                              |
|                                                                                                                | L           | SB-CDL-03 |                           | 4              | 15.6                       | MG/KG |                                                                                          |                                                                                         |                                                                              |
|                                                                                                                | Zinc        | SB-CDL-01 |                           | 6.5            | 14.5                       | MG/KG |                                                                                          | 1                                                                                       |                                                                              |
|                                                                                                                |             | SB-CDL-02 |                           | 7              | 15.9                       | MG/KG |                                                                                          | 1                                                                                       |                                                                              |
| ·                                                                                                              |             | SB-CDL-03 | BORE                      | 4              | 258                        | MG/KG |                                                                                          | ·                                                                                       |                                                                              |

<sup>4</sup> Constituent concentrations that exceed screening criteria are listed in ascending order (lowest to highest).
<sup>b</sup> X indicates detected concentration exceeds the screening criteria.
<sup>a</sup> EPA Région III RBCs.

- 13 J - 51

# Table 5.4-8. Construction Debris Landfill Non-Metal Constituents Detected Above Screening Criteria in Soil Wallops Flight Facility, Accomack County, Virginia

| Sample                               |                     |              | Field            |     |       |       | Protection of                                                                             | Human Health                                                                            | Migration to Groundwater                                                     |
|--------------------------------------|---------------------|--------------|------------------|-----|-------|-------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Interval<br>(Depth)                  | Constituent         | Sample<br>ID | Sample<br>Number |     |       | Units | Concentration Exceeds<br>Region III RBCs<br>Residential Screening<br>Value <sup>b,c</sup> | Concentration Exceeds<br>Region III RBC<br>Industrial Screening<br>Value <sup>b.c</sup> | Concentration Exceeds<br>Region III RBC<br>Screening<br>Value <sup>b.c</sup> |
| Surface Soil (0 to <0.5 feet BLS)    | Chloromethane       | SB-CDL-03    | BORE             | 0   | 87    | µg/kg |                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                   | X                                                                            |
| Subsurface Soil (0.5 to 15 feet BLS) | 1,2-Dichloropropane | SB-CDL-01    | BORE             | 9   | 2000  | µg/kg | · · ·                                                                                     |                                                                                         | x                                                                            |
|                                      | Benzo(a)pyrene      | SB-CDL-01    | BORE             | 6.5 | 220   | µg/kg | X                                                                                         |                                                                                         |                                                                              |
|                                      | Ethylbenzene        | SB-CDL-01    | BORE             | 9   | 12000 | µg/kg | · · · · · · · · · · · · · · · · · · ·                                                     |                                                                                         | X                                                                            |
|                                      | Naphthalene         | SB-CDL-01    | BORE             | 9   | 830   | pg/kg |                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                   | ×                                                                            |
|                                      | Tetrachloroethene   | SB-CDL-01    | BORE             | 9   | 1100  | µg/kg |                                                                                           |                                                                                         | X                                                                            |

in

\* Constituent concentrations that exceed screening criteria are listed in ascending order (lowest to highest).

<sup>b</sup> X indicates detected concentration exceeds the screening criteria.

<sup>c</sup> EPA Region III.

Limited Site Investigation - Final Report

May 2003

Table 5.4-9. Construction Debris LandfillMetal Constituents Detected Above Screening Criteria in GroundwaterWallops Flight Facility, Accomack County, Virginia

| Constituent |           | Field<br>Sample<br>Nymber |    | Concentration <sup>a</sup> | Units | Protection of Human Health                                                   |                                                                        |  |
|-------------|-----------|---------------------------|----|----------------------------|-------|------------------------------------------------------------------------------|------------------------------------------------------------------------|--|
|             |           |                           |    |                            |       | Concentration Exceeds<br>Region III RBC<br>Screening<br>Value <sup>b,c</sup> | Concentration Exceeds<br>Federal MCL<br>Screening Value <sup>b,d</sup> |  |
| Iron        | HP-CDL-01 | PNCH                      | 10 | 28600                      | µg/L  | X                                                                            |                                                                        |  |
| Manganese   | HP-CDL-01 | PNCH                      | 10 | 791                        | µg/L  | X                                                                            | · · · · · · · · · · · · · · · · · · ·                                  |  |

<sup>a</sup> Constituent concentrations that exceed screening criteria are listed in ascending order (lowest to highest).

<sup>b</sup> X indicates detected concentration exceeds the screening criteria.

<sup>c</sup> EPA Region III RBCs.

<sup>d</sup> MCL.

# Table 5.4-10. Construction Debris LandfillNon-Metal Constituents Detected Above Screening Criteria in GroundwaterWallops Flight Facility, Accomack County, Virginia

|                   |              | Field            | -  |       | Units | Protection of Human Health                                                   |                                                                        |  |
|-------------------|--------------|------------------|----|-------|-------|------------------------------------------------------------------------------|------------------------------------------------------------------------|--|
| Constituent       | Sample<br>ID | Sample<br>Number |    |       |       | Concentration Exceeds<br>Region III RBC<br>Screening<br>Value <sup>b,c</sup> | Concentration Exceeds<br>Federal MCL<br>Screening Value <sup>b,d</sup> |  |
| Benzene           | HP-CDL-02    | PNCH             | 8  | 0.54  | µg/L  | Х                                                                            |                                                                        |  |
| Ethylbenzene      | HP-CDL-01    | PNCH             | 10 | 920   | µg/L  | X                                                                            | Х                                                                      |  |
| Naphthalene       | HP-CDL-01    | PNCH             | 10 | 120   | µg/L  | X                                                                            |                                                                        |  |
| Tetrachloroethene | HP-CDL-01    | PNCH             | 10 | 12    | µg/L  | X                                                                            | X                                                                      |  |
| Toluene           | HP-CDL-01    | PNCH             | 10 | 12000 | µg/L  | X                                                                            | X                                                                      |  |
| Trichloroethene   | HP-CDL-01    | PNCH             | 10 | 1.1   | µg/L  | X                                                                            |                                                                        |  |

\* Constituent concentrations that exceed screening criteria are listed in ascending order (lowest to highest).

<sup>b</sup> X indicates detected concentration exceeds the screening criteria.

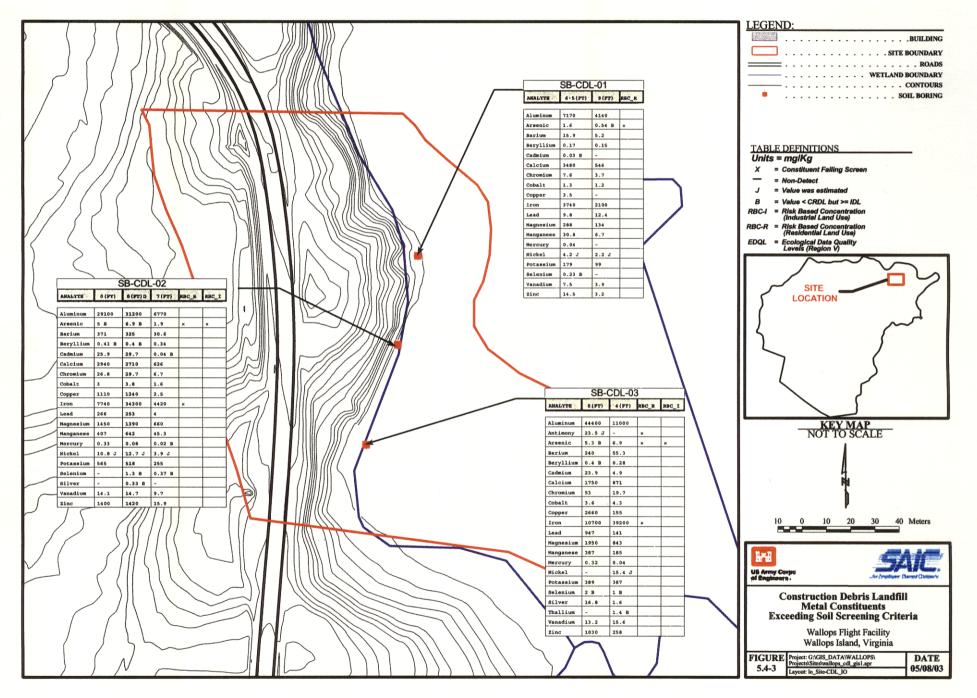
<sup>c</sup> EPA Region III RBCs.

d MCL.

The concentrations and distribution of inorganic constituents detected in the soil at the CDL are presented in Figure 5.4-3. Table 5.4-7 presents the inorganic constituents detected in the soil borings at the CDL that exceed the human health screening criteria and lists the soil boring (sample I.D. and depth) where the constituent concentration exceeds the screening criteria in the surface and subsurface soil, the detected concentrations that exceed the screening criteria, and the screening criteria that the detected concentration exceeds. The following sections summarize the results of the toxicity screen and characterize the distribution of the inorganic constituents that were detected at concentrations that exceed the human health screening criteria at the CDL.

Arsenic was detected in all samples collected from the surface soil at SB-CDL-02 and SB-CDL-03 at concentrations that exceeded the human health Region III RBCs for industrial land use (4 mg/kg), residential land use (0.426 mg/kg), and migration to groundwater (0.03 mg/kg). The maximum concentration of arsenic (6.9 mg/kg) in the surface soil was detected in the sample collected at SB-CDL-02, located adjacent to the southern channel. Arsenic concentrations detected at this location exceeded the human health Region III RBC for industrial land use (4 mg/kg). Concentrations of arsenic detected in the surface soil at the CDL are relatively consistent (i.e., same order of magnitude) throughout the site (<6.9 mg/kg).

Arsenic concentrations detected in the subsurface soil exceeded the Region III RBCs for residential land use and migration to groundwater at all soil boring locations and in all samples collected from the subsurface soils. The maximum concentration (6.9 mg/kg) of arsenic in the subsurface soil was detected at 4 feet BLS, in the sample collected at SB-CDL-03, located adjacent to the southern channel. Arsenic concentrations detected in the subsurface soil at SB-CDL-03 also exceeded the Region III RBC for industrial land use. Concentrations of arsenic detected in the subsurface soils were relatively consistent throughout the site (0.54 to 6.9 mg/kg).


Antimony and iron were the only other metals detected in the CDL soil at concentrations that exceeded screening criteria. Antimony was detected in the surface soil at SB-CDL-03, adjacent to the southern channel, at a concentration (23.5 mg/kg) that exceeded the Region III RBC for migration to groundwater (13 mg/kg). Iron was detected in the surface soil at SB-CDL-02 (34,300 mg/kg) and in the subsurface soil at SB-CDL-03 (39,200 mg/kg) at concentrations that exceeded the Region III RBC for residential land use (23,464 mg/kg).

Although arsenic, antimony, and iron were the only metal constituents detected at concentrations that exceed the screening criteria in the CDL soils, the maximum concentration of lead (947 mg/kg) detected at SB-CDL-03 may result in potential elevated risk.

**Organic Constituents**—Surface and shallow subsurface soil samples at the CDL were analyzed for VOCs and SVOCs. The following presents the organic constituents that were detected and the screening criteria that were exceeded:

- Surface soil (0 to <0.5 feet BLS)
  - Industrial none
  - Residential none
  - Migration to groundwater chloromethane
- Shallow subsurface soil (0.5 to 15 feet BLS)
  - Industrial none
  - Residential benzo(a)pyrene
  - Migration to groundwater 1,2-dichloropropane, benzo(a)pyrene, ethylbenzene, naphthalene, and tetrachloroethene (PCE).

# THIS PAGE WAS INTENTIONALLY LEFT BLANK



0120A13Y

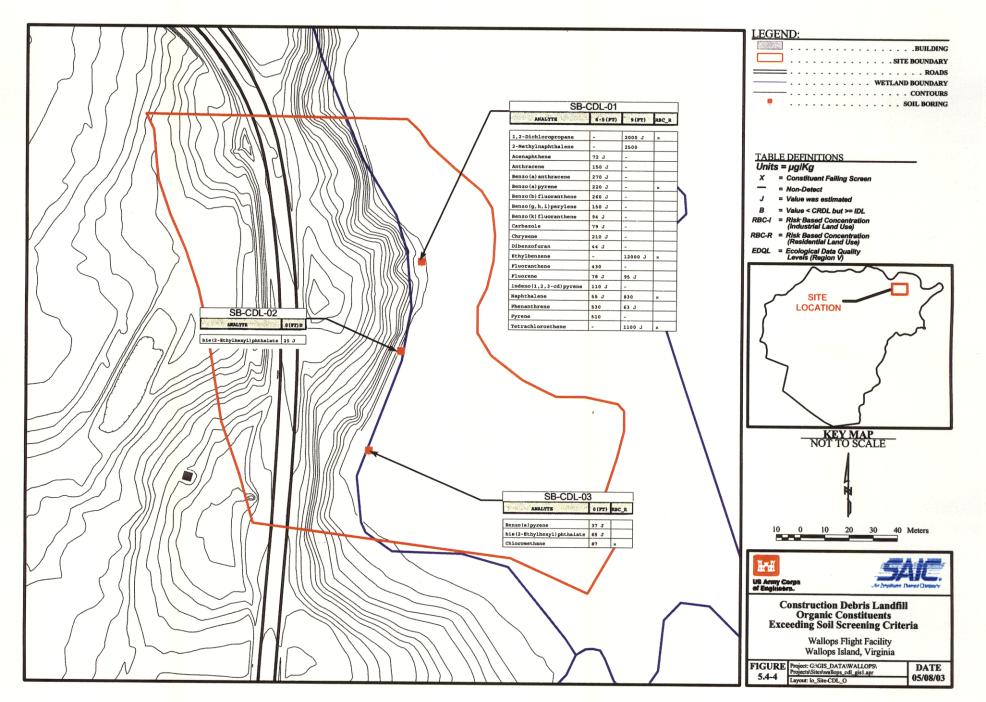
The concentrations and distribution of organic constituents detected in the soil at the CDL are presented in Figure 5.4-4. Table 5.4-8 presents the organic constituents detected in the soil borings at the CDL that exceed the human health screening criteria and lists the soil boring (sample I.D. and depth) where the constituent concentration exceeds the screening criteria in the surface and subsurface soil, the detected concentrations that exceed the screening criteria, and the screening criteria that the detected concentration exceeds. The following sections summarize the results of the toxicity screen and characterize the distribution of the organic constituents that were detected at concentrations that exceed the human health screening criteria at the CDL.

One organic compound (benzo[a]pyrene) was detected in the soils at the CDL at concentrations (220  $\mu$ g/kg) that exceed the Region III RBC for residential land use (87  $\mu$ g/kg). This PAH was detected only in the subsurface soils at concentrations that exceed the residential RBC and detected concentrations of the compound above the criteria were limited to the shallow subsurface soils (6.6 feet BLS) at SB-CDL-01.

Five organic compounds (chloromethane, 1,2-dichloropropane, ethylbenzene, naphthalene, and PCE) were detected in the soils at the CDL at concentrations that exceed the Region III RBC for migration to groundwater. One compound (chloromethane) was detected in the surface soils at SB-CDL-03 at concentrations that exceed the migration to groundwater screening criteria. The remaining four compounds were detected at concentrations greater than the migration to groundwater screening criteria in the shallow subsurface soil at SB-CDL-01 (9 feet BLS).

# 5.4.3.2 Groundwater Results and Nature and Extent

As discussed in Section 5.4.2, three Hydropunch<sup>®</sup> groundwater probes (HP-CDL-01 through HP-CDL-03) were installed and sampled at the CDL soil boring sample locations during the WFF LSI. All samples were analyzed for VOCs, SVOCs, and metals. The following sections present the Hydropunch<sup>®</sup> laboratory analytical results and summarize the nature and extent of constituents detected in the groundwater at the CDL.


*Inorganic Constituents*—Thirteen inorganic constituents were detected in the groundwater. The following paragraphs identify the metals that exceed the Region III RBCs for tap water or the MCL:

- EPA Region III RBC for tap water iron and manganese
- MCL none.

The concentrations and distribution of inorganic constituents detected in the groundwater at the CDL are presented in Figure 5.4-5. Table 5.4-9 presents the inorganic constituents detected in the groundwater at the CDL that exceed the Region III or MCL human health screening criteria and lists the Hydropunch<sup>®</sup> location where the constituent concentration exceeds the screening criteria in the groundwater, the detected concentrations that exceed the screening criteria, and the screening criteria that the detected concentration exceeds. The following sections summarize the results of the toxicity screen and characterize the distribution of the inorganic constituents that were detected at concentrations that exceed the human health screening criteria at the CDL.

Iron and manganese were detected at concentrations greater than the Region III RBCs for tap water at HP-CDL-01. At HP-CDL-01 iron was detected at 28,600  $\mu$ g/L (Region III RBC [10,950  $\mu$ g/L]) and manganese was detected at 791  $\mu$ g/L (Region III RBC [730  $\mu$ g/L]). No inorganic constituents exceeded the MCL criteria.

THIS PAGE WAS INTENTIONALLY LEFT BLANK



5.4-22

NIZNAILV

**Organic Constituents**—Sixteen organic compounds (5 SVOCs and 11 VOCs) were detected in the groundwater at the CDL. The following paragraphs list the type of organic constituents detected and identifies the organic compounds that exceed the Region III RBCs and the MCLs:

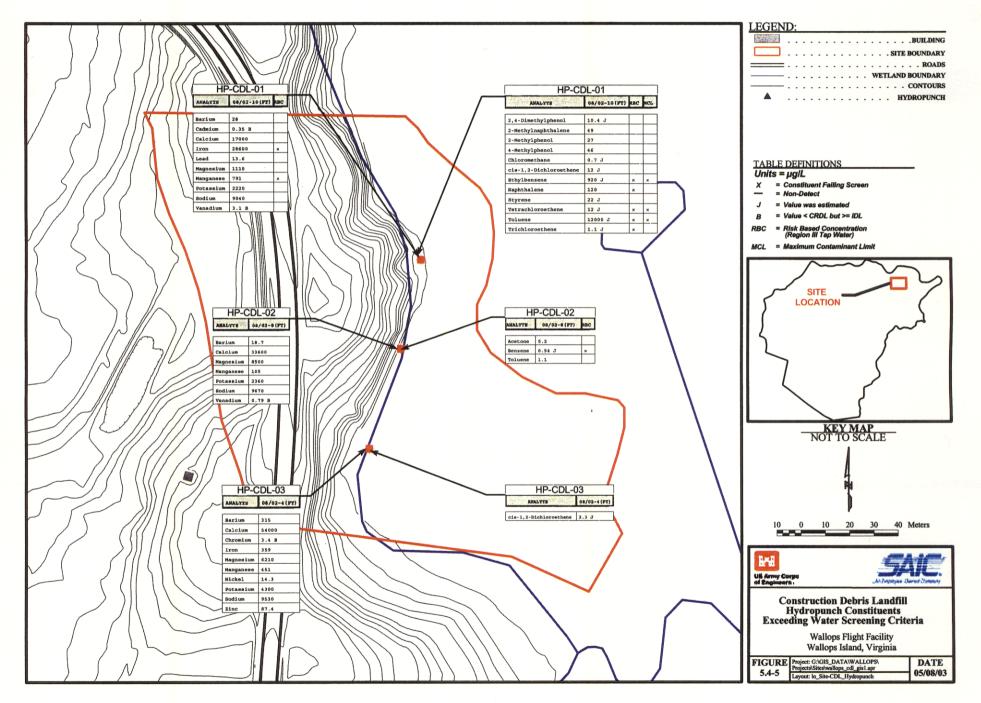
- EPA Region III RBC for tap water benzene, ethylbenzene, naphthalene, PCE, toluene, and trichloroethene (TCE)
- MCL ethylbenzene, PCE, and toluene.

The concentrations and distribution of organic constituents detected in the groundwater at the CDL are presented in Figure 5.4-5. Table 5.4-10 presents the organic constituents detected in the groundwater at the CDL that exceed the Region III RBC or MCL screening criteria and lists the Hydropunch<sup>®</sup> location where the constituent concentration exceeds the screening criteria, the detected concentrations that exceed the screening criteria that the detected concentration exceeds. The following sections summarize the results of the toxicity screen and characterize the distribution of the organic constituents that were detected at concentrations that exceed the groundwater screening criteria at the CDL.

Three VOCs (ethylbenzene, PCE, and toluene) were detected at HP-CDL-01 at concentrations that exceeded the EPA Region III RBC for tap water and the MCL. Two additional organic compounds (naphthalene and TCE) also were detected at HP-CDL-01 at concentrations that exceed the Region III RBC for tap water.

### 5.4.4 Conclusions and Recommendations

This section presents the conclusions of the LSI for the Construction Debris Landfill and summarizes recommendations for future site activities. Section 5.4.4.1 summarizes results and conclusions associated with completion of the LSI. Section 5.4.4.2 combines conclusions and site historical information to make recommendations for future site activities.


### 5.4.4.1 Conclusions

This following paragraphs summarize the nature of the contamination identified in the soil and groundwater and discusses the inorganic and organic constituents present in each sample media (soil and groundwater).

# Soils – Inorganic Constituents

Data collected during the LSI investigation does not indicate that metals concentrations exceeding screening criteria have been released to the soils at the CDL. The maximum concentrations of arsenic (6.9 mg/kg) detected in the soils at the CDL is well below the naturally occurring background concentrations of arsenic detected in the State of Virginia. The concentrations of arsenic detected at the CDL are not greater than concentrations of arsenic detected in the surface release [spill or leak] and there is no persistent source of arsenic at the CDL. Data suggest that concentrations of arsenic detected are the result of natural conditions and that these concentrations would be screened out during the completion of a background comparison.

The distribution of metal constituents detected at concentrations that exceed screening criteria does not indicate a potential source for these constituents. Concentration of the metals (antimony and iron) detected in the soils do not seem to be risk drivers (present at concentrations that greatly influence potential risk).



5.4-24

ALIDAIEV

# Soils-Organic Constituents

Data collected during the LSI investigation indicates that organic compounds have been released to the shallow subsurface soils at the CDL. Conclusions associated with the distribution of the organic compounds are summarized below.

Organic compounds detected at concentrations above regulatory screening criteria at the CDL consisted of 5 different organic compounds. Data indicates that the concentrations of the organic compounds detected above screening criteria were limited to the surface soils at SB-CDL-03 and to the shallow subsurface soils at SB-CDL-01.

Concentrations of the compound, chloromethane, were detected at concentrations that exceed the migration to groundwater screening criteria at SB-CDL-03. However, concentrations above this criteria at SB-CDL-03 was only detected in the surface soil sample and was not detected at depth, suggesting that the compound has either migrated away from the location or has attenuated with depth.

The distribution of the concentrations of the other organic compounds detected during the LSI at the CDL seems to indicate that a residual source of organic compounds is present in the subsurface soils at SB-CDL-01. Results indicate that various classes (VOCs, PAHs and chlorinated solvents) of organic compounds are present in the area identified as the "possible dump site" and that concentrations greater than the regulatory screening criteria were detected in both samples collected from the boring. In addition, observations made during the drilling of the soil boring indicate that organic compounds are being released to the groundwater at the CDL and that the subsurface soil is visibly stained and discolored to a depth of at least 16 feet BLS.

# Groundwater – Inorganics

فيشد

أستنده

~··;

فسننة

Data collected during the LSI investigation indicates that metals have been released to the groundwater at the CDL. The concentrations of iron and manganese detected at the CDL are greater than concentrations of iron and manganese detected in the groundwater at other WFF locations The distribution of metal constituents detected at concentrations that exceed screening criteria indicates that the area at SB-CDL-01 could be a potential source for these constituents.

# Groundwater - Organics

Data collected during the LSI investigation indicates that organic compounds (VOCs and SVOCs) have been released to the groundwater at the CDL. The concentrations of these compounds detected at the CDL are greater than concentrations of these compounds detected in the groundwater at other WFF locations. The distribution of organic constituents detected at concentrations that exceed screening criteria indicates that the area at SB-CDL-01 is a potential source for these constituents.

# 5.4.4.2 Recommendations

Based on information obtained during the completion of the LSI, future CDL activities should include the following:

• Historical documents, such as maps and photos, should be obtained to help identify and locate information about the CDL and indicate what activities occurred and/or how the property was used. Historical records identifying physical structures present at the site, potential of hazards or contamination, known sources of information, and historical activities should be documented. An inspection of the site should be conducted to confirm or deny presence of structures, potential contamination.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

6. REFERENCES Commonwealth of Virginia. 1982. State Water Control Board (SWCB). Groundwater Resources of the Eastern Shore of Virginia, Bulletin 332.

Earth Tech, Inc. 1999. Summary Report. December 29. Earth Tech, Inc. 2000. Status Summary Report. January 4.

Earth Tech, Inc. December 7, 2001. Summary Report. Ebasco Services, Inc. 1990a. Remote Sensing Report. June.

- Ebasco Services, Inc. 1990b. Environmental Sites Survey. Wallops Flight Facility. Wallops Island, Virginia. November.
- EPA (U.S. Environmental Protection Agency). 1994a. CLP National Functional Guidelines for Organic Data Review.
- EPA. 1994b. CLP National Functional Guidelines for Inorganic Data Review.
- EPA. May 1996. Aerial Photographic Site Analysis- Wallops Flight Facility, Wallops Island, Virginia. Environmental Photographic Interpretation Center (EPIC). TS-PIC-95070.
- EPA. 1998a. Requirements for Quality Assurance Project Plans for Environmental Data Operations, EPA QA/R-5, Washington, DC, October.
- EPA. 1998b. Guidance for Quality Assurance Project Plans, EPA QA/G-5, EPA/600/R-98/018. Office of Research and Development, Washington, DC, February.
- EPA. 1999. Region V Ecological Data Quality Levels (EDQLs). October Revision. Online at www.epa.gov/reg5oopa/rcraca/EDQL.htm.
- EPA. 2001. Maximum Contaminant Level (MCL) Table. March.
- Horsely Witten Hegmann, Inc. 1991. Groundwater Supply Protection and Management Plan for the Eastern Shore of Virginia, Final Report. Eastern Shore of Virginia Groundwater Study Committee, Accomack. August 13.
- Metcalf & Eddy. 1993a. NASA Wallops Flight Facility Site Inspection. Preliminary Report No. 1. Unexploded Ordnance/Magnetometer Survey Results. July 23.
- Metcalf & Eddy. 1993b. NASA Wallops Flight Facility Site Inspection. Preliminary Report No. 2. Soil Gas Survey Results. July 23.
- Metcalf & Eddy. 1996. Site Inspection for Miscellaneous Sites at Wallops Flight Facility. Volume 1. Site Inspection Report. March 27.
- MicroPact (MicroPact Engineering, Inc.). 2002. Draft Desktop Audit Summary Report for the Site Screening Process Wallops Island Flight Facility Accomack County, Virginia.
- NASA (National Aeronautics and Space Administration). 1990a. Groundwater Resource Evaluation of the Middle Miocene Aquifer- Main Base, NASAIGSFC, Wallops Flight Facility. September
- NASA. 1990b. Letter from Bott, W., NASA, Wallops Flight Facility, Facilities Engineering Branch, to Newton, V., Commonwealth of Virginia, State Water Control Board June 26.
- NASA. Undated. Goddard Space Flight Center, Wallops Flight Facility website. www.WIFF.nasa.gov/pages/wallops-history.html.

Land

- NASA. 1999. Environmental Resources Document, National Aeronautics and Space Administration, Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, Virginia. October.
- NASA. 2001. Preliminary Potentially Responsible Party (PRP) Analysis, Goddard Space Flight Center, Wallops Flight Facility. February 16.
- Russnow, Kane & Andrews. 2001. Ground Water Resource Evaluation for the Main Base, Wallops Island. March.
- SAIC. 2002a. Field Sampling Plan, Wallops Flight Facility, Accomack County, Virginia. Prepared for the U.S. Army Corps of Engineers. USAEC Contract No. DACA65-99-D-0068. July.
- SAIC. 2002b. Quality Assurance Project Plan, Wallops Flight Facility, Accomack County, Virginia. Prepared for the U.S. Army Corps of Engineers. USAEC Contract No. DACA65-99-D-0068. July.
- SAIC. 2002c. Site Safety and Health Plan, Wallops Flight Facility, Accomack County, Virginia. Prepared for the U.S. Army Corps of Engineers. USAEC Contract No. DACA65-99-D-0068. July.
- SCS. 1982. Accomack County preliminary soil classification map.
- USACE (United States Army Corps of Engineers, Norfolk District). April 20, 1999. Limited Site Characterization Report For NOAA Facility, NASA Wallops Flight Facility, Wallops Island, Virginia.
- USACE. 2001. USACE Engineering Manual (EM) 200-1-3, Requirements for the Preparation of Sampling and Analysis Plans.
- USATEC (U.S. Army Topographic Engineering Center). November 2000. Final Report, GIS-Based Historical Time Sequence Analysis, Wallops Flight Facility, Wallops Island, Virginia.
- USDA (United States Department of Agriculture). 1994. Soil Conservation Service. Soil Survey of Accomack County, Virginia.
- USDOI (U.S. Department of the Interior) Fish & Wildlife Service. August 1975. Letter to NASA Wallops Flight Center. Re: Wallops Island Transfer.
- Versar, Inc. 1992. Draft. RCRA Facility Assessment/Environmental Priorities Initiative. NASA Goddard Space Flight Center, Wallops Flight Facility. November.
- Versar, Inc. 2001. Remedial Investigation/Feasibility Study Report for Sites 14 and 15, NASA Goddard Space Flight Center, Wallops Flight Facility. Wallops Island, Virginia. April 13.

## APPENDIX A SOIL BORING LOGS

-;~~~

لب

### THIS PAGE WAS INTENTIONALLY LEFT BLANK



•

F

Field Boring Log

Page \ of \

|                                        |                                                 |                      |                     |           |            | 7               |              |                  |                          | the second s |                              |                                       |
|----------------------------------------|-------------------------------------------------|----------------------|---------------------|-----------|------------|-----------------|--------------|------------------|--------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------|
| ite F                                  | ile No.                                         | COMAC                | K                   |           | Bor        | ing N           | 0.50         | <u>3-In</u>      | 1-01                     | Monitor Well No                                                                                                | . NA                         |                                       |
| Site F                                 | ile Name                                        | •                    |                     |           |            | 1               | face         |                  | -                        | •                                                                                                              | Completion Dep               |                                       |
| ed IC                                  | ) No.                                           |                      |                     |           |            | Aug             | er D         | epth             | NIA                      | r                                                                                                              | Rotary Depth                 | A/A                                   |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Planar Coordinates: N.                          |                      | E.                  |           |            | Date            | e: Sta       | art %            |                          | meoqu                                                                                                          | 5 Finish <sup>8</sup> /4/02T |                                       |
| breh                                   | ole status (BSTAT)*: Borch                      | ole Abundo.<br>onste | ned                 | Gro       | und v      |                 |              |                  |                          |                                                                                                                | thod (See back):             |                                       |
| Drillin                                | g Equipment:                                    |                      |                     |           |            |                 | le or        |                  |                          | Bare                                                                                                           | Grassy                       | Wooded                                |
| r y<br>N<br>É i                        | Geoprobe                                        |                      |                     | <b></b>   |            | SA              | MPLI         | ES               |                          | 1                                                                                                              | Personnel                    | · · · · · · · · · · · · · · · · · · · |
| يريم<br>رو                             |                                                 | •                    |                     |           |            | T               |              | Τ_               | 1                        | G                                                                                                              | J. Pendleton                 |                                       |
|                                        |                                                 |                      |                     |           |            | Sample Recovery | z            | N Valves (Blows) | n S                      | D-7                                                                                                            | . Bungardn                   |                                       |
| Kefer                                  | to back of page                                 |                      |                     |           | Š          | e Re            | Lab Anal Y/N | es (B            | J. or P.I.D/<br>Readings | H- 7                                                                                                           | 3. Henry                     |                                       |
| ,<br>,                                 |                                                 |                      | Depth               | MOIST     | Sample No. | ampl            | IP An        | Valv             | F.I.D. (                 | <u> </u>                                                                                                       | Mars U.S. Ac                 | E (NORFULK                            |
| ്യcs                                   | DESCRIPTION*                                    | - 1.110 SAUD         | in feet             | ž         | S          |                 | <u>تر  </u>  | Z                | <u> <u> </u> =</u>       |                                                                                                                | REMARKS                      | 1                                     |
| r r                                    | Brownish Yellow 1041<br>Medium to coarse graine | d. maderate to       |                     |           |            | AICO            | 17           |                  |                          | 100                                                                                                            | (cor) 0-0.5                  | 5 BLS                                 |
| ليسا                                   | peoply sorted, subrown i<br>with trace pebbles, | er of to tonnero     | Ē                   | •         |            | N<br>N          |              |                  | 2                        | Ben                                                                                                            | core 1 metals                | ISUOC                                 |
| <u>-</u> Ч                             | Sand becomes coaver                             | 5 better             |                     | Ζ         |            | 57              |              | <b>▲</b> /1      | 24                       | 1 1 1 1                                                                                                        | ioisture                     | •                                     |
| أسبعا                                  | sorted at ~2'BLS                                |                      |                     | 3         |            | 5               |              | I                | Berkgw                   |                                                                                                                |                              |                                       |
| ۲.                                     |                                                 |                      |                     | 4         |            |                 |              | ļ                | β                        |                                                                                                                | · ·                          |                                       |
|                                        |                                                 |                      |                     | 5         |            |                 |              |                  |                          |                                                                                                                |                              |                                       |
| <b>.</b>                               |                                                 |                      | Ē                   |           |            | -               | N            |                  | 7                        |                                                                                                                |                              |                                       |
|                                        |                                                 |                      |                     | <b>لە</b> |            | , ۲,            |              | 4/1              | 100                      | •                                                                                                              |                              |                                       |
|                                        | CON RECOUNT ENE 62                              | auten 1              |                     | 7         | -          | ŝ               |              | Z                | 5 0                      | SA                                                                                                             | 1D BELOMIN                   | 6 FINER                               |
|                                        | SAND BECOMME FUE OR<br>AT ~ YBLS                |                      |                     | 8 -       |            |                 |              |                  | ß                        |                                                                                                                | W DEPTH                      | <b>t</b>                              |
| <i>са</i> .                            | Very Pete Brown 1042                            | 7/3 5and             | պուղո               |           |            |                 | ·            |                  |                          |                                                                                                                |                              |                                       |
|                                        | with white 1048 8/2<br>medium granned moder     | the to well          |                     | ι         |            |                 | M            | _                | 7                        |                                                                                                                |                              |                                       |
| ц.                                     | sorted subrounded ?                             | D tomades            | F 7                 | 0         |            | 101             |              | 2/2              | 101                      | •                                                                                                              | · .                          |                                       |
|                                        | course, subrounded                              | PLANCO               |                     | 1         |            | m               |              | 2                | 3-12                     |                                                                                                                |                              | . •                                   |
| · .                                    | - <b>\</b>                                      | u il achela          | -<br>Intru<br>Intru | 2 -       |            | <u> </u>        |              |                  | Ø                        |                                                                                                                |                              |                                       |
|                                        | White 104R 8/2, with                            | ding                 | E E                 |           |            |                 | N            |                  | -                        |                                                                                                                |                              |                                       |
|                                        | Brown 104R 5/4 Da-<br>Pattern (possibly due     | to He                | E                   | 3         |            |                 |              |                  | in d                     |                                                                                                                | NDING PARTE                  |                                       |
| ni l                                   | flucturtions). Fine                             | to course            |                     | 4         |            | 4               |              | 4/1              | s a                      | 19450                                                                                                          | BABLY ASSO                   | CIATED                                |
|                                        | gramed sand, subar<br>Subrounded, well so       | v rea.               |                     | 5         |            |                 |              | 2                | Becks                    |                                                                                                                | -H FLUCTUA<br>= GROUNDW      |                                       |
|                                        | (High energy barros 5                           | ter)                 |                     |           |            |                 |              |                  | (CL)                     |                                                                                                                |                              | TEC                                   |
|                                        | up to a 1 cm in dieme<br>Rebbles are subrounde  | 9 é                  |                     | 7         |            | SALCO           | <b>Y</b>     |                  |                          | Calle                                                                                                          | of SB-IWL-                   | 01                                    |
|                                        | well souted.                                    | •                    | F F                 |           |            | ₹¥              |              |                  | 5 2                      |                                                                                                                | oz) ct 16.5<br>me, Imetals,  |                                       |
|                                        | HYDROPUNCH HP-IL                                | 36-01                |                     | 8         | .          |                 |              | M/A              | 0.2 °                    |                                                                                                                | oisture                      |                                       |
|                                        | HYDROPUICH HT I                                 | - ZO'BLS             |                     | <b>i</b>  |            | 4               |              | Z                | O K                      |                                                                                                                |                              |                                       |
|                                        |                                                 |                      |                     | •  -      |            |                 |              |                  | си<br>I                  |                                                                                                                |                              |                                       |
|                                        |                                                 |                      |                     |           |            |                 | ,            | r                | ···· r                   |                                                                                                                |                              |                                       |



Field Boring Log

Page\_1\_ of \_1

|          | SAIC.                                         | F                                     | ield Bo          | orin     | g L        | og              |              |                  |                                  |            | Page               | <u> </u>                              | <u> </u> |                           |
|----------|-----------------------------------------------|---------------------------------------|------------------|----------|------------|-----------------|--------------|------------------|----------------------------------|------------|--------------------|---------------------------------------|----------|---------------------------|
| Site     | File No.                                      | County Ac                             | COMAC            |          |            | Bor             | ing N        | 0.58             | s-Iw                             | 02         | Monitor V          | Vell No                               | . NIA    |                           |
| Site     | File Name                                     |                                       |                  |          |            | 1               | face l       |                  |                                  |            | Completio          |                                       |          | Ī                         |
| Fed      | ID No.                                        |                                       |                  |          |            | Aug             | jer Do       | epth             | NA                               |            | Rotary De          |                                       |          | - <b>12</b><br>  <b>1</b> |
| State    | Planar Coordinates: N.                        | · · · · · · · · · · · · · · · · · · · | E.               |          |            | ÷               |              |                  | _                                |            | Finish 9           |                                       |          | 1                         |
| Bore     | hole status (BSTAT) *: Borchol                | e Abundon                             | rq               | Gro      | und v      |                 | Dej          |                  | 15                               |            | thod (See b        |                                       | 1912     | َ<br>الله ال              |
| <u> </u> | ng Equipment:                                 |                                       |                  | <u> </u> |            |                 | le on        |                  |                                  | are        | Grass              |                                       | Woode    |                           |
| *        | Geoprobe                                      |                                       |                  |          |            |                 |              |                  |                                  |            |                    | $\leq$                                |          |                           |
|          | •                                             |                                       |                  |          | Г          | SA              | MPLE         | <u>-S</u>        | 1                                | 6.7        |                    | onnel                                 |          | -                         |
|          |                                               |                                       |                  |          |            | very            |              | (SM)             | 50                               |            | . Pendle<br>. Bung |                                       |          |                           |
| Refe     | r to back of page                             |                                       |                  |          | ġ          | Sample Recovery | Lab Anal Y/N | N Valves (Blows) | F.I.D. or P.I.D/<br>LEL Readings | H- 7       | 5. Henry           |                                       |          |                           |
|          |                                               | ·                                     |                  | ST.      | Sample No. | ple             | Anal         | alves            | ). or<br>Rea                     | H+.<br>6.1 | Hears U.           | 5. Ace                                | ELWIDEF  |                           |
| uscs     | DESCRIPTION*                                  |                                       | Depth<br>in feet | MOIST    | Sam        | Sarr            | Lab          | N<br>N           |                                  |            | REM                | ARKS                                  |          | Ē                         |
|          | BROWNISH YELLOW 104                           |                                       | E T              |          | SALCOL     | m               | 2            | 1                |                                  |            |                    | ·····                                 |          | Ľ                         |
|          | FINE TO U. COARSE GRA<br>ANGULAR TO SUBROUNDE | INED,<br>In moderate                  |                  | I I      | ŝ          |                 |              |                  | 10                               |            |                    |                                       |          | -                         |
|          | SORTING                                       |                                       |                  | z        | j          |                 |              | 1                | 20                               |            |                    |                                       |          | Ľ                         |
|          |                                               |                                       | E E              | -        |            |                 |              | 4/1              | R I                              | •          |                    |                                       |          |                           |
|          |                                               |                                       | EI               | 3        |            |                 |              |                  | الأم                             |            |                    |                                       |          |                           |
|          |                                               |                                       |                  | 4        |            |                 |              |                  |                                  | ·····      |                    |                                       | ·····-   |                           |
|          |                                               |                                       | 티 크              | S        |            |                 |              |                  | 7                                |            |                    |                                       |          | ſ                         |
|          |                                               | •                                     |                  | ( )      |            |                 |              | بو               | ş                                | 15 T       | o zo%              | S ANO                                 | SULAZ    |                           |
|          |                                               |                                       |                  | 4        |            |                 | Z            | 4/1              | ري<br>الد                        | TOS        | NBROUT             | DED 7                                 | FEBBLE   | ſ                         |
|          |                                               |                                       |                  | 7        |            |                 | а<br>— с т   |                  | 3                                |            |                    | •                                     |          | Ŀ                         |
|          | WHITE IOYR 8 2 TO YE                          | HINNISH                               | <u> </u>         | 3  -     |            |                 |              |                  |                                  |            |                    | ·····                                 |          |                           |
|          | BROWN IOUR 54 VARIA                           |                                       |                  |          |            |                 |              |                  | ~                                |            |                    |                                       |          | L                         |
|          | FROM U. FILE TO COS                           | izse f                                | : 1              |          |            |                 |              |                  | 3                                | _226       | F Amou             | o TL                                  | 5        |                           |
|          | GRAINED, SUBANGULAR T<br>SUBROUNDED, WELL SO  | O<br>Detter                           |                  | <b>5</b> |            |                 | Z            | A/N              | jų.                              | BAND       | MP (or             | DATI                                  | sul      | L                         |
|          | SUBPOOR DED, OF CHE                           |                                       |                  |          |            |                 |              |                  |                                  | ZONE       | 5). BAN<br>H ENERG | י <i>ם 20</i><br>ט                    |          |                           |
|          |                                               |                                       |                  | z        | <u>.</u>   |                 |              |                  | <b>14</b>                        | ; (TVO     |                    | · · · · · · · · · · · · · · · · · · · |          |                           |
|          |                                               |                                       |                  |          |            |                 |              |                  | 1                                |            |                    |                                       |          |                           |
|          |                                               |                                       |                  | S        |            |                 |              |                  | 3                                |            |                    |                                       |          |                           |
|          |                                               |                                       |                  | 4        |            |                 | T            | A/1              | 5                                |            | •                  |                                       |          |                           |
|          |                                               |                                       | ] *              | 5        |            |                 |              | 7                | Z                                |            |                    |                                       |          |                           |
|          |                                               |                                       |                  |          |            |                 |              |                  | ŝ                                |            |                    |                                       | 1        |                           |
| ·        |                                               | Ė                                     | E                |          | Shun       | 31              | 3            |                  | 10                               |            |                    | · · · · · · ·                         | ,        |                           |
|          |                                               | Ē                                     |                  | <b>r</b> | 3          |                 |              |                  | 5                                |            |                    |                                       |          |                           |
|          | COLLECT HP-IWL-02<br>(HOROPUNCH SAMPLE)       | , E                                   |                  | B        |            |                 |              | A                | ۲<br>بد                          |            | •                  |                                       | 4        |                           |
|          | 3 down UDAS, 2 12 Ame                         |                                       |                  |          |            |                 |              | Z                | 3r<br>Mr                         |            |                    |                                       |          |                           |
|          | (SUOCS), I IL POUR (META                      | us) E                                 | 7                | 4        |            |                 |              |                  |                                  |            |                    |                                       | 1        |                           |
|          |                                               | E                                     |                  | >  -     | -          |                 |              |                  |                                  |            |                    | ······                                |          |                           |
|          |                                               |                                       | -                | 1        | 1          |                 |              |                  | 1                                |            |                    |                                       |          |                           |



.

H

Field Boring Log

|                                            |                  |            |                  |          |            | <u> </u>        |              |                  | _                                |                                                                                                                 |              | -         |     |
|--------------------------------------------|------------------|------------|------------------|----------|------------|-----------------|--------------|------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|-----------|-----|
| ite File No.                               | COMAC            | -K         |                  | Вогі     | ng No      | ).Se            | S-IW         | 1-03             | Monitor We                       | INO. NIA                                                                                                        | 4            |           |     |
| Site File Name                             | • •              | •••        |                  |          |            | Surf            | ace E        | lev.             |                                  |                                                                                                                 | Completion   | Depth Zo  | 5   |
| ed ID No.                                  |                  |            |                  |          |            | Aug             | er De        | pth              | NA                               |                                                                                                                 | Rotary Dept  | h NA      |     |
| State Planar Coordinates: N.               |                  | •          | E.               |          |            | Date            | : Sta        | n 8/0            | o/ozTi                           | the subscription of the local division of the local division of the local division of the local division of the | Finish %/    |           | 30  |
| orehole status (BSTAT)*: Bo                | rehole<br>inton; | Abundon    | rg               | Gro      |            |                 |              |                  | 19"                              |                                                                                                                 | hod (See bad |           |     |
| Drilling Equipment                         |                  |            |                  | Sur      | face       | (Circ           | le on        | e):              | Ē                                | Bare                                                                                                            | Grassy       | Woo       | ded |
| Geoprob                                    |                  |            |                  |          |            | SAI             | MPLE         | S                |                                  | T                                                                                                               | Persor       | nel       |     |
|                                            | · ·              |            |                  |          | 1          | N               | 1            | (s               |                                  |                                                                                                                 | . Pendlet    |           |     |
|                                            | <u> </u>         |            |                  |          |            | Sample Recovery | Ę            | N Valves (Blows) | /CLL<br>sBuj                     |                                                                                                                 | . Bunger     | dner      | •   |
| Refer to back of page                      |                  |            | <u> </u>         | -        | le No      | e R.            | Inal         | Ves (            | . or p<br>Read                   | H- E                                                                                                            | b. Henry     |           | -   |
| SCS DESCRIPTION*                           |                  | •          | Depth<br>in feet | MOIST    | Sample No. | Sam             | Lab Anal Y/N | N Va             | F.I.D. or P.I.D/<br>LEL Readings | 6.                                                                                                              | REMAR        | ACE (NOR  | HOU |
| 12.11. 1. 5                                | 225/4            | Swid       |                  | -        | 2          |                 | 5            |                  | 1                                |                                                                                                                 |              |           |     |
| Medium to course gu<br>to subungular, mode |                  | Lindrand C | -<br>L<br>L      | 1        | -          |                 | SAICOL       |                  | 10                               |                                                                                                                 |              |           |     |
| to subunguine , moo                        |                  | د          |                  | z        |            |                 | ~            | 4                |                                  |                                                                                                                 |              |           |     |
|                                            | •                |            |                  | 3        |            |                 |              | 4/1              | مدلجهم                           | 13AND                                                                                                           | OF OKIDA     | RON       |     |
|                                            |                  |            | E                | ·        |            |                 |              |                  | 5                                | (DARK                                                                                                           | BROWN T      | s busice; |     |
|                                            |                  |            | Ē                | 4        |            |                 |              |                  |                                  | ·····                                                                                                           |              |           |     |
|                                            |                  |            |                  | σ        |            |                 |              |                  | 7                                |                                                                                                                 |              | -         |     |
|                                            |                  | ·          |                  | 4        |            |                 |              | を/と              | 10                               |                                                                                                                 |              |           |     |
|                                            |                  |            |                  | 7        | ł          |                 |              | Z                | كالدلاط                          |                                                                                                                 |              |           |     |
|                                            |                  |            |                  | 8 -      |            |                 |              |                  | w<br>M                           |                                                                                                                 |              |           |     |
|                                            |                  | Т.,        | ΕΞ               |          |            |                 |              |                  |                                  |                                                                                                                 |              |           |     |
| · · ·                                      |                  | 12         |                  | 1        | •          |                 |              |                  | 2                                |                                                                                                                 | •            |           |     |
| Yellowish brown "<br>when whete 1092 B     | してにこ             | NO'BLS)    |                  | 0        |            |                 |              | \$/N             | 5                                |                                                                                                                 |              |           |     |
|                                            |                  |            |                  | 1        |            |                 |              | 2                | 2                                |                                                                                                                 |              |           |     |
| around Decomina                            | "twee            |            | 티크               | 2 -      |            |                 | ·            |                  | (7)                              |                                                                                                                 |              |           |     |
| depth, modeling                            |                  |            |                  | 5        |            |                 |              |                  | 1                                |                                                                                                                 |              |           |     |
|                                            |                  |            |                  |          |            |                 |              |                  | 3                                |                                                                                                                 | •            |           |     |
|                                            | 1. <u>.</u>      |            |                  | 4        | Í          |                 |              | A/1              | R<br>K                           |                                                                                                                 | •            |           |     |
|                                            |                  |            |                  | 5        |            |                 |              | -                | Se.                              | <                                                                                                               | Become       | د ال دمة  | RE  |
|                                            |                  | L10        |                  | •        |            |                 |              | · · · · · ·      |                                  | JANP                                                                                                            | Become       |           |     |
| BROWNISH YELOW<br>MODERATE TO COAR         |                  | ·- · - 1   |                  | 7        |            |                 |              |                  | pm                               |                                                                                                                 |              |           |     |
| 1 11 11 handed                             | vory 4           | -our F     |                  | <b>a</b> |            |                 |              | ام ا             | ner S                            |                                                                                                                 |              |           |     |
| gram ~18-20, a                             | ingula           | -to        |                  | 8        |            |                 | SAILOZ       | NLA              | K                                | H-0                                                                                                             | A- ~1        | 9'BLS     | •   |
| Subangular                                 |                  |            |                  | • • •    | 2          |                 | SAIC         |                  | à                                | - 1                                                                                                             | •            |           |     |
| COLLECT HP-                                | INL-             | 03         | ]2               |          |            |                 | V/           |                  |                                  |                                                                                                                 |              |           |     |
|                                            |                  | E          | Ξ                | 1        | 1          | 1               | . 1.         |                  |                                  |                                                                                                                 |              |           |     |



|         | <u>SAE</u>                                                            | F               | Field B          | orir             | ng L       | og              | •            |                  |                                  |                   | Page_1_                 | _ of        |
|---------|-----------------------------------------------------------------------|-----------------|------------------|------------------|------------|-----------------|--------------|------------------|----------------------------------|-------------------|-------------------------|-------------|
| Site F  | ile No.                                                               | County Ac       | COMA             |                  |            | Bor             | ing N        | 10. <1           | R-71                             | 1-04              | Monitor Well            | No. ula     |
| Site F  | ile Name                                                              | •               |                  |                  |            |                 |              | Elev.            |                                  |                   | Completion I            |             |
| Fed II  | D No.                                                                 | <u> </u>        |                  |                  |            | Auc             | er D         | epth             | NLA                              | <u>_</u>          | Rotary Depth            |             |
| State   | Planar Coordinates: N.                                                |                 | E.               |                  |            |                 |              |                  |                                  |                   | ⊙Finish <sup>8</sup> /2 | Timecoad    |
| Boreh   | ole status (BSTAT)*: Borchole<br>Benton                               | Abundon         | ird              | Gro              | ound v     |                 |              |                  | 1.9:                             | · · ·             | hod (See back           |             |
| Drillin | g Equipment:<br>Geoprobe                                              | <u></u>         |                  | <del> </del>     | face       |                 |              | -                |                                  | Bare              | Grassy                  | Wooder      |
|         | •                                                                     |                 |                  |                  |            | SA              | MPL          | ES               |                                  | T                 | Personi                 | nel T       |
|         |                                                                       | •               |                  |                  |            | Very            |              | (swc             | 5                                |                   | . Pendleto<br>. Bunger  | ~           |
| Refer   | to back of page                                                       |                 |                  |                  | No.        | Reco            | I XN         | s (Blo           | P.I.I.                           | H- B              | . Henry                 | 1           |
| JSCS    | DESCRIPTION*                                                          |                 | Depth<br>in feet | MOIST*           | Sample No. | Sample Recovery | Lab Anal Y/N | N Valves (Blows) | F.I.D. or P.I.D/<br>LEL Readings | #~<br><u>6.</u> v | REMARK                  | FCE (MORFOR |
|         | Dark grayish brown                                                    | 104124/2        | E E              |                  |            |                 | 1            |                  | - P                              |                   |                         |             |
|         | Silty sand (moderate a                                                | o coarse        |                  | 1.               |            |                 |              |                  | 3                                |                   |                         | ſ           |
|         | in top 8") medium to<br>granned sand, subroun<br>angular, well sorted | did to          |                  | z                |            | i               |              | 4/1              | 570                              | Bec               | oming fi                | ner         |
|         |                                                                       |                 | the second       | 3                |            |                 |              | Ī                | D<br>C                           | سرج               | oming for<br>the dapt   | h r         |
|         | Brownish yellow 104Th                                                 | 26/4            |                  | 4                |            |                 |              |                  | y-                               |                   |                         |             |
|         | SND medun grance                                                      | Sum,            | 티크               | 5                |            |                 |              |                  | 3                                |                   |                         |             |
|         | Entrounded to set an<br>very uniform with me                          |                 |                  |                  |            |                 |              | ۲                | ce kg 1                          |                   |                         |             |
|         |                                                                       | ے <sub>ا</sub>  |                  | 7                |            |                 |              | 1                | ы<br>С                           |                   |                         |             |
| ·       |                                                                       |                 |                  | · ·              |            | .               |              |                  |                                  |                   |                         |             |
|         | Dark yellowish brown                                                  | 10910414<br>mcs |                  | 5  -             |            |                 | •            |                  | ~                                | Color             | change -                | to darker.  |
|         | Sand with trace organ                                                 |                 |                  |                  |            |                 |              |                  | 4                                | brai              | in ctra                 | s'/z'       |
|         |                                                                       |                 |                  |                  |            |                 |              | A                |                                  | Hghe              | in energy               |             |
|         |                                                                       |                 |                  |                  |            |                 | •            | Z                |                                  | gra               | rel i                   |             |
|         | Dank gray 104R 4/15                                                   |                 |                  |                  |            |                 |              |                  |                                  |                   |                         |             |
|         | (crow 12 - 13.2 150)                                                  | רי בי           |                  |                  |            |                 | 0            |                  | <b></b>                          |                   | 0                       | 1           |
|         | undiam to course grand                                                | <b>~~</b> ~) F  |                  |                  |            |                 | Salco        | _                | 34<br>4                          | High              | + 13'BL                 | ding at     |
|         | Erbranded to engiler<br>more uniform waterde                          | pth E           | 14               | F                |            |                 |              | 4/2              |                                  | 57 6              |                         |             |
|         | (better sorting)                                                      | E E             | (s               |                  |            |                 |              |                  |                                  |                   |                         |             |
|         |                                                                       | Ē               |                  | - <del> </del> - |            |                 |              |                  |                                  |                   |                         |             |
|         |                                                                       |                 |                  |                  |            |                 |              |                  | 0                                |                   | •                       |             |
|         |                                                                       | E               |                  |                  |            |                 |              | 4                | M                                |                   |                         |             |
|         | -                                                                     |                 | ];8              | <b>&gt;</b>      |            |                 | 2            |                  | Э, Э                             |                   | E- FOR 1                |             |
| V       | MEDIUM TO COARSE                                                      | <b>▼</b> E      |                  |                  |            |                 | Sarcoz       |                  |                                  | AT I              | 8-20'BI                 |             |
|         | GRAINED SAND. QUAR-                                                   |                 |                  | •                |            |                 |              |                  |                                  |                   |                         |             |
|         | PEBBLES AT DEPTH                                                      | <b>∀</b> . ⊨    | . 1.             |                  |            |                 |              |                  | 1                                |                   |                         |             |



. .

نی۔۔۔ . Field Boring Log

|               |                                                       | ,          |           | ·       |                 |             |                  |                                  |          |             |                                        |                                                |
|---------------|-------------------------------------------------------|------------|-----------|---------|-----------------|-------------|------------------|----------------------------------|----------|-------------|----------------------------------------|------------------------------------------------|
| jite F        | ile No.                                               | COMAC      | <u>ck</u> |         | Bori            | ng No       | 0. ST            | S-COL                            | -01      | Monitor Wel | INO. NA                                |                                                |
| Site F        | ile Name                                              |            | •         |         |                 | Surf        | ace E            | lev.                             |          |             | Completion                             | Depth                                          |
| _ed II        | ) No.                                                 |            |           | -       |                 | Aug         | er De            | pth                              | NIA      | ,           | Rotary Dept                            | h NA                                           |
| State         | Planar Coordinates: N.                                | E          | Ξ.        |         |                 | Date        | : Sta            | rt8/2                            | 62 Ti    | me    0     | Finish                                 | Time                                           |
| oreh          | ole status (BSTAT)*: Borchole<br>Benton               | Abundon    | -9        | Gro     | นกส์ เ          |             |                  |                                  | 8'.      |             | hod (See bac                           | :k):                                           |
| Drillin       | g Equipment:                                          |            |           | +       |                 | (Circl      |                  |                                  |          | Bare        | Grassy                                 | Woode                                          |
|               | Geoprobe                                              |            |           | <b></b> |                 | SAN         | MPLE             | s                                |          | 1           | Person                                 |                                                |
|               |                                                       | т.<br>     |           |         | 1               |             |                  | 1                                | 1        | 16- Z       | J. Pendlete                            |                                                |
|               |                                                       |            |           | .       | Sample Recovery | z           | N Valves (Blows) | 10.<br>Số                        | D- 7     | . Bunger    |                                        |                                                |
| ' Refer       | to back of page                                       | ······     |           | No.     | e Re            | ab Anal Y/N | es (E            | F.I.D. or P.I.D/<br>LEL Readings | H- 2     | 5. Henry    |                                        |                                                |
|               | DECODIDENCI                                           |            | Depth     | MOIST*  | Sample No.      | amp         | ab Ar            | Valv                             | EL R     | <u> </u>    | Means U.S.                             | ACE (WORFE                                     |
| USCS          | DESCRIPTION*<br>Dark brown 7.542 4                    | 25,14      | in feet   | ž       | -<br>S          | S           |                  | Z                                |          |             | REMAR                                  |                                                |
|               | Sund, very fine, vounde<br>subrounded well sorte      | d to       | E _       | 1       |                 |             |                  |                                  |          | La<br>La    | on 6.5                                 | -7.0'BLS                                       |
| العيمية ا<br> | Is from dense. (40%5                                  | 1. 5.14    |           | z       |                 |             |                  |                                  |          |             |                                        |                                                |
|               | SAND)                                                 |            |           |         |                 |             |                  | 4/1                              |          | •           | ۰<br>۱                                 |                                                |
| التيبينية     | INTERMINED RUST BIDO                                  | he         | l III     | 3       |                 |             |                  |                                  |          |             |                                        |                                                |
| 6 n<br>1      | SILTY SAND, VERY FM                                   | JE         | i li      | 4       |                 |             |                  |                                  |          |             |                                        |                                                |
| أسيبها        | GRAINED                                               |            |           | 5       |                 |             |                  |                                  |          |             |                                        | • .                                            |
| r 'n<br> .    |                                                       |            |           | 4       |                 |             |                  | 4                                | 0        |             | • 5                                    | S HAT                                          |
| أمينيه        | Internixed white sand,<br>coarse graned, subrand      | ind to     | Ξ Ξ       |         |                 |             | ō                | 1<br>N                           | 30       | AT B        | NG DIESE                               | T ODOR                                         |
|               | engular, moderate sout<br>Black, un form, Saturated : |            |           | 7       |                 |             | SAIcol           | -                                | A        | WIT         | RECOVET                                | 2 OF                                           |
| است           | strong hydrocer bon odor.                             |            |           | 8       |                 |             |                  |                                  | 4        |             | ND Ange                                | ويردا الأثار بيريه بغن كالبساط المتعاد المتعاد |
| n e           | -1                                                    |            |           | ۹       |                 |             | ç                |                                  | 1        | - i X       | t of instr<br>ding at de               | -11                                            |
| н             | BLACK 7.542 2/0 SAND<br>COMPLETELY SATURATE           | ,<br>≣D, I |           | 0       |                 |             | ¥.               | ٨.                               |          | greet       | rer thin                               | 7.5'BLS                                        |
|               | VERY STROUG HYDIZOC                                   | AEBON      |           |         |                 |             | •                | N/4                              |          |             |                                        |                                                |
|               | ODOR, DENSE, THICK                                    | FIRM       | E 1       |         |                 |             |                  |                                  |          |             |                                        |                                                |
|               | (Zone is completely set                               | moted E    |           | 2       |                 |             |                  | -+                               | <u> </u> |             | ······································ |                                                |
| j.            | with water and organ                                  |            |           | 3       |                 |             |                  |                                  |          |             |                                        |                                                |
|               | material)                                             |            |           | 4       |                 |             |                  | <b>∀</b> / <u></u> 7             |          |             | •                                      |                                                |
|               |                                                       |            | ],        | 5       |                 |             |                  | 2                                |          |             |                                        |                                                |
|               |                                                       |            | -         |         |                 |             |                  |                                  |          | נו כד       |                                        |                                                |
|               |                                                       | E          |           |         |                 |             | -+               | <u> </u>                         |          | Dot         | row of B                               | orchalc                                        |
| а. <b>-</b>   |                                                       |            |           | 7       |                 |             |                  |                                  |          |             |                                        |                                                |
| ا الع         |                                                       |            | ===+      | 8       |                 |             |                  | 214                              |          |             | •                                      |                                                |
|               |                                                       |            |           | a       |                 |             |                  | Z                                |          |             |                                        |                                                |
|               | SAICOZ COLLEGTED FR                                   | om E       | · =       |         |                 |             |                  |                                  |          |             |                                        |                                                |
|               | NG' BLS. APPEARS T                                    | υβΕΓ       |           |         |                 |             |                  |                                  |          |             |                                        |                                                |

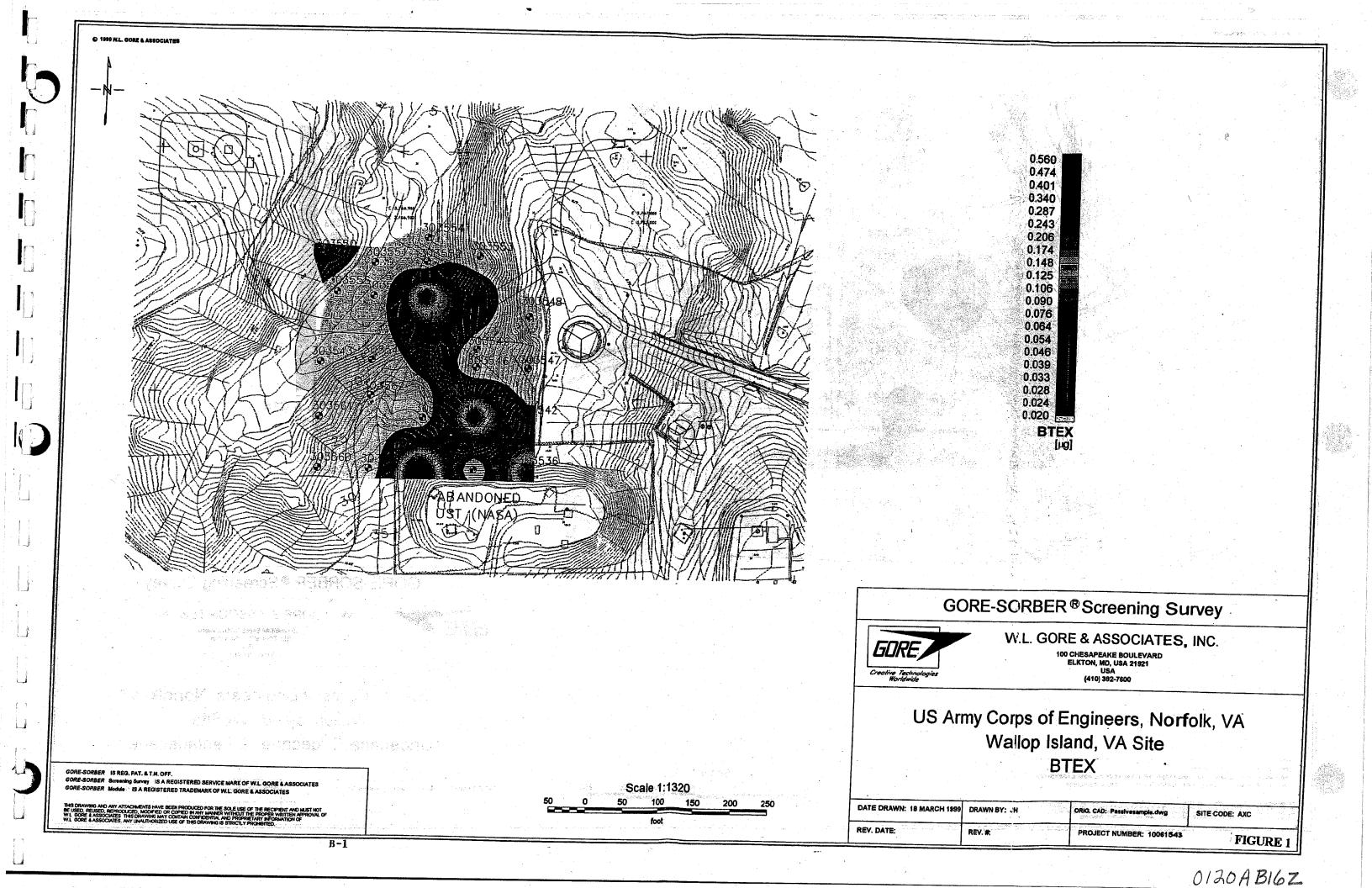


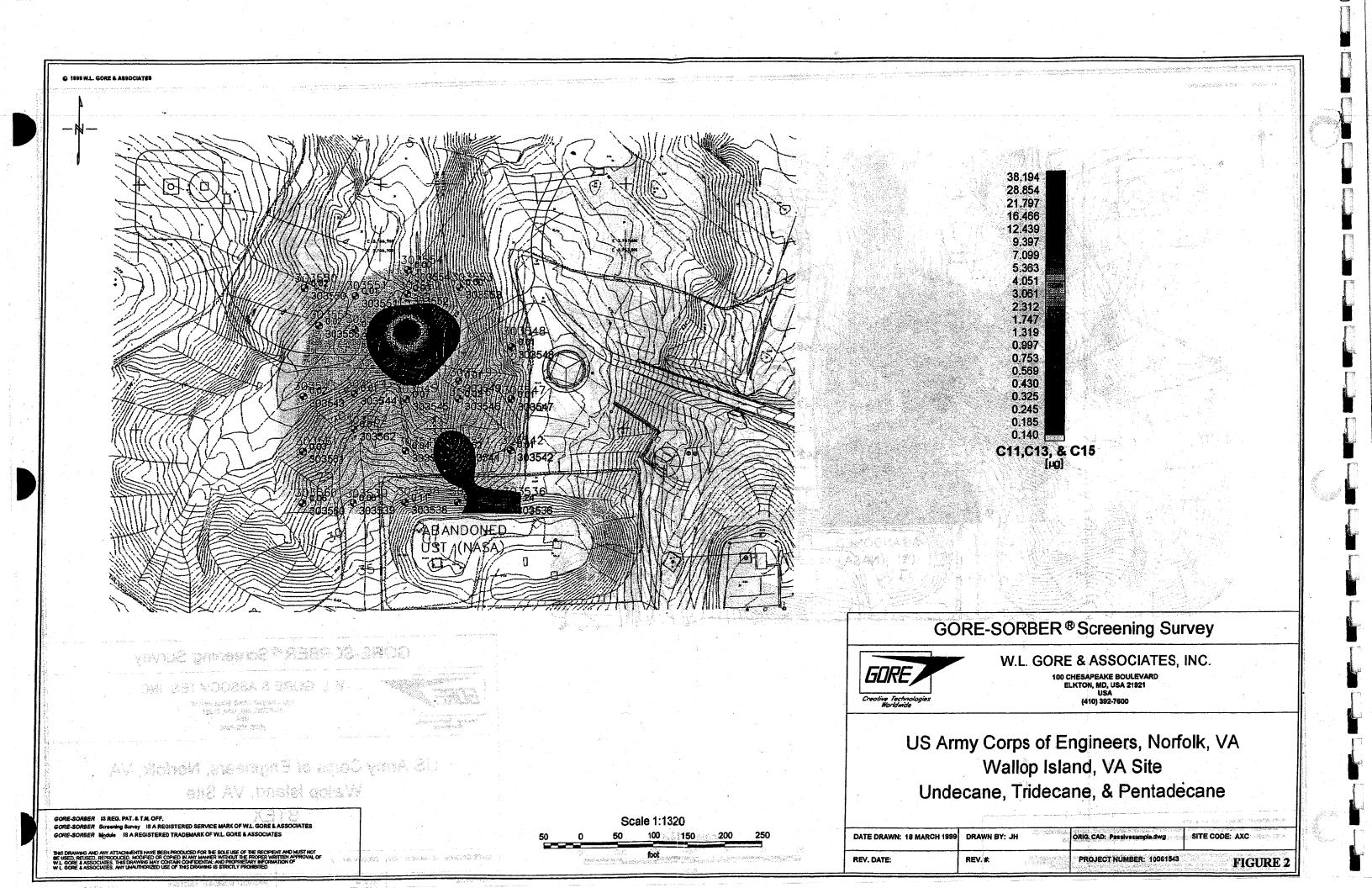
|         | SAIC.                                                                                                                                                                  | F                                         | ield Bo                       | orin          | ng L       | og              | .•           |                          |                      |                  | Page_1                           | _ of                      |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------|---------------|------------|-----------------|--------------|--------------------------|----------------------|------------------|----------------------------------|---------------------------|
| Site F  | File No.                                                                                                                                                               | County Ac                                 | compe                         | x             |            | Bor             | ing N        | 0. 5                     | B-a                  | 1-02             | Monitor Well                     | No.                       |
| Site F  | ile Name                                                                                                                                                               | •                                         |                               |               |            | 4               | face E       |                          |                      |                  | Completion [                     | Depth 12'                 |
| Fed II  | D No.                                                                                                                                                                  |                                           |                               |               |            | Aug             | ger De       | ∋pth                     | NLA                  | _                | Rotary Depth                     |                           |
| State   | Planar Coordinates: N.                                                                                                                                                 | I                                         | Ε.                            |               |            |                 |              |                          |                      |                  | ⊳ Finish \$7/0                   | •                         |
| Boreh   | iole status (BSTAT)*:                                                                                                                                                  | FO W BELL                                 | MITE                          | Gro           | ound v     |                 | Dep          |                          |                      |                  | hod (See bac                     |                           |
| Drillin | g Equipment: Geo PROB                                                                                                                                                  |                                           | <u></u>                       | 1             |            |                 | ie on        |                          |                      | Bare             | Grassy                           | Wooded                    |
|         |                                                                                                                                                                        |                                           |                               | <b></b>       |            | SA              | MPLE         | ES                       |                      | 1                | Person                           |                           |
|         |                                                                                                                                                                        | •                                         |                               |               | 1          | very            |              | (SMC                     | 000                  |                  | John And                         | dicton                    |
| Refer   | to back of page                                                                                                                                                        | ]                                         |                               | No.           | Reco       | I YN            | s (Blo       | ). or P.1.D/<br>Readings | H- 3                 | red Hur-         |                                  |                           |
| uscs    | DESCRIPTION*                                                                                                                                                           | · · · · · · · · · · · · · · · · · · ·     | Depth<br>in feet              | MOIST*        | Sample No. | Sample Recovery | Lab Anal Y/N | N Valves (Blows)         | F.I.D. OI<br>LEL Rei | H-<br>           | REMARK                           |                           |
|         | Yellowish bown 107iz<br>Silty send with org<br>(20-3090). Silt is A<br>very dry ( 0-8" BL?<br>10725/6 Yellowish bro<br>Calor inter mixed with<br>debris, glass, meter. | ancs "<br>hom, dense<br>>)<br>win (Russt) | վավավավա                      | ر<br>ع<br>ج   | 1918       |                 | 5            |                          | D ISAKKEROUND        | 20<br>AT<br>(MET |                                  | 1 BLS<br>- 50%<br>XESP(5) |
|         | DARK OLIVE GRAY 543<br>CLAYEY SILT (2095 SAM                                                                                                                           | D'3010                                    |                               | 5   5   6   7 | SAICOL     |                 |              | -                        | Brucepork            |                  | sition F<br>noize CL             | eon sag                   |
|         | CUPY, 50% SICT (2015) FIR<br>MOLET<br>BROWMSH YELOW 10 YR<br>CUPYEY SILT (10% SANG<br>CUPYEY SILT (10% SANG<br>CUPY, 70% SILT) FIRM<br>Bottom of Borehole              | 26/8<br>0, 20%<br>1, UDENSE               |                               |               |            |                 |              |                          | BACKGROWD            | WA<br>AT         | TER BUC<br>~ 8'BI                | awtere?<br>S              |
|         |                                                                                                                                                                        |                                           | <u>uduuluuluuluuluuluuluu</u> |               |            |                 |              |                          |                      | HYD              | EN EOR<br>12070-1-CH<br>8-10' BL | SET                       |

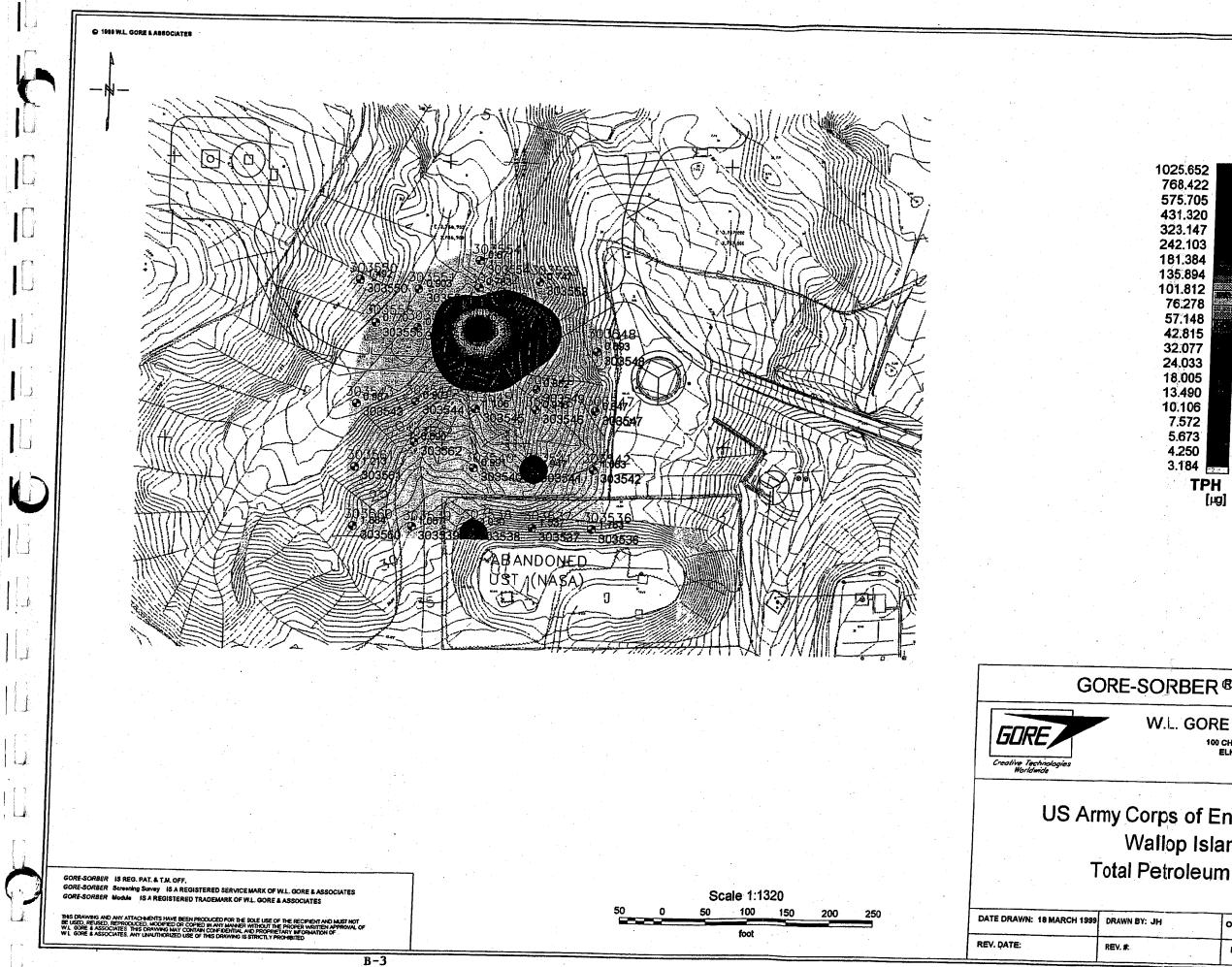


ï

Field Boring Log


| e Fi                | ie No.                                                                                                                                                                                                                               | come      | a                                                                                                               |            | Bori            | ng No        | D. 57            | B-CDI                            | <u>03</u>   | Monito         | r Well N         | O. NIA          |                                       |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------|------------|-----------------|--------------|------------------|----------------------------------|-------------|----------------|------------------|-----------------|---------------------------------------|
| Site Fil            | e Name                                                                                                                                                                                                                               |           |                                                                                                                 |            |                 | Surf         | ace E            | lev.                             |             |                | Compl            | etion De        | pth                                   |
| _d ID               | No.                                                                                                                                                                                                                                  |           |                                                                                                                 |            |                 | Aug          | er De            | pth                              |             |                | Rotary           | Depth           |                                       |
| State F             | Planar Coordinates: N.                                                                                                                                                                                                               | E         | <b>.</b>                                                                                                        |            |                 | Date         | : Stai           | n8/7                             | luz Tir     | neicz          | o Finis          | h . 1           |                                       |
| reho                | ble status (BSTAT)*:                                                                                                                                                                                                                 |           |                                                                                                                 | Gro        | und v           | vater        | Dep              | oth:                             |             | Ме             | thod (Se         | ee back):       | · · · · · · · · · · · · · · · · · · · |
| Drilling            | Equipment: GEOPIZOB                                                                                                                                                                                                                  | E         |                                                                                                                 | Sur        | face            | (Circ        | le on            | e):                              | В           | are            | Gra              | issy            | Wooded                                |
| السا                | an an an taon a<br>Taon an taon an t |           |                                                                                                                 |            |                 | SAI          | MPLE             | S                                |             | Ī              | F                | ersonne         | 1                                     |
| , .<br>             |                                                                                                                                                                                                                                      | •         |                                                                                                                 |            | T               | ery          |                  | (S)                              |             |                |                  | duty            |                                       |
| Defert              | a back of back                                                                                                                                                                                                                       |           |                                                                                                                 |            | Sample Recovery | XIN          | N Valves (Blows) | F.I.D. or P.I.D/<br>LEL Readings | ม<br>ม- โ   | T. Bm<br>3. He | ngerd            | NUV             |                                       |
|                     | o back of page                                                                                                                                                                                                                       | <u> </u>  | i.                                                                                                              | Sample No. | ple R           | Lab Anal Y/N | lves             | . or F<br>Read                   |             |                | <u> &gt; (vs</u> |                 |                                       |
| CS                  | DESCRIPTION*                                                                                                                                                                                                                         |           | Depth<br>in feet                                                                                                | MOIST      | Samp            | Sam          | Lab /            | N Va                             |             |                | R                | S COS<br>EMARKS | Tet )                                 |
| JUCS                | DARY BROWN 10YR 4                                                                                                                                                                                                                    | 35107     | = =                                                                                                             |            |                 | SArcol       | 7                |                                  |             |                |                  |                 |                                       |
|                     | 5000 (~30% SILT). 5                                                                                                                                                                                                                  | SAUD FINE |                                                                                                                 | 1          | 99              | ち            |                  |                                  | 21          |                |                  |                 |                                       |
| ec-0                | - MED. GEAINED SUBIZI<br>SUBMIGULAR, MODERS                                                                                                                                                                                          | RE        |                                                                                                                 | 2          |                 |              |                  |                                  | 32          |                |                  |                 |                                       |
| المدينة.<br>المدينة | SERTING                                                                                                                                                                                                                              |           | L I                                                                                                             | 3          |                 |              |                  |                                  | Y Y         | -              |                  |                 |                                       |
|                     | SMALL STRINGER OF M                                                                                                                                                                                                                  | INTTLED   |                                                                                                                 |            | r.              |              |                  |                                  | בארוכטניטיא |                |                  |                 |                                       |
|                     | درهم                                                                                                                                                                                                                                 |           |                                                                                                                 | 4-         | ŧ               | 2            |                  |                                  |             |                |                  |                 |                                       |
| است                 | DARK BROWN INYR                                                                                                                                                                                                                      | Fl4       |                                                                                                                 | S          | Arcer           | 241002       | 27               |                                  | 042         |                |                  |                 |                                       |
|                     | SILTY SAUD. DENS<br>SOPT & WET. (DIC                                                                                                                                                                                                 | E, FIRM   |                                                                                                                 | 4          |                 | 10           |                  |                                  | BAEKBOULD   |                |                  |                 |                                       |
|                     | SOPT & WET. (Duc                                                                                                                                                                                                                     | OUNTERID  |                                                                                                                 | 7          |                 |              | 2                |                                  | <b>K</b>    |                |                  |                 |                                       |
|                     | ttzo                                                                                                                                                                                                                                 |           |                                                                                                                 |            |                 |              |                  |                                  | a           |                |                  |                 |                                       |
|                     |                                                                                                                                                                                                                                      |           |                                                                                                                 | 8          |                 |              |                  |                                  |             |                |                  |                 | · · · · · · · · · · · · · · · · · · · |
|                     |                                                                                                                                                                                                                                      |           |                                                                                                                 |            |                 |              |                  |                                  |             |                |                  |                 |                                       |
|                     |                                                                                                                                                                                                                                      |           | 는                                                                                                               |            |                 | .            |                  |                                  |             |                |                  |                 |                                       |
|                     |                                                                                                                                                                                                                                      |           |                                                                                                                 |            |                 |              |                  |                                  |             |                |                  |                 |                                       |
| ·····à·····         | •                                                                                                                                                                                                                                    |           |                                                                                                                 |            |                 |              |                  |                                  | ł           |                |                  |                 |                                       |
|                     |                                                                                                                                                                                                                                      |           |                                                                                                                 |            |                 |              |                  |                                  |             |                |                  | 1 - E           |                                       |
| <u> </u>            |                                                                                                                                                                                                                                      |           |                                                                                                                 |            |                 |              | • .              |                                  |             |                |                  |                 |                                       |
|                     |                                                                                                                                                                                                                                      |           |                                                                                                                 |            |                 |              |                  | .                                |             |                |                  |                 |                                       |
| <u>ا</u> لہ         |                                                                                                                                                                                                                                      |           |                                                                                                                 |            |                 |              |                  |                                  | -           |                |                  |                 |                                       |
|                     |                                                                                                                                                                                                                                      |           |                                                                                                                 |            |                 |              |                  |                                  |             |                |                  |                 |                                       |
|                     |                                                                                                                                                                                                                                      |           |                                                                                                                 |            |                 |              |                  |                                  |             |                |                  |                 |                                       |
|                     |                                                                                                                                                                                                                                      |           |                                                                                                                 | ·          |                 |              |                  |                                  |             |                |                  |                 |                                       |
|                     |                                                                                                                                                                                                                                      |           |                                                                                                                 |            |                 |              |                  |                                  |             |                |                  | •               |                                       |
|                     |                                                                                                                                                                                                                                      |           |                                                                                                                 |            |                 |              |                  |                                  |             |                |                  |                 |                                       |
|                     |                                                                                                                                                                                                                                      |           | handradaa haalaadaa h |            |                 |              |                  |                                  |             | ÷              |                  |                 |                                       |
|                     |                                                                                                                                                                                                                                      | E         | E                                                                                                               | 1          |                 |              |                  |                                  |             |                |                  |                 |                                       |


## THIS PAGE WAS INTENTIONALLY LEFT BLANK


.

j

## APPENDIX B SOIL GAS MAPS







. 1

| RBER     | <sup>®</sup> Screening Su                                                                 | irvey          |
|----------|-------------------------------------------------------------------------------------------|----------------|
| 100      | E & ASSOCIATES,<br>CHESAPEAKE BOULEVARD<br>ELKTON, MD, USA 21921<br>USA<br>(410) 392-7600 | INC.           |
| lop Isla | ngineers, Norf<br>and, VA Site<br>n Hydrocarbon                                           |                |
| ]        | ORIG. CAD: Passivesample.dwg                                                              | SITE CODE: AXC |
|          | PROJECT NUMBER: 10061543                                                                  | FIGURE 3       |

## APPENDIX C CHAIN-OF-CUSTODY FORMS

| An Employee O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | orporatio<br>Whed Con                                                                                                                                                                                      | pony                       | •                                      | <b>.</b> | ۲<br>لی |     | r <sup>4</sup> |           | <u>r</u>    |                | _          | of 1                     | CQ    | Da                | );<br>ite:    | 8/16/0Z                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------|----------|---------|-----|----------------|-----------|-------------|----------------|------------|--------------------------|-------|-------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name Science Applications Interna<br>Address 11251 Roger Bacon Dr., 1<br>Phone Number (703) 318-4759<br>Project Manager John Pendleton<br>Project Name Wallops Island<br>Job/P.O. No. 01-0827-04-2164-<br>Sampler (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Address 11251 Roger Bacon Dr., Reston, VA 20190<br>Project Manager John Pendleton<br>Project Name Wallops Island<br>Hob/P.O. No. 01-0827-04-2164-<br>Sampler (Signature)<br>Chinted Name)<br>Chinted Name) |                            |                                        |          |         |     | 1-20(4)        | VOC-WALS) | Kouite      |                |            |                          |       |                   | NO OF CONTAIN | Laboratory Name GPL<br>Environmental<br>Address 202 Perry Parkway<br>Galthersburg, Md 20877<br>Phone (301)-926-6802<br>Fax (301)-840-1209<br>Contact Lanza Perel K |
| Bang Colette Sile ID Field Sampie J Sil<br>Bus Pol SALCO (BBC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            | and a second second second | Dane                                   |          | Hetrix  |     | <u>9</u><br>3  | 2         |             |                |            | ┼╌┼╌                     |       |                   | RS I          | OBSERVATIONS. COMMENTS<br>SPECIAL INSTRUCTIONS                                                                                                                     |
| -SB-WWP-OI SAICORR BO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            | .5                         | 1/02                                   | //30     | 50      |     | 3              |           |             |                | ┢╴╢╸       | ╉╼╄┶                     |       |                   |               | 373/4/02<br>37 1/2/02                                                                                                                                              |
| - FR-WA-02 SAICOIR BO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            | 2                          | 16/0Z                                  | 1145     | 50      |     | 3              |           | 1           |                |            |                          |       | 4                 | 3             | 57 0/1/02                                                                                                                                                          |
| SB-WWPJI SAILOZ ( BO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                            |                            |                                        | 1200     |         |     | 3              |           | 11          |                |            |                          |       | 4                 | 2             | Je e/a/oz                                                                                                                                                          |
| SRUMP-02 SALOIDR B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                            |                            |                                        | 1145     |         |     | 3              |           | + h         |                | <u> </u>   | ┼─┼─                     |       | 4                 | 3             | -JE o/k/oz                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                            | _                          |                                        | 1230     |         |     | 3              | +         | ++          | ┨──┤──         | ┨──┨─      | ╉╌┨╼                     | ╌┼╌┤  | 4                 | 2             | 3P 0/10/02                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                            |                            | THE                                    | liora    | 20      |     | 2              | +         | ╂╼┤┸        | ╆╌┠╾           | ╆╌╂╴       |                          | ┿╌╢   | 4                 | ッ             | 30 8 16 02                                                                                                                                                         |
| SB-WW7-01 SAKO WR BO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | REC                                                                                                                                                                                                        | <b>&gt;</b>                | 3/6/02                                 | 1120     | 50      | ╏╌┥ | 3              |           |             | <u> </u>       | ╏╴╏╴       | ╁╼╄╸                     | +     | Ł                 | 3             | 58/8/6/02                                                                                                                                                          |
| SB-WW7-01 SALCONDR B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ORE C                                                                                                                                                                                                      | 0                          | 5/16/02                                | 1120     | 50      |     | 3              |           | 11          |                |            |                          |       |                   | 3             |                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRIP                                                                                                                                                                                                       |                            |                                        | 1030     |         |     |                | 2         |             |                |            |                          |       |                   | 2             |                                                                                                                                                                    |
| GOUNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                            |                            | 1 . I                                  |          |         |     |                | 21        |             |                |            |                          |       |                   | 1             |                                                                                                                                                                    |
| Relingvished by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                            |                            | •••••••••••••••••••••••••••••••••••••• |          | 9       |     | Ē              |           |             |                |            |                          |       |                   |               |                                                                                                                                                                    |
| Say and Di Partition of the second se | 102 -                                                                                                                                                                                                      |                            | tuk                                    |          |         |     |                | دە        | Notes:      | <u>Iotal N</u> | umbero     | of Contai                | ners; | 3                 | ١             | Shipment Method: DELL VERY<br>Altalli No.:<br>Custody Seal 1 No.:<br>Custody Seal 2 No.:                                                                           |
| Printed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                         | Hed Name                   | a 14                                   | Unk      |         |     | Time           |           |             |                | Ī          |                          |       |                   |               | Flefd COC No.s;                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ [                                                                                                                                                                                                        |                            |                                        |          |         |     | 18             | :10       | 50          | LOS            | /m         | LAP                      | IRE   |                   |               |                                                                                                                                                                    |
| SALC 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                            |                            | <b></b>                                |          |         |     |                |           | 100         | TTU            | 3          | LAP                      | EE    | 7                 | 2             |                                                                                                                                                                    |
| Relinquished by Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                            | ceived t                   | γ                                      |          |         |     | Date           |           |             |                | 5          | -5                       |       |                   |               | •                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                            |                            |                                        |          |         |     | B              | OTT O     | Ē.          | Bon            | TU         | 5                        | >     | Temperature Biank |               |                                                                                                                                                                    |
| Signature Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                            |                            |                                        |          |         |     | C              | aut       | न्धा        | ED             | $\omega$ , |                          |       | Field:<br>Lab:    |               |                                                                                                                                                                    |
| TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | me                                                                                                                                                                                                         |                            |                                        |          |         |     | Time           |           |             | Amp            |            | N                        |       |                   | •             | <b>q C</b> Lab:                                                                                                                                                    |
| Printed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pr                                                                                                                                                                                                         | inted Name                 |                                        |          |         |     |                |           | 1           | ເກີ            | <br>1r     | BOT<br>ED I<br>W<br>IL C | SA    | 3                 |               | SAIC Locallon<br>Restor, Virginia                                                                                                                                  |
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                            | mpany                      |                                        | •        |         |     |                |           |             |                |            |                          |       |                   |               | 11251 Roger Bacon Dr., Restory, VA, 20190                                                                                                                          |
| Science Applications International Corpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and the second second                                                                                                                                                                                      | mepany                     |                                        |          | White   |     | I              | _         | Pink: Proje |                |            | Vellow: Pro              |       |                   |               | (703) 318-4753                                                                                                                                                     |

# GPL Laboratories, LLLP

|                                       |                                        |              | Figure     | T CHECKLIST                                                 |                                        |             |          |           |
|---------------------------------------|----------------------------------------|--------------|------------|-------------------------------------------------------------|----------------------------------------|-------------|----------|-----------|
| O. No:                                | 208/26                                 |              |            | Client                                                      |                                        |             |          |           |
| Olient Name:                          | Sqie                                   |              |            | ed In) By:                                                  | 18/19/0C                               |             | •        |           |
| )ate Received;                        | 8/16/02                                |              | _          | Initials                                                    | Date                                   |             |          |           |
| 'ime Received;                        | 18:10                                  |              |            |                                                             |                                        |             |          |           |
| leceived By:                          | Leura                                  |              |            | ank I.D. No:                                                | · ·                                    |             |          |           |
|                                       |                                        | YES          | NO         | Chik I.C. 190.                                              | · ·                                    | •           |          |           |
| virbill/Manifest Pre                  | esent?                                 | 123          | -          | Trip Blanks: No. o                                          |                                        | -           |          | NO<br>    |
| No                                    |                                        |              |            | Field Blanks: No.<br>Equip. Blank: No.                      | of Sets                                |             |          | 44        |
| Ihipping Containe                     | r in Good Condition?                   | L            |            | Field Duplicate: N<br>MS/MSD: No of S                       |                                        |             |          | KINK      |
| Justady Seals Pre                     | isent on Shipping Container?           | ~            | <b></b>    | VOA Viz's Have Z                                            | lero Headspace                         | ?           | V        | · .       |
| Gendition: Broke                      | -not dated or signed                   | · .          |            | Preservatives Add                                           | ied to Sample?                         |             | L        |           |
|                                       | -dated and signed                      |              |            | pH Check Require                                            | id?                                    |             |          | IR        |
| Usage of Tampe                        |                                        |              |            | Performed By?_                                              |                                        |             |          | MR<br>Al  |
| hain-of-Custody F                     |                                        | <u> </u>     |            | Ice Present in Shi                                          | pping Conteiner                        | ?           | Ľ        |           |
| hain-cf-Custody /                     | Agrees with Sample Labels?             | ~            | <u>.</u>   | Contsiner#                                                  | Тетр.                                  | Container # | Т        | e-p       |
| hain-of-Oustody S                     | Signed?                                | ~            |            |                                                             | 20-                                    |             | 7        | ~         |
|                                       | Shipping Container?                    | <b></b>      | <u> </u>   |                                                             |                                        | 1./         | -        |           |
| ustody seals on S                     |                                        |              | ~          | <u></u>                                                     | - 8/                                   |             | · · -    |           |
| Condition: Good                       | Broken                                 |              |            |                                                             | 1-84                                   |             | -        |           |
| ctal Number of Sa                     | ample Bottles                          |              |            |                                                             | 1 million                              |             | _        | <u> </u>  |
| otal Number of Sa                     | amples                                 |              |            |                                                             |                                        |             | -        |           |
| amples Intect?                        |                                        | <u> </u>     |            | E                                                           | ·                                      |             |          |           |
| ufficient Sample V                    | folume for Indicated Test?             | <u>~</u>     |            | Project Manager C<br>Name: <u>Le vra</u><br>Date Contacted: | ×                                      |             |          |           |
| ty NO response n<br>sculd be marked N | nust be detailed in the commen<br>N/A/ | ts section b | elow. If i |                                                             |                                        | r samples o | r contre | 215, 1hey |
| DMMENTS:                              | ······                                 |              |            |                                                             |                                        |             |          |           |
| · .                                   |                                        |              |            | · · · · · ·                                                 |                                        |             |          | ]         |
|                                       |                                        | · .          |            |                                                             |                                        |             |          |           |
|                                       |                                        |              |            | · ·                                                         | ······································ |             |          |           |
|                                       |                                        |              | Checkli    | st Completed By:                                            | Chym                                   | 0           |          | . /       |
| · .                                   |                                        |              |            | Date:                                                       | Shape                                  |             |          |           |

ľ

ľ

ľ

OP No: F.2V11

| j L. | <b>BAILE</b>                 | Scier plic<br>nlemational Co<br>An Employee Ou | Apporation<br>Aned Company |                                                |           | ، المسی           | L        | ز        | <b>k</b>   | نر                                | L           | لد ب.            |            | Po           | ge                 | 1 0    |          | COC<br>[ | No.<br>Date | -W10002-GP-                                                                                                     |
|------|------------------------------|------------------------------------------------|----------------------------|------------------------------------------------|-----------|-------------------|----------|----------|------------|-----------------------------------|-------------|------------------|------------|--------------|--------------------|--------|----------|----------|-------------|-----------------------------------------------------------------------------------------------------------------|
|      | Name Science Applica         | ations Interna                                 | tional Corpo               | ration                                         |           |                   |          |          |            |                                   | <b>—</b>    | - R              | j          | ted Pa       | ramete             | 15     | <u> </u> |          |             |                                                                                                                 |
|      | Address 11251 Roger          | Bacon Dr., P                                   | leston, VA 2               | 0190                                           |           |                   |          |          |            |                                   | 1.          |                  |            |              | Ų                  | 1      |          |          | N.          | Environmental                                                                                                   |
|      | Phone Number (703) 3         | 318-4759                                       |                            |                                                |           |                   |          |          |            |                                   |             |                  |            |              | Ø                  |        |          |          |             | Address 202 Perry Parkway                                                                                       |
|      | Project Manager John         | Pendiaton                                      |                            |                                                |           |                   |          | 2        |            | 2                                 | ี ค         | 18               | <b>(</b> . | I            | F                  |        |          |          | 0<br>F      | Gaithersburg, Md 20877                                                                                          |
|      | Project Name Wallops         | Island                                         |                            |                                                |           |                   |          | (1)(N)   | 6          | 5 8                               | 21          | 10               |            |              | 2                  |        |          |          | c           | Phone (301)-926-6802                                                                                            |
|      | Job/P.O. No. 01-0827-        | -04-2164-                                      |                            |                                                |           |                   | . 1      | Š        | (AX39)     | (A)(39)<br>(B)(73)                | 1           | ĬĬ               |            |              | PERATU !           |        |          |          |             | Fax (301)-840-1209                                                                                              |
| •    | Sampler (Signature)-         | <u> </u>                                       | (                          | Printec                                        | l Nan     | т <del>е) —</del> |          | N N      | ŏ          | ß∣₹                               | C-WA (AX73) | ļ                | 1          | 32025        | 2                  |        |          |          | CONTA       | Contact                                                                                                         |
|      |                              | ~ na                                           |                            | -                                              | _         | ~ 11              | .        | F        | 3          | SVOC-SO (A)(39)<br>VOC-WA (B)(73) | Ū           | METALS-WA (C)(3) | 1          |              |                    | 1      |          | ł        | 11          | Conact                                                                                                          |
|      | Att J. Cu                    | - Et                                           | > 'Se                      | hu"                                            | D         | rend              | tim      | METAI    | ğ          | ۶I۶                               |             | 16               |            | Mei.         | 7                  |        |          |          | N ERS       |                                                                                                                 |
|      | Samp Apliedes ShalD          | Fleif Sample# Sils                             | Type Depth                 | D                                              | -         | Time              | Marrix   | ~        | -          | <   <sup>م</sup>                  | 10          | 2                | i i        |              |                    |        | 1 1      |          | R           | OBSERVATIONS, COMMENTS                                                                                          |
|      | . SB-WWP-01                  | SAIC01 BO                                      | REC                        | al                                             | 667       | 1020              | Iso      | 1        | -13        | 1                                 | 1.          | Thi              | 5          |              | -+                 |        | ┽╼╧┠┅    |          | -           | SPECIAL INSTRUCTIONS                                                                                            |
|      | SB-WWP-01                    | SAICO2 BO                                      |                            |                                                |           |                   |          |          |            |                                   | 4.6         | 120              | 1-         | 1            |                    |        |          |          | ه ار        | 4                                                                                                               |
|      |                              |                                                | -1212                      |                                                |           | 1044              | SO .     |          | ろ          |                                   |             |                  |            | 11           |                    |        |          | Tu       | 1           |                                                                                                                 |
|      |                              | SAICO1 BO                                      | REO                        | 8/8                                            | bzl       | lιo               | SO       | 1        | 13         | 1                                 |             | T                | ŀ          |              |                    |        | ++       | _        |             | +                                                                                                               |
|      | SB-WWP-02                    | SAIC01D BO                                     | REO                        |                                                |           | 1100              | so       |          | 13         |                                   | +-          | +                |            | H            | ├                  |        | ┿╌╄      |          | -2          | the second se |
|      | - 58-WWP-02                  | SAIC02 BO                                      |                            | - <u>                                     </u> | -         | 100               |          |          |            | _                                 | +           |                  | <u> -</u>  | Ш            |                    |        |          | 6        |             | Duplicate                                                                                                       |
|      | ┟╼╾╍╼┥╌╼╼╼╶┥╌                |                                                | -1213                      | 18/8                                           | pr        | 1125              | 50       | 1        | <u>7</u> 3 | 1                                 |             |                  |            |              |                    |        |          | 6        | , -2        | · · · · · · · · · · · · · · · · · · ·                                                                           |
|      | · SB-WWP-03                  | SAICO1 BO                                      | REO                        | 19/4                                           | 102       | 1200              | SO       | 1        | よ          | 1                                 | Т           |                  |            | $\mathbf{n}$ |                    |        |          |          | -           |                                                                                                                 |
|      | · SB-WWP-03                  | SAIC02 BO                                      | RE 0,5                     | 910                                            | 1.7       | 1220              | 90       | -        | -18        |                                   | +           |                  |            |              |                    |        | ┼╍┼      | 6        |             |                                                                                                                 |
|      | ·SB-WWP-01                   | AICTOZ TR                                      |                            | 199                                            | <u>or</u> | 100               |          |          | <u>-p</u>  | _                                 | +           |                  |            |              |                    |        |          | _6       | 13          | <b>4</b>                                                                                                        |
|      |                              |                                                |                            | 18/8                                           | 02        | 1000              | WA       |          |            | 2                                 |             |                  |            |              |                    | 1      |          |          | 2           | Trip Blank                                                                                                      |
|      | • SB-WWP-00 S                | SAICRE01 RN                                    | sw O                       | 1819                                           | 102       | 12.45             | WA       |          |            | Э                                 | 2           | 1                |            |              |                    |        |          |          | -           |                                                                                                                 |
|      | SB-WWP-ONT                   | ALCOLAN B                                      | 125 0                      |                                                |           |                   |          | -        | 3          |                                   |             | +-               |            | $\mathbf{H}$ |                    |        | ┼╌╀      |          | 1.1         | Rinse Blank Soil Sampling.                                                                                      |
|      | 1 1                          |                                                |                            |                                                |           | 1020              |          | -        | -          | <u>_</u>                          | ╇           |                  |            | Щ            |                    |        |          |          | 6           | LMS J                                                                                                           |
|      | 53-000-01=                   | KILOINN BO                                     | NE O                       | 8/8                                            | 102       | 1020              | 50       | <b>1</b> | 3          | $\mathbf{N}$                      |             |                  |            | 111          |                    |        |          |          | 6           | msD                                                                                                             |
|      | Coolunt                      |                                                |                            | 1.01                                           |           |                   |          |          |            |                                   | Τ           | T                |            |              |                    | 1 1    | ┼╍┼      |          |             |                                                                                                                 |
|      |                              |                                                |                            |                                                |           |                   | <u>†</u> | -        |            |                                   | +-          |                  |            | ┝╌┤          | ┍┺╼╂╴              |        | ┼╌╄      |          | ᠇᠇          |                                                                                                                 |
|      | Relinquished by              | Dat                                            | Received                   |                                                |           |                   |          | -        |            |                                   |             |                  | <u> </u>   | Ļ            |                    |        |          |          |             |                                                                                                                 |
|      | $An \gamma OA$               |                                                |                            | 7                                              | -         | 1                 |          |          | Date       | 1,                                |             | les;             | loto       | <u>i Nu</u>  | mber               | of Col | ntalner  |          | -29         | Shipment Method:                                                                                                |
|      | John V. Jonald               | In the                                         |                            | ard -                                          | M         |                   |          |          | 8/0        | 19/~                              |             | Cool. 4          |            |              |                    |        |          | 6        | 3           | Shipment Method:                                                                                                |
|      | Struture                     |                                                | El analysis                | 11                                             |           | 1                 |          |          |            | 70 5                              | f           | HCL to<br>HNO3 f | pri «Z     | . 0.00       | 4°C                | ~      |          |          |             | Airbill No.:                                                                                                    |
| /    |                              |                                                | Z                          |                                                | N         | _                 |          |          |            |                                   |             | 1000             | υpπ        | 20           | JU, 4 <sup>°</sup> | 4      |          |          |             | Custody Seol 1 No.:                                                                                             |
| 6    | John U. Endl                 | cton Time                                      |                            | Ur                                             | Űľ        |                   |          |          | Timė       |                                   | 3.1         | LC03.1           | • .        | _            |                    |        |          |          |             | Custody Seat 2 No.:<br>Field COC No.s:                                                                          |
|      | 1" ARUSO N2/THE              |                                                | Printed Nam                | 1                                              |           |                   |          |          |            |                                   |             | EM04.            |            |              |                    |        |          |          |             |                                                                                                                 |
|      | SAL                          | <b>U</b> S                                     | スリ                         | . la                                           |           |                   |          |          |            |                                   | 1           | OLMO             |            |              |                    |        |          |          |             |                                                                                                                 |
|      | SAIC                         |                                                |                            | ~~~                                            | 1         | P                 |          |          |            | -                                 | 1           | CLC02            |            |              |                    |        |          |          |             |                                                                                                                 |
|      |                              |                                                | Солдалу                    |                                                |           |                   |          |          | 3!         | 31                                | T           | •                |            |              |                    |        |          |          |             |                                                                                                                 |
|      | Relinquished by              | Date                                           | e Received                 | by                                             |           |                   |          |          | Date       |                                   | 7           |                  |            |              |                    |        |          |          |             |                                                                                                                 |
|      |                              |                                                | The                        |                                                |           |                   |          |          | •          |                                   |             |                  |            |              |                    |        |          |          |             |                                                                                                                 |
|      | Stgrature                    |                                                | Simahum                    | 2                                              |           |                   |          |          |            |                                   |             |                  |            |              | •                  |        |          | •        |             | Temperature Blank                                                                                               |
|      |                              |                                                | o-Burning,                 |                                                |           |                   |          |          |            |                                   | 1           |                  |            |              |                    |        |          |          |             | 4°C Field:                                                                                                      |
|      | 1                            | Time                                           | <u> </u>                   |                                                |           |                   |          |          | 77         |                                   | 4           |                  |            |              |                    |        |          |          |             | Lab:                                                                                                            |
|      | Frinted Name                 |                                                | Printed Nam                | •                                              |           |                   |          | _        | Time       |                                   | 1           |                  |            |              |                    |        |          |          |             |                                                                                                                 |
|      |                              |                                                |                            |                                                |           |                   |          |          |            |                                   |             |                  |            |              |                    |        |          |          |             | SAIC Location                                                                                                   |
|      |                              |                                                |                            |                                                |           |                   |          |          |            |                                   |             |                  |            |              |                    |        |          |          |             | Reston, Virginia                                                                                                |
|      | Company                      |                                                | Company                    |                                                |           |                   |          |          |            |                                   | 1           |                  |            |              |                    |        |          |          |             | 11251 Roger Bacon Dr., Reston, VA, 20190<br>(703) 318-4753                                                      |
|      | Science Applications Interna | Hanal Came                                     |                            | -                                              |           |                   |          | _        |            | _                                 |             |                  |            |              |                    |        |          |          |             | 1(103) 310-4/03                                                                                                 |

<sup>208022</sup> 

COC NO .: WIO001-GP JP #/8/02 P International Corporation Date: 8 8 02 Page 1 of 1 .4n Employee Owned Company Name Science Applications International Corporation Requested Parameters Address 11251 Roger Bacon Dr., Reston, VA 20190 Laboratory Name GPL N O. Phone Number (703) 318-4759 Environmental Project Manager John Pendleton 0 F Address 202 Perry Parkway METALS WA (C)(3) (EL)(A) AW-DOVS PERATUR Gaithersburg, Md 20877 Project Name Wallops Island VOC-WA (B)(73) C Phone (301)-926-6802 Job/P.O. No. 01-0827-04-2164-ÕN Fax (301)-840-1209 Sampler (Signature) (Printed Name) Contact NER CTOL Samp, Calle OBSERVATIONS, COMMENTS Site ID Field Sample # Site Type Depth ahie M. S SPECIAL INSTRUCTIONS WA-UST-01 SAIC01 WIR O Ne loz WA 1345 2 3 6 CONTAMINATED (HEHLY WA-UST-02 SAIC01 WTR 13 8/1/02 1400 WA 2 3 6 HNOS Remark WA-UST-03 SAIC01 WTR 8/8/02 Ö 1500 WA 2 3 6 HNO2 Removed WA-UST-04 SAIC01 WTR 8/8/02 1515 WA 2 3 Renard HNO FBbz CODIANT TEAP 0 SB-DL-03 SAKEBOZ WTR 8/7/02 1730 WA1 23 0 6 HNO3 REMOVED FROM METALS SAMPLE Relinguished by Date Received hy Date Total Number of Containers: Notes -24 84 WY A. Cool, 4' C Shipment Method: Durry 31 B. HCL to pH <2 Cool, 4' C Airbill No.: oq 312/02 lor C. HNO3 to pH <2 Cool, 4" C In Custody Seal 1 No.: Endleton Custody Seal 2 No.; Time 11me 3. NC03.1 Field COC No.s: 73. OLC02.1 1122 3:35 # USE EXTREME Date CANTION WA-UST-01 02,03 \$`04 HIGHLY CONTAMINIARD Imme PROBABLY JP-4 HNO3 Removed from all HNO3 Removed from all 1125) Roger Bacon Dr. F SAIL Relinquished by Date Received by Signature 4°C Field: Lab: Time Printed Name Printed Name 1125) Roger Bacon Dr., Reston, VA, 20190 Company Company (703) 318-4753 Science Applications International Corporation While: Laboratory Pink: Project Manager YENOW, Project QAD Goldenrod: Reld Project Monager

## JPL Laboratories, LLLP

|                                             | SAMPLE RECEIPT CHECKLIST            |
|---------------------------------------------|-------------------------------------|
| 0. No: 208082                               | Carrier Name: GPL Courder           |
| Client Name: SAIC                           | Prepared (Logged In) By: 5000112/02 |
| the Received: 0310962                       | Project: Wallops Initials Date      |
| Time Received:                              | Site:                               |
| ceived By: 5 Tedas                          | VOA Holding Blank I.D. No:          |
|                                             | YES NO YES NO                       |
| Airbill/Manifest Present?                   | Trip Blanks: No. of Sets            |
|                                             | Equip. Blank; No. of Sets           |
| Shipping Container in Good Condition?       | MS/MSD: No of Sets                  |
| stody Seals Present on Shipping Container?  | VOA Vials Have Zero Headspace?      |
| Intact-not dated or signed                  | Preservatives Added to Sample?      |
| Castal Tax                                  | pH Check Required?                  |
| Usage of Tamper Evident Type                | Performed By?                       |
| C ain-of-Custody Present?                   | Ice Present in Shipping Container?  |
| Fiain-of-Custody Agrees with Sample Labels? | Container # Temp. Container # Temp. |
| in-of-Custody Signed?                       | V <u>#1</u> <u>5.9</u> <sup>2</sup> |
| acking Present in Shipping Container?       | - × #2 59°                          |
|                                             |                                     |
| tody seals on Sample Bottles?               |                                     |
| Number of Sample Bottles                    | 07/09/00                            |
| cal Number of Samples6                      | 07101                               |
| Somples Intact?                             |                                     |
| circient Sample Volume for Indicated Test?  | Project Manager Contacted?          |
|                                             | Name: Contacted: 081,200            |
| r i                                         |                                     |

NO response must be detailed in the comments section below. If items are not applicable to particular samples or contracts, they hould be marked N/A/

WA-UST-03-SAECOI received se AMENTS: OZ One bottle roccives Bonto. ST/0A - unlabeled 12 onber is space SVOC for WAIST-02 preserved fituel by leb de 8 Checklist Completed By: Date: 07 112 6

Work Order Approval Page 1 of 3 rk Order #: 208057 Date Received Aug-08-2002 Client: SAIC Laura Petrik Fax Due Date: Address: 11251 Roger Bacon Drive iect #: 10274 HC Due Date:Aug-27-2002 Reston, VA 20190 ect Nam Wallops Flight Facility EDD Due Date Aug-29-2002 Contact: John Pendleton **APPROVED** Phone: (703)318-4500 nments: QC Level 3 (CLP-like) + CD, LIMS pages not required: Fax: (703)709-1042 **ERPIMS 4.0 EDD** E-Mail: See handouts for project specific QA/QC requirements and RLs Metals - report to MDL SAMPLES CONTAIN HIGH LEVELS OF HYDROCARBONS - SEE CoC b ID : 208057-001 Field ID : SBCDL01-SAIC01 Date Collected : 07-AUG-02 thod Name <u>Cont</u> ₫ torage Loc resev Class <u>AT</u> omments cury by SW-846 7471A B-4D COOL **71D** 6 ent Solids by CLP E-4D COOL ZID 5 6 AS TCL LIST by EPA 8270C. B-4D COOL 5 210 I Metals by EPA 6010B 8-4D COOL 21D the Organic Compounds by SW8260B ICL List VOA FRIDGE 5 COOL 21D (On Hold/Spare) tile Organic Compounds by SW8260B TCL List OA FRIDGE COOL 211) ID: 208057-002 Field ID: SBCDL01-SAIC02 Date Collected: 07-AUG-02 hod Name AT <u>Cont</u> resev Class torage Loc μ omments ury by SW-846 7471A 8-4D COOL 5 210 6 ent Solids by CLP B-AD COOL 210 3 6 As TCL List by EPA 8270C 8-4D COOL 210 ъ Metals by EPA 6010B 6 8-4D COOL ZID ile Organic Compounds by SW8260B TCL. List ъ **VOA FRIDGE** CUOL 210 (On Hold/Spare) ile Organic Compounds by SW8260B TCL List COOL VOA FRIDGE 6 21D ID: 208057-003 Field ID: SBCDL02-SAIC01 Date Collected: 07-AUG-02 hod Name resev Class <u>1</u> Cont torage Loc <u>AT</u> <u>omments</u> Bry by SW-846 7471A 5 б B-4D COOL ZTD nt Solids by CLP B-4D COOL 21D 3 6 IS I'CL List by EI'A 8270C B-4D З 6 COOL 21D Mctais by EPA 6010B 210 6 8-4D COUL le Organie Compounds by SW8260B TCL List VOA FRIDGE COOL 21D (On Hold/Spare) le Organic Compounds by SW8260B TCL. List VUA FRIDGE COUL 210 D: 208057-004 Field ID: SBCDL02-SAIC01D Date Collected: 07-AUG-02 od Name Cont resev Class <u>AT</u> 효 <u>torage Loc</u> omments TY by SW-846 7471A **R-4D** 6 COOL 21D S it Solids by CLP R-4D COOL 21D s TCL List by EPA 8270C B-40 COOL 21D 5 4 Victais by EPA 6010B 8-41 COOL 21D б c Organic Compounds by SW8260B TCL List COOL ZID OA FRIDGE (On Hold/Spare) 5 6 e Organic Compounds by SW8260B TCL List OA FRIDGE COOL 2**TD** 

Approved By:

\_\_\_\_\_

Date and Time Approved :\_

8-8-02

| PL Work                                                                                                                                                                                                                                                                                                                                 | Ord                      | ler (                                          | Approval                                                                                                                   | ·                                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                         | . Oru                    |                                                | spprova                                                                                                                    | L                                                                                             |                                                                                  | Page 2 of 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| poratones                                                                                                                                                                                                                                                                                                                               |                          |                                                | ······································                                                                                     |                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Order #: 208057 Date                                                                                                                                                                                                                                                                                                                    | e Receiv                 | ed Au                                          | g-08-2002                                                                                                                  | Client: SA                                                                                    | JC.                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                         | Due Dat                  |                                                | -                                                                                                                          |                                                                                               |                                                                                  | er Bacon Drive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                         |                          |                                                | 27-2002                                                                                                                    |                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                         |                          |                                                |                                                                                                                            |                                                                                               | ston, VA                                                                         | 20190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| t Nam Wallops Flight Facility EDI                                                                                                                                                                                                                                                                                                       |                          | -                                              | g-29-2002                                                                                                                  |                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                         | APP]                     | ROV                                            | VED                                                                                                                        |                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| D: 208057-005 Field ID: SBCDL02-SAIC02                                                                                                                                                                                                                                                                                                  | Data Ch                  | 11 4 - 3                                       |                                                                                                                            |                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ad Name                                                                                                                                                                                                                                                                                                                                 |                          | ~                                              |                                                                                                                            | resev Cla                                                                                     | а <b>А</b> Т                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CULLY BY SW-846 7471A                                                                                                                                                                                                                                                                                                                   |                          |                                                | B-4D                                                                                                                       |                                                                                               | <u>ss <u>AT</u><br/>210</u>                                                      | <u>Omments</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| nt Solids by CLP                                                                                                                                                                                                                                                                                                                        |                          |                                                | B-4D                                                                                                                       |                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| STCL List by EPA 8270C                                                                                                                                                                                                                                                                                                                  | 8                        | 6                                              |                                                                                                                            | COOL                                                                                          | 210                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| I Metals by EPA 6010B                                                                                                                                                                                                                                                                                                                   | S                        | 6                                              | B-4D                                                                                                                       | COOL                                                                                          | 210                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                         | S                        | 6                                              | B-4D                                                                                                                       | COOL                                                                                          | 210                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| the Organic Compounds by SW8260B TCL List                                                                                                                                                                                                                                                                                               | S                        | 6                                              | VOA FRIDGE                                                                                                                 | COOL                                                                                          | 210                                                                              | (On Hold/Spare)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| c Organic Compounds by SW8260B 1 CL List                                                                                                                                                                                                                                                                                                | 5                        | 6                                              | VOA FRIDGE                                                                                                                 | COUL                                                                                          | 210                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                         |                          |                                                |                                                                                                                            |                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ID: 208057-006 Field ID: SBCDL03-SAIC01                                                                                                                                                                                                                                                                                                 |                          |                                                |                                                                                                                            | ·                                                                                             | . —                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <u>od Name</u><br>ry by SW-846 7471A                                                                                                                                                                                                                                                                                                    | <u></u>                  | <u>Con</u>                                     |                                                                                                                            | resev Clas                                                                                    |                                                                                  | omments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ent Solids by CLP                                                                                                                                                                                                                                                                                                                       |                          | 6                                              | B-4D                                                                                                                       | COOL                                                                                          | 210                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                         | 8                        | 6                                              | B-4D                                                                                                                       | COOL                                                                                          | 210                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TCL List by EPA 8270C                                                                                                                                                                                                                                                                                                                   | 5                        | 6                                              | B-4D                                                                                                                       | COOL                                                                                          | 210                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Actals by EPA GOTOB                                                                                                                                                                                                                                                                                                                     | S                        |                                                | B-4D                                                                                                                       | COOL                                                                                          | 210                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ile Organic Compounds by SW8260B TCL List                                                                                                                                                                                                                                                                                               | 5                        | 6                                              | VUA FRIDGE                                                                                                                 | COOL                                                                                          | - 21D                                                                            | (On Hold/Spare)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Corganic Compounds by SW8260B TCL List                                                                                                                                                                                                                                                                                                  | S                        | 6                                              | VOA FRIDGE                                                                                                                 | COOL                                                                                          | 21D                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                         | لـــــ                   | استعما                                         | lana and a second se            |                                                                                               | ······                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| D: 208057-007 Field ID: SBCDL03-SAIC02 1                                                                                                                                                                                                                                                                                                | Date Col                 | lected                                         | : 07-AUG-02                                                                                                                |                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| hod Name                                                                                                                                                                                                                                                                                                                                | 죄                        | <u>Coni</u>                                    |                                                                                                                            | <u>resev Clas</u>                                                                             |                                                                                  | omments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| y by SW-846 7371A                                                                                                                                                                                                                                                                                                                       | 5                        | 6                                              | B-4D                                                                                                                       | COOL                                                                                          | 210                                                                              | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Solids by CLP                                                                                                                                                                                                                                                                                                                           | 5                        | 6                                              | B-4D                                                                                                                       | COOL                                                                                          | 210                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ASTCL List by EPA 8270C                                                                                                                                                                                                                                                                                                                 | 5                        | 6                                              | B-4D                                                                                                                       | COOL                                                                                          | 210                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ictals by EPA GUIUB                                                                                                                                                                                                                                                                                                                     | 5                        | 6                                              | B-4D                                                                                                                       | COOL                                                                                          | 210                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Organic Compounds by SW8260B TCL List                                                                                                                                                                                                                                                                                                   | - 5                      | 6                                              | VOAFRIDGE                                                                                                                  | COOL                                                                                          | 210                                                                              | (On Hold/Spare)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| le Organic Compounds by SW8260B TCL List                                                                                                                                                                                                                                                                                                | s                        |                                                | VUA FRIDGE                                                                                                                 | COOL                                                                                          | 210                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                         |                          |                                                |                                                                                                                            |                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ): 208057-008 Field ID : HPCDL01-SAIC01 ]                                                                                                                                                                                                                                                                                               | Date Col                 | lected                                         | : 07-AUG-02                                                                                                                |                                                                                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <u>A Name</u>                                                                                                                                                                                                                                                                                                                           | لک                       | Cont                                           |                                                                                                                            | resev Clas                                                                                    | AT                                                                               | omments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ITY DY LPA 7470A                                                                                                                                                                                                                                                                                                                        | W                        | 67                                             | B-4D                                                                                                                       |                                                                                               | -21D -                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TCL List by EPA 8270C                                                                                                                                                                                                                                                                                                                   | W                        | 6                                              |                                                                                                                            |                                                                                               |                                                                                  | 1 A second se |
|                                                                                                                                                                                                                                                                                                                                         |                          | 1 . 1                                          | B-4D                                                                                                                       | COOL                                                                                          | 70                                                                               | (On Hold/Sparc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ICL List by EPA 8270C                                                                                                                                                                                                                                                                                                                   |                          | 6                                              | B-4D<br>B-4D                                                                                                               |                                                                                               |                                                                                  | (On Hold/Spare)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                         |                          | 6                                              | B-4D                                                                                                                       | COOL                                                                                          | 70<br>70                                                                         | (On Hold/Spare)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Metals by EPA GOINB                                                                                                                                                                                                                                                                                                                     | W                        | 6<br>6                                         | B-4D<br>B-4D                                                                                                               | COOL<br>COOL<br>COOL                                                                          | 70<br>70<br>70<br>70                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Metals by LPA COTOB<br>L Compounds by SW8260 25mL Purge                                                                                                                                                                                                                                                                                 | W                        | 6<br>6<br>6                                    | B-4D<br>B-4D<br>A1-2                                                                                                       | COOL<br>COOL<br>HC                                                                            | 70)<br>70)<br>70)<br>210)                                                        | (On Hold/Spare)<br>(On Hold/Spare)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Metals by EPA GOINB                                                                                                                                                                                                                                                                                                                     | W                        | 6<br>6                                         | B-4D<br>B-4D                                                                                                               | COOL<br>COOL<br>COOL                                                                          | 70<br>70<br>70<br>70                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Metals by EPA COTHE<br>IL Compounds by SW8260 25mL Purge<br>IL Compounds by SW8260 25mL Purge                                                                                                                                                                                                                                           | W<br>W<br>W              | 6<br>6<br>6<br>6                               | B-4D<br>B-4D<br>A1-2<br>A1-2                                                                                               | COOL<br>COOL<br>HC                                                                            | 70)<br>70)<br>70)<br>210)                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Metals by EPA GOINH<br>TL Compounds by SW8260 25mL Purge<br>C Compounds by SW8260 25mL Purge<br>D : 208057-009 Field ID : HPCDL02-SAIC01 D                                                                                                                                                                                              | W<br>W<br>W<br>Date Coll | 6<br>6<br>6<br>6<br>ected :                    | B-4D<br>B-4D<br>A1-2<br>A1-2<br>c 07-AUG-02                                                                                | COOL<br>CUOL<br>RC<br>IIC                                                                     | 70<br>70<br>70<br>210<br>210                                                     | (On Hold/Spare)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Metals by EPA GOIOH<br>L Compounds by SW8260 25mL Purge<br>C Compounds by SW8260 25mL Purge<br>D : 208057-009 Field ID : HPCDL02-SAIC01 D<br>Name                                                                                                                                                                                       | Date Coll                | 6<br>6<br>6<br>6<br>6<br>6<br>6                | B-4D<br>B-4D<br>A1-2<br>A1-2<br>C07-AUG-02<br><u>lorage Loc</u>                                                            | COOL<br>CUOL<br>HC<br>IIC                                                                     | 70<br>70<br>70<br>210<br>210                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mctals by EPA GOIGH<br>L Compounds by SW8260 25mL Purge<br>L Compounds by SW8260 25mL Purge<br>D : 208057-009 Field ID : HPCDL02-SALC01 E<br>Name<br>by EPA 7470A                                                                                                                                                                       | Date Coll                | 6<br>6<br>6<br>ected :<br><u><i>Cont</i></u>   | B-4D<br>B-4D<br>A1-2<br>A1-2<br>corage Loc<br>B-4D                                                                         | COOL<br>COOL<br>HC<br>IIC<br><u>resev Class</u>                                               | 70<br>70<br>70<br>210<br>210<br>210<br><u>AT</u><br>210                          | (On Hold/Spare)<br><u>omments</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mctals by EPA COINH<br>L Compounds by SW8260 25mL Purge<br>C Compounds by SW8260 25mL Purge<br>D : 208057-009 Field ID : HPCDL02-SAIC01 F.<br><u>Name</u><br>by EPA 7470A<br>TCL List by EPA 8270C                                                                                                                                      | Date Coll                | 6<br>6<br>6<br>ected :<br><u>Cont</u><br>6     | B-4D<br>B-4D<br>A1-2<br>A1-2<br>07-AUG-02<br><u>iorage Loc</u><br>B-4D<br>B-4D                                             | COOL<br>COOL<br>HC<br>IIC<br>Tesev Class<br>COOL                                              | 70<br>70<br>70<br>210<br>210<br>210<br>210<br><u>AT</u><br>210<br>70             | (On Hold/Spare)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mctals by EPA COIGH<br>L Compounds by SW8260 25mL Purge<br>C Compounds by SW8260 25mL Purge<br>D : 208057-009 Field ID : HPCDL02-SAIC01 F.<br><u>Name</u><br>by EPA 7470A<br>TCL List by EPA 8270C<br>CL List by EPA 8270C                                                                                                              | Date Coll                | 6<br>6<br>6<br>ected :<br><u><i>Cont</i></u>   | B-4D<br>B-4D<br>A1-2<br>A1-2<br>corage Loc<br>B-4D                                                                         | COOL<br>COOL<br>HC<br>IIC<br><u>resev Class</u>                                               | 70<br>70<br>70<br>210<br>210<br>210<br><u>AT</u><br>210                          | (On Hold/Spare)<br><u>omments</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Metals by EPA GOTOH<br>L Compounds by SW8260 25mL Purge<br>L Compounds by SW8260 25mL Purge<br>D : 208057-009 Field ID : HPCDL02-SAICO1 E<br><u>Name</u><br>by EPA 7470A<br>TCL List by EPA 8270C<br>CL List by EPA 8270C<br>Ials by EPA 6010B                                                                                          | Date Coll                | 6<br>6<br>6<br>ected :<br><u>Cont</u><br>6     | B-4D<br>B-4D<br>A1-2<br>A1-2<br>07-AUG-02<br><u>iorage Loc</u><br>B-4D<br>B-4D                                             | COOL<br>COOL<br>HC<br>IIC<br>Tesev Class<br>COOL                                              | 70<br>70<br>70<br>210<br>210<br>210<br>210<br><u>AT</u><br>210<br>70             | (On Hold/Spare)<br><u>omments</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Metals by EPA GOIOH<br>L Compounds by SW8260 25mL Purge<br>L Compounds by SW8260 25mL Purge<br>D : 208057-009 Field ID : HPCDL02-SAICO1 E<br><u>Name</u><br>by EPA 7470A<br>TCL List by EPA 8270C<br>CL List by EPA 8270C<br>Ials by EPA 6010B                                                                                          | Date Coll                | 6<br>6<br>6<br>6<br>6<br>6                     | B-4D<br>B-4D<br>A1-2<br>A1-2<br>COT-AUG-02<br><u>lorage Loc</u><br>B-4D<br>B-4D<br>B-4D                                    | COOL<br>CUOL<br>HC<br>IIC<br>Tesev Class<br>COOL<br>COOL                                      | 70<br>70<br>70<br>210<br>210<br>210<br><u>AT</u><br>210<br>70<br>70              | (On Hold/Spare)<br><u>omments</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Metals by EPA GOTOH<br>L Compounds by SW8260 25mL Purge<br>L Compounds by SW8260 25mL Purge<br>D : 208057-009 Field ID : HPCDL02-SAICO1 E<br><u>Name</u><br>by EPA 7470A<br>TCL List by EPA 8270C<br>CL List by EPA 8270C<br>Ials by EPA 6010B                                                                                          | Date Coll                | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>6           | B-4D<br>B-4D<br>A1-2<br>A1-2<br>A1-2<br>COT-AUG-02<br><u>iorage Loc</u><br>B-4D<br>B-4D<br>B-4D<br>B-4D                    | COOL<br>CUOL<br>HC<br>IIC<br>IIC<br><i>resev Class</i><br>COOL<br>CUOL<br>COOL                | 70<br>70<br>70<br>210<br>210<br>210<br>210<br>70<br>70<br>70<br>70               | (On Hold/Spare)<br><u>omments</u><br>(On Hold/Spare)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mctals by EPA COIGH<br>L Compounds by SW8260 25mL Purge<br>L Compounds by SW8260 25mL Purge<br>D : 208057-009 Field ID : HPCDL02-SAIC01 E<br>Name<br>by EPA 7470A<br>TCL List by EPA 8270C<br>CL List by EPA 8270C<br>IAIs by EPA 6010B<br>CL Compounds by SW8260 25mL Purge                                                            | Date Coll                | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6      | B-4D<br>B-4D<br>A1-2<br>A1-2<br>c 07-AUG-02<br><u>lorage Loc</u><br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>A1-2   | COOL<br>COOL<br>HC<br>IIC<br>IIC<br>Pesev Class<br>COOL<br>COOL<br>COOL<br>COOL<br>COOL<br>HC | 70<br>70<br>210<br>210<br>210<br>210<br>210<br>70<br>70<br>70<br>70<br>70<br>210 | (On Hold/Spare)<br><u>omments</u><br>(On Hold/Spare)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Metals by EPA COTOB<br>L Compounds by SW8260 25mL Purge<br>L Compounds by SW8260 25mL Purge<br>D : 208057-009 Field ID : HPCDL02-SAICO1 F.<br>Name<br>by EPA 7470A<br>TCL List by EPA 8270C<br>CL List by EPA 8270C<br>IAIs by EPA 6010B<br>CL Compounds by SW8260 25mL Purge                                                           | Date Coll                | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6      | B-4D<br>B-4D<br>A1-2<br>A1-2<br>c 07-AUG-02<br><u>lorage Loc</u><br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>A1-2   | COOL<br>COOL<br>HC<br>IIC<br>IIC<br>Pesev Class<br>COOL<br>COOL<br>COOL<br>COOL<br>COOL<br>HC | 70<br>70<br>210<br>210<br>210<br>210<br>210<br>70<br>70<br>70<br>70<br>70<br>210 | (On Hold/Spare)<br><u>omments</u><br>(On Hold/Spare)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Metals by EPA COUR<br>L Compounds by SW8260 25mL Purge<br>L Compounds by SW8260 25mL Purge<br>D : 208057-009 Field ID : HPCDL02-SAIC01 F.<br>Name<br>by EPA 7470A<br>STCL List by EPA 8270C<br>CL List by EPA 8270C<br>IAIS by EPA 6010B<br>CL Compounds by SW8260 25mL Purge                                                           | Date Coll                | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6      | B-4D<br>B-4D<br>A1-2<br>A1-2<br>c 07-AUG-02<br><u>lorage Loc</u><br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>A1-2   | COOL<br>COOL<br>HC<br>IIC<br>IIC<br>Pesev Class<br>COOL<br>COOL<br>COOL<br>COOL<br>COOL<br>HC | 70<br>70<br>210<br>210<br>210<br>210<br>210<br>70<br>70<br>70<br>70<br>70<br>210 | (On Hold/Spare)<br><u>omments</u><br>(On Hold/Spare)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Metals by EPA COUR<br>L Compounds by SW8260 25mL Purge<br>L Compounds by SW8260 25mL Purge<br>D : 208057-009 Field ID : HPCDL02-SAIC01 F.<br><u>Name</u><br>by EPA 7470A<br>s TCL List by EPA 8270C<br>CL List by EPA 8270C<br>CL List by EPA 8270C<br>IAIs by EPA 6010B<br>CL Compounds by SW8260 25mL Purge                           | Date Coll                | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6      | B-4D<br>B-4D<br>A1-2<br>A1-2<br>c 07-AUG-02<br><u>lorage Loc</u><br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>A1-2   | COOL<br>COOL<br>HC<br>IIC<br>IIC<br>Pesev Class<br>COOL<br>COOL<br>COOL<br>COOL<br>COOL<br>HC | 70<br>70<br>210<br>210<br>210<br>210<br>210<br>70<br>70<br>70<br>70<br>70<br>210 | (On Hold/Spare)<br><u>omments</u><br>(On Hold/Spare)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mcials by EPA COINB<br>L Compounds by SW8260 25mL Purge<br>L Compounds by SW8260 25mL Purge<br>ID : 208057-009 Field ID : HPCDL02-SAICOI F.<br>Name<br>by EPA 7470A<br>s TCL List by EPA 8270C<br>CL List by EPA 8270C<br>Ials by EPA 6010B<br>CL Compounds by SW8260 25mL Purge<br>Compounds by SW8260 25mL Purge                      | Date Coll                | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6 | B-4D<br>B-4D<br>A1-2<br>A1-2<br>C<br>C-AUG-02<br><u>iorage Loc</u><br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>A1-2<br>A1-2 | COOL<br>COOL<br>HC<br>IIC<br>IIC<br>COOL<br>COOL<br>COOL<br>COOL<br>HC<br>HC                  | 70<br>70<br>210<br>210<br>210<br>210<br>210<br>70<br>70<br>70<br>70<br>70<br>210 | (On Hold/Spare)<br><u>omments</u><br>(On Hold/Spare)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mcials by EPA 6010B<br>L Compounds by SW8260 25mL Purge<br>L Compounds by SW8260 25mL Purge<br>ID : 208057-009 Field ID : HPCDL02-SAIC01 F.<br>Name<br>by EPA 7470A<br>s TCL List by EPA 8270C<br>CL List by EPA 8270C<br>IAIs by EPA 6010B<br>CL Compounds by SW8260 25mL Purge                                                        | Date Coll                | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6 | B-4D<br>B-4D<br>A1-2<br>A1-2<br>c 07-AUG-02<br><u>lorage Loc</u><br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>A1-2   | COOL<br>COOL<br>HC<br>IIC<br>IIC<br>COOL<br>COOL<br>COOL<br>COOL<br>HC<br>HC                  | 70<br>70<br>210<br>210<br>210<br>210<br>210<br>70<br>70<br>70<br>70<br>70<br>210 | (On Hold/Spare)<br><u>omments</u><br>(On Hold/Spare)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mcials by EPA COINB<br>L Compounds by SW8260 25mL Purge<br>L Compounds by SW8260 25mL Purge<br>ID : 208057-009 Field ID : HPCDL02-SAICOI F.<br>Name<br>by EPA 7470A<br>s TCL List by EPA 8270C<br>CL List by EPA 8270C<br>Ials by EPA 6010B<br>CL Compounds by SW8260 25mL Purge<br>Compounds by SW8260 25mL Purge                      | Date Coll                | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6 | B-4D<br>B-4D<br>A1-2<br>A1-2<br>C<br>C-AUG-02<br><u>iorage Loc</u><br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>A1-2<br>A1-2 | COOL<br>COOL<br>HC<br>IIC<br>IIC<br>COOL<br>COOL<br>COOL<br>COOL<br>HC<br>HC                  | 70<br>70<br>210<br>210<br>210<br>210<br>210<br>70<br>70<br>70<br>70<br>70<br>210 | (On Hold/Spare)<br><u>omments</u><br>(On Hold/Spare)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Metals by EPA COUR<br>L Compounds by SW8260 25mL Purge<br>L Compounds by SW8260 25mL Purge<br>D : 208057-009 Field ID : HPCDL02-SAICO1 F.<br>Name<br>by EPA 7470A<br>STCL List by EPA 8270C<br>CL List by EPA 8270C<br>CL List by EPA 8270C<br>Ials by EPA 6010B<br>CL Compounds by SW8260 25mL Purge<br>Compounds by SW8260 25mL Purge | Date Coll                | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6 | B-4D<br>B-4D<br>A1-2<br>A1-2<br>C<br>C-AUG-02<br><u>iorage Loc</u><br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>B-4D<br>A1-2<br>A1-2 | COOL<br>COOL<br>HC<br>IIC<br>IIC<br>COOL<br>COOL<br>COOL<br>COOL<br>HC<br>HC                  | 70<br>70<br>210<br>210<br>210<br>210<br>210<br>70<br>70<br>70<br>70<br>70<br>210 | (On Hold/Spare)<br><u>omments</u><br>(On Hold/Spare)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

..i.

| 1111                                                                     |                  |                               |             |             |                                          |
|--------------------------------------------------------------------------|------------------|-------------------------------|-------------|-------------|------------------------------------------|
| <u>JPL</u>                                                               | Work Orde        | er Approva                    | 1           | _)          | Page 3 of 3                              |
| rk Order #: 208057                                                       | Dote Persiver    | Aug-08-2002                   | ·····       |             |                                          |
| P Laura Petrik                                                           |                  |                               | Client: SA  |             |                                          |
| · ·                                                                      | Fax Due Date     |                               |             |             | er Bacon Drive                           |
| ject #: 10274                                                            | HC Due Date      | -                             | Re          | eston, VA   | 20190                                    |
| ject Nam Wallops Flight Facility                                         |                  | e Aug-29-2002                 |             |             |                                          |
|                                                                          | APPR             | ROVED                         |             |             |                                          |
| b ID: 208057-010 Field ID: HPCDL0                                        |                  | _                             |             |             |                                          |
| ethod Name<br>rcury by EPA 7470A                                         | <u>lx</u>        | <u>Cont</u> torage Lo         |             |             | omments                                  |
|                                                                          | W                | 6 B-4D                        |             | 210         |                                          |
| OAS TCL LIST DY EPA 8270C                                                | W                | 6 <u>B-4D</u>                 | LOOL        | 70          | (Un Hold/Sphre)                          |
| OAs TCL List by EPA 8270C                                                | W                | 6 B-4D                        | COOL        | 70          |                                          |
| al Mictals by EPA GUIUB                                                  | W                | 6 B-4D                        | COOL        | 70          |                                          |
| CTCL Compounds by SW8260 25mL Purge                                      | W                | 6 A1-2                        | HC I        | 210         | (On Hold/Spare)                          |
| CTCL Compounds by SW8260 25mL Purge                                      | w                | 6 A1-2                        | HC          | 21D         |                                          |
| 5 ID : 208057-011 Field ID : HPIWLO                                      | SAIC01 Date Coll | ected : 07-AUG-02             |             |             | n an |
| thod Name                                                                | <u>k</u>         | Cont torage Loc               | resev Class | <u>s AT</u> | omments                                  |
| CUTY BY EPA 7470A                                                        |                  | 6 B-AD                        |             |             | T                                        |
| AS TEL LIST by EPA 8270C                                                 | W                | 6 B-4D                        | COOL        | 7D          | (On Hold/Spare)                          |
| AS TEL LIST by EPA 8270C                                                 | · · · ·          | 6 <u>B-4D</u>                 | COOL        | 70          |                                          |
| I Metals by EPA 6010B                                                    |                  | 6 B-3D                        | COOL        | 70          |                                          |
| TCL Compounds by SW8260 25mL Purge                                       | w                | 6 AI-2                        | HC          | 210         | (On Hold/Spare)                          |
| TCL Compounds by SW8260 25mL Purge                                       | w                | 6 AT-2                        | HC          | 210         | (On Hold/Spare)                          |
| DID : 208057-012 Field ID : SBIWL04                                      | EATCOL D A Call  |                               |             |             |                                          |
| hod Name                                                                 |                  | <u>Cont</u> <u>torage Loc</u> | resev Class | AT          |                                          |
| WFY by SW-846 7471A                                                      | <u> </u>         | G B-4D                        |             | <u>710</u>  | omments                                  |
| ent Solids by CLP                                                        | <u> </u>         | 6 B-4D                        | COOL        | 210         |                                          |
| AS TCL LIST BY EPA 8270C                                                 |                  |                               |             |             |                                          |
| Metals by EPA GUIUB                                                      | S                |                               | COOL        | 210         |                                          |
| -                                                                        | 5                | 6 8-4D                        | COOL        | 210         |                                          |
| tile Organic Compounds by SWB260B TCL List                               | S                | 6 VOA FRIDGE                  | COOL        | ZID         | (On Hold/Spare)                          |
| the Organic Compounds by SW8260B TCL List                                | 8                | 6 VOA FRIDCE                  | COOL        | 210         |                                          |
| ID : 208057-013 Field ID : SBIWL04-                                      |                  |                               |             |             |                                          |
| hod Name                                                                 |                  | <u>Cont</u> torage Loc        | resev Class |             | <u>omments</u>                           |
| ury by SW-846 7471A                                                      | 8                | 6 R-4D                        | COOL        | 210         |                                          |
| nt Solida by CLP                                                         | 5                | 6 B-4D                        | COOL        | 210         |                                          |
| AS TCL LIST BY EPA 8270C                                                 | S                | 6 B-4D                        | COOL        | 210         |                                          |
| Metals by EPA 601015                                                     | 8                | 6 B-4D                        | COOL        | 21D         |                                          |
| ie Organic Compounds by SW8260B TCL List                                 | 5                | 6 VOA FRIDGE                  | C001.       | 210         | (On Hold/Spare)                          |
| le Organic Compounds by SW8260B TCL List                                 | <u> </u>         | 6 VOA FRIDGE                  | COOL        | 21D         |                                          |
| ID: 208057-014 Field ID: SBIWL04-5                                       | AICTB02 Date Col | lected : 07-AUG-02            |             |             |                                          |
| od Name                                                                  |                  |                               | resev Class | AT          | omments                                  |
|                                                                          |                  |                               |             | 210-1       | (On Hold/Spare)                          |
| ICL Compounds by SW8260 25mL Purge                                       |                  |                               |             |             |                                          |
| ICL Compounds by SW8260 25mL Purge<br>ICL Compounds by SW8260 25mL Purge |                  | 2 A1-2                        | HC.         | 21D         |                                          |

ľ

ľ

Ĺ

-

÷

Date and Time Approved :\_

| cienc                                                |           | · · · · ·    |              |                                                                                                                 | ret 17.) |            |                 | 1.429.10                            |                | - ne          | COM                      |               | ······································ | 1           |                                              |        |                                                               |
|------------------------------------------------------|-----------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------|----------|------------|-----------------|-------------------------------------|----------------|---------------|--------------------------|---------------|----------------------------------------|-------------|----------------------------------------------|--------|---------------------------------------------------------------|
| international<br>An Employee                         |           |              | J • \        | A)                                                                                                              | <b>k</b> | ~          | k.              |                                     | ŝ              |               | Page                     | ÷1            | of 1                                   |             | Da Da                                        |        | *17/02 8/7/02 3P                                              |
| Name Science Applications Inte                       |           |              |              |                                                                                                                 |          | _          |                 |                                     |                | Requ          | lested Param             | ehers         |                                        |             |                                              |        | -11/02                                                        |
| Address 11251 Roger Bacon Dr                         | Besto     | n.VA.20      | 1000<br>1000 |                                                                                                                 | ·        |            |                 |                                     |                |               |                          |               |                                        |             |                                              | N      | Laboratory Name GPL                                           |
| Phone Number (703) 318-4759                          |           |              | 100          |                                                                                                                 | }        |            |                 |                                     |                | [. <b>]</b>   |                          |               |                                        |             |                                              | 0.     | Environmental                                                 |
| Project Manager John Pendleto                        | n.        |              |              |                                                                                                                 |          | 2          |                 |                                     | ได             |               | -1.1                     |               | ٠.                                     |             |                                              | 0<br>F | Address 202 Perry Parkway<br>Gaithersburg, Md 20877           |
| Project Name Wallops Island                          |           |              |              |                                                                                                                 |          | S          | 6               | (C)(3)<br>(C)(3)                    | ΪŞ             | 13            | RE                       |               |                                        | <b>'</b>  . |                                              | g      | Phone (301)-926-6802                                          |
| Job/P.O. No. 01-0827-04-2164-<br>Sampler (Signature) |           | - (7)        | • • • •      |                                                                                                                 | : ]      | ğ          | (4)(3)          | <u>s</u> ]§                         | 18             | €             | 2                        |               |                                        |             |                                              | 0<br>N | Fax (301)-840-1209                                            |
| a D - Printine,                                      | L         |              | inted Nam    | re)                                                                                                             |          | 5          | Q               | 5                                   | Ň              | Š             | 5                        |               |                                        |             |                                              | Å      | Contact                                                       |
| inthis tendetto                                      | 2         | -W           | NR           | J.L                                                                                                             |          | METALS     | ş               | SVOC-SO (A)(39)<br>METALS-WA (C)(3) | SVOC-WA (AX73) | (E7X8) AV-DOV | N. N.                    |               |                                        |             |                                              | N      |                                                               |
| Sapp, Collecter Site ID Field Sample #               | Sile Type | Depth        |              | Time                                                                                                            | Nutix    | Σ          | 3  <br>2        | ភ   Σ                               | 6              | Ĭ             | N.                       |               |                                        | 1           |                                              | RR     | OBSERVATIONS, COMMENTS                                        |
| SB-CDL-01 SAIC01                                     | BORE      | 5.5          | 8/7/02       | 1111                                                                                                            | 50       | 1          | -7-             |                                     | +              |               |                          | +             |                                        | ┿━          |                                              | -      | SPECIAL INSTRUCTIONS                                          |
| SB-CDL-01 SAIC02                                     | BORE      | -            | A/02         | 1120                                                                                                            | 50       |            | 좌               | $\frac{1}{1}$                       | ╋              | ┼╍┼           | -+                       |               | ┝──┠─                                  |             | 6                                            |        | HIGHLY CONTAMMATED                                            |
| SB-CDL-02 SAIC01                                     | BORE      | Ö            | 2/7/02       | 1410                                                                                                            |          |            | 3               |                                     | +-             | ╉╧┽           | ╼╂╬╢╌                    | +             | ┢╾╎╾                                   | +           |                                              |        | HIGHET CONTAININ ATED                                         |
| ·SB-CDL-02 SAIC01D                                   | BORE      | 0            |              |                                                                                                                 |          |            | 3               | <del>.</del>  -                     |                | ╉╍╆           | ╾┼┸┠╸                    |               | ┫่                                     | +           | 6                                            |        | -                                                             |
| SB-CDL-02 SAIC02                                     | BORE      | 7            | 8/1/02       | 1410                                                                                                            |          | _          | -               | <u>-</u>  _                         |                | ┽╼╀           |                          | - <b> </b>    |                                        |             | _                                            | _      | Duplicate                                                     |
| SB-CDL-03 SAIC01                                     | BORE      |              | 8/7/or       | 1424                                                                                                            |          |            | 4               |                                     |                | ┥┥            | -11-                     |               |                                        |             |                                              | \$     | -                                                             |
|                                                      |           | 0            | er Hae       | The second se | _        |            | 21.             | 1                                   |                | ╉╼┽           | _11_                     |               |                                        | <u> </u>    | 6                                            | Э      |                                                               |
| SB-CDL-03 SAIC02                                     | BORE      | 4            | 8/7/02       |                                                                                                                 |          | 1          | 2-1-            | 1                                   |                |               |                          |               |                                        |             | 6                                            | 3,     | ¥                                                             |
| HP-CDL-01 SAICUI                                     | PNCH      | 10           | 8/7/02       | 1210                                                                                                            | WA       |            |                 |                                     | 2              | 3             |                          |               |                                        |             |                                              | -6     | HUO3 REMOLED FROM SUNDLE                                      |
| HP-CDL-01- SAIGTBOA                                  | TRIP      |              |              |                                                                                                                 | WA       |            |                 |                                     |                | 2             |                          |               |                                        |             |                                              | -2.    | Hip-Blenk                                                     |
| HP-CDL-02 SAIC01                                     | PNCH      | 8            | 87/02        | 1600                                                                                                            | WA       |            |                 |                                     | 2              | 3             |                          | 1-            |                                        | +-          | +                                            | 6      |                                                               |
| HP-CDL-03 SAIC01                                     | PNCH      | 4            | 8/4/02       |                                                                                                                 |          |            |                 |                                     | 2              | 3             |                          | 1             |                                        |             |                                              | 6      | HILLOS REMUED FROM Star XE                                    |
| HP-CBL-03                                            | RNSW      |              |              |                                                                                                                 | WA       |            |                 |                                     | 1-2            | 3             |                          |               | ╞╌╞╴                                   |             |                                              |        | HAOZ REMUVED FROM SAUPLE                                      |
| SB-CDL-01- GAICTB01                                  | THIP      |              |              |                                                                                                                 | WA       |            |                 |                                     |                | 2             |                          |               |                                        |             | <u> </u>                                     | 2      |                                                               |
| Relinquished by                                      | Dale      | Received     | by .         | L                                                                                                               | - 44     | <b>I</b>   | Date            | <u> </u>                            | No             | lox 1         | fotal Num                | Der of        | Conto                                  | Ders'       | F.                                           | -49    |                                                               |
| NH D'H CHA                                           |           | ,            |              |                                                                                                                 |          |            |                 |                                     | -1             | Cool, 4"      |                          |               | 00110                                  | 1014        | 6                                            |        |                                                               |
| Sidnature                                            | 24        | Signature    |              | <u>i i i i i i i i i i i i i i i i i i i </u>                                                                   | <u>.</u> |            | Ľ.              |                                     | i IBL I        | ICL IO P      | H <2 Cool, 4             | •C            | S                                      | ∭.          | 6                                            |        | Shipment Method: 6733 0878 7640<br>Arbill No.: 633 60678 9639 |
|                                                      | 1 km      |              |              |                                                                                                                 | 2.5      |            |                 | •                                   | C.             | HNO3 10       | pH<2 Cool                | . 4• C        | 9                                      | blo         | Ľ                                            |        | Custody Seal 1 No.:<br>Custody Seal 2 No.;                    |
| John D. Rudleton                                     | l'ime     |              |              |                                                                                                                 |          |            | Time            | ··                                  | 3.1            | LC03.1        | trea                     |               | - 1 00                                 | ~ (0        | ED MA                                        | ā      | Field COC No.s;                                               |
| Printed Name                                         |           | Phylind Name |              | : :                                                                                                             | . :.     |            | ŀ               |                                     | 17             | 4.M04.0       | 2 PTU                    | , chi         | SAG                                    | )~V         | JC - AJ                                      | νeγ    |                                                               |
| SALC                                                 | 1900      |              |              |                                                                                                                 |          |            | ļ, ·            | . ** i                              | 39.            | OLM04.        | 2 PRO                    | n pr          | eng                                    | 5           |                                              |        |                                                               |
| Company                                              | {``       | Company      |              | <u></u>                                                                                                         |          | <u>***</u> | 1               | 7                                   |                | . ULUUZ.      |                          |               |                                        |             |                                              |        |                                                               |
| Relinquished by                                      | Date      | Received     | by           |                                                                                                                 |          |            | Dat             | -                                   |                |               |                          |               |                                        |             |                                              |        |                                                               |
|                                                      |           | ·            |              | $\sim$                                                                                                          | •        | . (        | 0               | 1                                   | []             | Dc            | AIN/4/6                  | 57            | 704                                    | 1 :         | •                                            |        |                                                               |
| Signature                                            | 1         | Struke       |              |                                                                                                                 |          |            | 1               | $\mathcal{T}$                       |                | ~ 12          |                          | .01           | 15.40                                  | د02         | .)                                           |        | Temperature Blank                                             |
|                                                      |           | <u>`</u>     | ÷            | <u>.</u>                                                                                                        |          |            | :,              | 10                                  | 2.             | 26            | 4D1416<br>-CDL-<br>EL OB | سر ∼<br>سلم « | ה<br>היא 170                           | )CAi        | 2894                                         | l      | Field:<br>Lob:                                                |
| Printed Name                                         | Time      | Prinkad Name | am           | <u>نرمن</u>                                                                                                     |          |            | Time            | Э .                                 |                | Ules          | ERIN                     | - 14<br>      |                                        | ami         | PLE.                                         | 3      |                                                               |
|                                                      | 1         |              | ~ <b>7</b>   |                                                                                                                 |          | •          | 1               | •                                   |                | MAL           | CLA                      | J.4           |                                        | chi         | sind                                         | •      | SAIC Localian                                                 |
|                                                      |           | G            | 2h           | nbs                                                                                                             |          |            | -               | 10                                  | al             | rn<br>N       | om SB                    |               | -01                                    | ۳۳<br>د ال  | 1.1.1                                        |        | Restan, Virginia<br>11251 Roger Bacon Dr., Reston, VA, 20190  |
| Company                                              | L         | Company      | :            |                                                                                                                 |          |            | <u><u> </u></u> |                                     | <u>~ `</u>     | ~~{           | <u>ic han</u>            | dka           | 1 Wr                                   | r4 (        | <u>,                                    </u> | ~      | (703) 318-4753                                                |
| Science Applications International Co                | rporation |              |              |                                                                                                                 | White    | 9: LAĐ     | croior          | У                                   | Pin            | Project       | Monoger                  | Ŷ             | allow: Pro                             | 39c/ Q      | AO                                           |        | Goldenned: Rald Project Manager                               |

·\*\* (李) (\*\*)

| Name S                                                  | cience Applic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | An Employe<br>ations Inte                                    |                         |                    | ation                  |                                                     |                     |          |         |                 |                 |                                            |        | Reque   | sled Pr          | amete | 8/1            | _          |               |                       |    | ÷.             | B/7/02<br>Laboratory Name GPL                                                                                                                           |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------|--------------------|------------------------|-----------------------------------------------------|---------------------|----------|---------|-----------------|-----------------|--------------------------------------------|--------|---------|------------------|-------|----------------|------------|---------------|-----------------------|----|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address<br>Phone N<br>Project N<br>Project I<br>Job/P.O | 11251 Roge<br>lumber (703)<br>Manager John<br>Name Wallop<br>No. 01-0827<br>(Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r Bacon D<br>318-4759<br>1 Pendleto<br>s Island<br>7-04-2164 | r., Resto<br>on         | n, VA 2(           | ninted                 | Name                                                | e)                  | ton      |         | Metals-wa(c)(3) | 12 - 4 (A) (J3) | NUC-WA (B) (73)                            |        | Mustuze | TET ALLA (RY 73) |       | Ctology Cology | 0-50(4)39) | 00-50 239 )   | Maisture              |    | NO DF CONTAINE | Environmental<br>Address 202 Perry Parkway<br>Gaithersburg, Md 20877<br>Phone (301)-926-6802<br>Fax (301)-840-1209<br>Contact<br>OBSERVATIONS, COMMENTS |
| Samp. Collect                                           | Sile ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Field Stangle #                                              |                         | Depts              | Dal                    |                                                     | Time                | Matric   | ┢╼┥     |                 | 4               |                                            | _      |         | 12               |       | ۲              | nav        | 8             | 2                     |    | R<br>S         | SPECIAL INSTRUCTIONS                                                                                                                                    |
|                                                         | 11P-70-04<br>58-701-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |                         | 19<br>13           | 1 6                    |                                                     | <u>09/8</u><br>1837 |          | _       | 1               | 2               | 3                                          |        | 4       |                  |       | -              |            | -             | $\frac{\cdot}{\cdot}$ |    | 4              | HNOS REMOVED NEED TO                                                                                                                                    |
|                                                         | B-ILL-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |                         |                    |                        |                                                     | 2903                |          | ┟──╿    |                 |                 | -                                          | -      |         | -{               |       |                | 3          | $\frac{1}{1}$ |                       |    | 0<br>6         | ······································                                                                                                                  |
|                                                         | P_210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              | -                       | <u>_</u>           | 104-14                 |                                                     |                     | 10       |         | -               |                 |                                            |        | +       |                  |       | ┝┸╍            | 2          | 1             | 4                     | +  | 9              | <del></del>                                                                                                                                             |
|                                                         | 58-704-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SWEIBOI                                                      | Teip                    | 6                  | 871                    | or                                                  | 0745                | wA       |         |                 |                 |                                            |        |         | Z                |       |                |            | -1            |                       |    | z              | ······································                                                                                                                  |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                         |                    |                        |                                                     |                     |          |         |                 |                 |                                            |        |         |                  |       |                |            |               |                       |    |                |                                                                                                                                                         |
| <u></u>                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                         |                    | +                      |                                                     |                     |          |         |                 |                 |                                            |        |         | 1                | ·     | -              |            | _             |                       |    |                |                                                                                                                                                         |
|                                                         | COLAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                         |                    |                        |                                                     |                     | <b> </b> |         |                 |                 | _                                          | -+     |         |                  |       |                |            |               |                       | _  | Π              |                                                                                                                                                         |
| ·····                                                   | COULANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                                                     |                         |                    |                        |                                                     |                     |          | ┝─┤     |                 |                 |                                            |        |         | +-               |       | -              |            | _             |                       | -+ | 1              |                                                                                                                                                         |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 1                       |                    | +                      |                                                     |                     |          |         |                 |                 |                                            |        | +       |                  | +     | ╀╼             |            |               |                       | ┽  | $\rightarrow$  |                                                                                                                                                         |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                         |                    |                        |                                                     |                     |          |         |                 |                 |                                            |        |         |                  |       |                |            |               |                       |    |                |                                                                                                                                                         |
|                                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |                         |                    | <u> </u>               |                                                     |                     | L        | Ļ       |                 |                 |                                            |        |         |                  |       |                |            |               |                       |    | _              |                                                                                                                                                         |
|                                                         | hed by P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Also Iloto                                                   | Dote<br>ev<br>74<br>102 | Receive            | 1 DY. <u>*</u>         | ۲۰۰۰<br><u>13   .</u><br>۲۰۱۰ (۲۰۰۰)<br>۲۰۰۰ (۲۰۰۰) |                     |          |         | Dat             |                 |                                            | Nales: |         | otal N           |       |                | Con        | taine         | <u>ərs:  </u>         | 2' |                | Shloment Method: 8330878964<br>Alrbill No.: 8334 82789639<br>Custody Seal 1 No.:<br>Custody Seal 2 No.:                                                 |
| Plinted Nam                                             | in the second se | a je jun                                                     | Ime                     | Printed Nam        | نې و.<br>HI .<br>1 - 1 |                                                     |                     |          | <u></u> | 11im            | e               |                                            | 4      | lOs     | R                | 740   | しょう            | d F        | -720          | УЦ                    |    |                | Fleid COC No.s:                                                                                                                                         |
| 5/                                                      | AIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              | 1900                    |                    | •                      |                                                     |                     | 3.14<br> |         |                 | :               | · · · ·                                    |        |         | 20P              |       |                |            |               |                       |    |                |                                                                                                                                                         |
| Company<br>Rel'Inquis                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | Date                    | Company<br>Receive | d by                   |                                                     |                     | 4        |         | Da              | 10              | ؛:<br>ــــــــــــــــــــــــــــــــــــ | A      | æ       | 705<br>75        | 7     | эĨ             |            |               |                       |    |                |                                                                                                                                                         |
| Strature                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | -<br>Time               | Storature          |                        |                                                     |                     |          |         |                 | T,              | 62                                         |        |         |                  |       |                |            |               |                       |    |                | Temperalure Blank<br>Field:<br>Lab:                                                                                                                     |
| Printed Nar<br>Company                                  | 7x8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                         | Printed Nay        | PL                     | -                                                   |                     |          |         |                 | <i>2</i> /      | مى                                         |        |         | ,                |       |                |            |               |                       |    |                | SAIC Location<br>Reston, Virginia<br>11251 Roger Bacon Dr., Reston, VA, 20190<br>(703) 318-4753                                                         |

•

| IPL Laboratories, LLLP                                                                                          |                                       |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                                                                                                 |                                       |
|                                                                                                                 | SAMPLE RECEIPT CHECKLIST              |
| 208057                                                                                                          |                                       |
| (). No:                                                                                                         | Carrier Name:                         |
| lient Name: SALC                                                                                                | Prepared (Logged In) By: 50-708/08/08 |
| e Received: 07/07/07                                                                                            | Project: Wallops Island               |
| ime Received:                                                                                                   |                                       |
| eived By:                                                                                                       | VOA Holding Blank I.D. No:            |
| a company and the second se | YES NO YES NO                         |
| i ill/Manifest Present?                                                                                         | Trip Blanks: No. of Sets              |
| No                                                                                                              | Equip. Blank: No. of Sets             |
| ) ping Container in Good Condition?                                                                             | Field Duplicate: No. of Sets          |
|                                                                                                                 |                                       |
| ustody Seals Present on Shipping Container?<br>Condition: Broken                                                | VOA Vials Have Zero Headspace?        |
| Intact-not dated or signed                                                                                      | Preservatives Added to Sample?        |
| Usage of Tamper Evident Type                                                                                    | pH Check Required?                    |
| in-of-Custody Present?                                                                                          | Ice Present in Shipping Container?    |
| hain-of-Custody Agrees with Sample Labels?                                                                      | Container # Temp, Container # Temp.   |
| in-of-Custody Signed?                                                                                           |                                       |
| acking Present in Shipping Container?                                                                           | L _ # L 4.92                          |
| Lody seals on Sample Bottles?                                                                                   |                                       |
| r                                                                                                               |                                       |
| al Number of Sample Bottles                                                                                     | - pol -                               |
| otal Number of Samples                                                                                          |                                       |
| ples Intact?                                                                                                    | L                                     |
| ufficient Sample Volume for Indicated Test?                                                                     | Project Manager Contacted?            |
|                                                                                                                 | Name:                                 |
|                                                                                                                 |                                       |

any NO response must be detailed in the comments section below. If items are not applicable to particular samples or contracts, they should be marked N/A/

by tong Blank de 10 MMENTS: 1 Ub 8-8-02 lo metile fituel k males Checklist Completed By: 03/09/ 02 Date:

| boratories                                                                     | Work Or                     | der Approv                           | a]                  |                            | Page 1 of 3     |
|--------------------------------------------------------------------------------|-----------------------------|--------------------------------------|---------------------|----------------------------|-----------------|
| rk Order #: 208040                                                             | Date Receiv                 | red Aug-07-2002                      |                     |                            |                 |
| P Laura Petrik                                                                 | Fax Due Da                  |                                      | Client: S           |                            | <b>_</b>        |
| ject #: 10274                                                                  | •                           | te:Aug-26-2002                       | Aduress: [          | 1251 Roj                   | ger Bacon Drive |
| ect Nam Wallops Flight Facility                                                |                             | ate Aug-28-2002                      |                     | leston, v                  | A 20190         |
| and the point of the second                                                    |                             |                                      | Contact; ]          | ohn Pend                   | iston           |
|                                                                                |                             | ROVED                                | Phone; (            |                            |                 |
| nments: QC Level 3 (CLP-like) + CD, c<br>ERPIMS 4,0 EDD                        | lo not include <u>UMS p</u> | ages;                                | Fax: c              | 703)709-1                  | 1047            |
| -                                                                              | 01/00                       |                                      | E-Mail:             |                            | 10+2            |
| See handouts for project specifi<br>and RLs                                    | c QA/QC requiremen          | ts                                   | 2 pinn.             |                            |                 |
|                                                                                |                             |                                      | •                   |                            |                 |
|                                                                                |                             |                                      |                     |                            |                 |
|                                                                                |                             |                                      |                     |                            |                 |
|                                                                                |                             |                                      |                     |                            |                 |
| DID: 208040-001 Field ID: SBIWL(                                               | 1-SAIC01 Date Co            |                                      |                     |                            |                 |
| cury by SW-846 7471A                                                           | <u> </u>                    | <u>Cont</u> <u>Iorage Lo</u>         |                     |                            | <u>Ommenis</u>  |
| ent Solids by CLP                                                              | S                           | 6 B-1D                               | COOL                | 210                        |                 |
| As TCL List by EPA 8270C                                                       | 8                           | 6 B-1D                               | COOL                | 21D                        |                 |
| Metals by EPA 6010B                                                            | S                           | 6 B-1D                               | COOL                | 21D                        |                 |
|                                                                                | S                           | 6 B-1D                               | COOL                | 210                        |                 |
| tile Organic Compounds by SW8260B TCL Lis                                      | g - 1                       | 6 VOA FRIDG                          |                     | 210                        | (On Hold/Spare) |
| ile Organic Compounds by SW8260B TCL Lis                                       | t S                         | 6 VOA FRIDGI                         | COOL                | 210                        |                 |
| ID : 208040-002 Field ID : SBIWLO<br><u>hod Name</u><br>ury by SW-846 7471A    | 1-SAIC02 Date Col           | lected : 06-AUG-02<br>Coni torage Lo | c <u>resev Clas</u> | <u>s <u>AT</u><br/>210</u> | omments         |
| at Solids by CLP                                                               | 5                           | 6 B-ID                               | COOL                | 210                        |                 |
| As TCL List by EPA 8270C                                                       | 8                           | 6 B-ID                               | COOL                | 21D                        |                 |
| Metals by EPA 6010B                                                            | · S-                        | 6 B-ID                               | COOL                | 210                        |                 |
| ile Organic Compounds by SW8260B TCL List                                      |                             | 6 VOA FRIDGE                         |                     | 210                        | (On Huld/Spare) |
| ile Organic Compounds by SW8260B TCL List                                      |                             | 6 VOA FRIDGE                         |                     | 210                        | (On nota/spare) |
|                                                                                | Ľ                           |                                      |                     | 210                        |                 |
| ID : 208040-003 Field ID : SBIWL02                                             | -SAIC01 Date Coll           | ected : 06-AUG-02                    |                     |                            |                 |
| uod Name                                                                       | <u>x</u>                    | Cont torage Loc                      | resev Class         | <u>AT</u>                  | omments         |
| Iry by SW-846 7471A                                                            | 8                           | 6 1-10                               | ן רמסטון ן          | 210                        | I               |
| it Solids by CLP                                                               | 5                           | 6 B-ID                               | COOL                | 2110                       |                 |
| s TCL List by EPA 8270C                                                        | 8                           | 6 B-ID                               | COOL                | ZID                        |                 |
| Actals by EPA 6010B                                                            | 5                           | 6 B-10                               | COOL                | 21D                        |                 |
| e Organic Compounds by SW8260B TCL List                                        | 5                           | 6 VOA FRIDGE                         | COOL                | 210                        | (On Hold/Spare) |
| e Organic Compounds by SW8260B TCL List                                        | 5                           | 6 VOA FRIDGE                         | COOL                | 210                        |                 |
|                                                                                |                             |                                      |                     |                            |                 |
| D: 208040-004 Field 1D: SB1WL02-<br>2d Name                                    | <u><u> </u></u>             | Cont torage Loc                      | resev Class         |                            | <u>umments</u>  |
| y by SW-846 7471A                                                              | S                           | 6 B-1D                               |                     | 21D                        |                 |
| Solids by CLP                                                                  | S                           | 6 B-TD                               | COOL                | 21D                        |                 |
| TCL List by EPA 8270C                                                          | S                           | 6 B-ID                               | COOL                | 21D                        |                 |
| letals by EPA GOTOH                                                            | S                           | 6 B-1D                               | COOL                | 21D                        |                 |
| · · ·                                                                          |                             |                                      |                     |                            |                 |
| Organic Compounds by SW8260B TCL List<br>Organic Compounds by SW8260B TCL List | S                           | 6 VOA FRIDGE                         | COOL                | 210                        | (On Hold/Spare) |

Approved By:

lo

Date and Time Approved : 8-7-02-

| זמי                                         | •          | _              |                    |                    |                  |                                                                               |
|---------------------------------------------|------------|----------------|--------------------|--------------------|------------------|-------------------------------------------------------------------------------|
| JPL - Wo                                    | rk Or      | dor            | Approva            | 1                  |                  | <u>.</u>                                                                      |
| Poratories                                  |            |                | Abbrova            | .1                 | · · ) · ·        | Page 2 of 3                                                                   |
| ork Order #: 208040                         |            |                |                    |                    |                  |                                                                               |
| D 1                                         | Date Recei |                | g-07-2002          | Client: S          | AIC              |                                                                               |
|                                             | Fax Due D  |                |                    | Address:           | 1251 Rog         | er Bacon Drive                                                                |
| ct #: 10274                                 | HC Due Di  | · · · ·        |                    |                    |                  | A 20190                                                                       |
| ject Nam Wallops Flight Facility            | EDD Due I  |                |                    |                    | ·                |                                                                               |
|                                             | APF        | PROV           | /ED                |                    |                  |                                                                               |
| DI: 208040-005 Field ID : SBIWL03-SAICO     | 01 Date C  | ollected       | : 06-AUG-02        |                    |                  |                                                                               |
| <u>ternoa Name</u>                          |            | x Con          |                    | resev Cla          | uss AT           | omments                                                                       |
| ury by SW-846 7471A                         | S          | 7.67           | B-ID               | 1000               | 110              | T                                                                             |
| int Solids by CLP                           | S          | 6              | B-1D               | COOI.              | 210              |                                                                               |
| OAS TEL LISE by EPA \$270C                  | Ş          |                | B-1D               | COOL               | 21D              |                                                                               |
| Metals by EPA 6010B                         | 5          | 6              | B-1D               | COOL               | 210              |                                                                               |
| ile Organic Compounds by SW8260B TCL List   | 5          |                | VOA FRIDGE         | COOL               | 210              | (On Huld/Spare)                                                               |
| Table Organic Compounds by SW8260B TCL List | 8          | ] []           | VOA FRIDGE         | CODE               | 2112             |                                                                               |
| ID : 208040-006 Field ID : SBIWL03-SAIC0    | 2 Date Co  | llected        | 06-4116-07         |                    |                  | ······································                                        |
| od Name                                     |            | _              |                    | resev Cla          | ss AT            | omments                                                                       |
| cury by SW-846 7471A                        | T S        | 101            | B-IU               | רססבן              | 210              |                                                                               |
| 1 It Solids by CLP                          | S          |                | B-ID               | COOL               | 210              |                                                                               |
| STCI, List by EPA 8270C                     | \$         |                | B-1D               | COOL               | 210              |                                                                               |
| al Metals by EPA 6010B                      | S          | 6              | B-TD               | COOL               | 210              |                                                                               |
| re Organic Compounds by SW8260B TCL List    | 5          | 6              | VOA FRIDGE         | COOL               | 21D              | (Un Hold/Spare)                                                               |
| a Organic Compounds by SW8260B TCL List     | 5          | 6              | VOA FRIDGE         | COOL               | 210              |                                                                               |
| ID: 208040-007 Field ID: HPIWL01-SAIC0      |            |                |                    |                    |                  |                                                                               |
| A Name                                      |            | : <u>Cont</u>  | torage Loc         | resev Clas         | s AT             | omments                                                                       |
| y by EPA 7470A                              | TW         | <u>تتت</u> ا ا | B-ID               | NFC                | 210              |                                                                               |
| As TCL List by EPA 8270C                    | W          | 6              | B-ID               | CUOL               | . 70             | (Un Hold/Spare)                                                               |
| TCL List by EPA 8270C                       | W          | ~~             | B-ID               | COOL               | 70               |                                                                               |
| Ictals by EPA 60108                         | W          | 6              | B-TD               | NEC                | 70               |                                                                               |
| tile Organic Compounds by SW8260B TCL List  |            | -              | A1-2               | HC                 | 70               | (On Hold/Spare)                                                               |
| t Organic Compounds by SW8260B TCL List     | W          | 6              | A1-2               | HC                 | 70               |                                                                               |
| 1D : 208040-008 Field ID : HPIWL01-SAIC01   | D. Date C  | ر مسلم         |                    |                    |                  |                                                                               |
| hod Name                                    |            | <u>Cont</u>    | torage Lac         | resev Class        | <u>s AT</u>      | omments                                                                       |
| 1 by EPA 747UA                              | W          | الم            | R-ID               | [NFC] [            | 210              | granenis                                                                      |
| CL List by EPA 8270C                        | W          | 6              | B-10               | COOL               | 70               | (On Hold/Spare)                                                               |
| S TCL LIST by EPA 8270C                     | W          | 6              | B-ID               | COOL               | 70               |                                                                               |
| THIS DY EPA GUIOB                           | W          |                | 8-1/1              | NEC                | 70               |                                                                               |
| Prganic Compounds by SW8260B ICI. List      | W          |                | A1-2               | TRC-               | 70               | (On Hold/Spare)                                                               |
| le Organic Compounds by SW8260B TCL List    | W          |                | A1-2               | HC                 | 70               |                                                                               |
|                                             | ·          |                |                    |                    |                  | الىنى بەرىيىنى مەرىپىيە بەرىيىيە تەرىپىيە تەرىپىيە مەرىپىيە مەرىپىيە بەر<br>ر |
| I : 208040-009 Field ID : HPIWL02-SAIC01    |            |                |                    | -                  | 17               |                                                                               |
| TY Dy EPA 7470A                             | W          | <u>Cont</u>    | torage Loc<br>B-1D | <u>resev Class</u> | <u>47</u><br>210 | omments                                                                       |
| S CL List by EPA 8270C                      |            |                | B-10               | COOL               |                  | (On Hold/Spare)                                                               |
| CL LIST by EPA 8270C                        | W          |                | B-111              | COOL               | 70               | (control party)                                                               |
| Victals by EPA GUIDB                        | W          |                | B-10               | NFC                | 70               |                                                                               |
| e rganic Compounds by SW8260B TCL List      | W          | 6              | A1-2               | TIC -              | -70              | (On Hold/Spare)                                                               |
| e reame Compounds by SW8260B TCL List       | w          |                | A1-2               |                    | -70              | ( dourobard)                                                                  |
|                                             | _ <u> </u> | لسلل           | A1**               |                    |                  |                                                                               |
| $\square$                                   |            |                |                    |                    |                  |                                                                               |
|                                             |            |                |                    |                    |                  |                                                                               |
|                                             |            |                | 2 . ·              |                    |                  |                                                                               |
| Approved By:                                | . 1        | Date and       | d Time Approv      | /ed :              |                  |                                                                               |

| FPL                                                                                                                                                                                                                            |                                                                                                                                                   |                                                                                                                                                                                                                                       |                                   |                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------|
| boratories                                                                                                                                                                                                                     | Work Ord                                                                                                                                          | er Approva                                                                                                                                                                                                                            | l<br>                             | Page 3 of 3                                                                               |
| rk Order #: 208040<br>_ P Laura Petrik<br>ject #: 10274<br>ject Nam Wallops Flight Facility                                                                                                                                    | Fax Due Dat<br>HC Due Dat<br>EDD Due Da                                                                                                           | ed Aug-07-2002<br>e:<br>e:Aug-26-2002<br>ate Aug-28-2002<br>ROVED                                                                                                                                                                     |                                   | Roger Bacon Drive<br>a, VA 20190                                                          |
| tb 1D : 208040-010 Field ID : SBIWLO<br><u>ethod Name</u><br>Infile Organic Compounds by SW8260B TCL List<br>Catile Organic Compounds by SW8260B TCL List                                                                      | <u>Ix</u><br>W                                                                                                                                    | 06-AUG-02<br><u>Cont</u> <u>torage Los</u><br>2<br>2<br>AI-2<br>AI-2                                                                                                                                                                  |                                   | <u>AT ommenis</u><br>7D (On Hold/Spare)<br>7D                                             |
| b ID : 208040-011 Field 1D : HPIWLO:<br><u>uhod Name</u><br>Foury by EPA 7470A<br>DAS TCL LIST BY EPA 8270C<br>JAS TCL LIST BY EPA 8270C<br>I Metals by EPA 6010B                                                              | 3-SAICOI Date Col                                                                                                                                 | Ilected : 06-AUG-02           Cont         torage Loc           6         B-1D           6         B-1D           6         B-1D           6         B-1D           6         B-1D           6         B-1D                           | NFC<br>COOL<br>COOL               | <u>AT ommenis</u><br>TD<br>7D (On Hold/Spare)<br>7D                                       |
| thic Organic Compounds by SW8260B TCL List<br>the Organic Compounds by SW8260B TCL List                                                                                                                                        | W                                                                                                                                                 | 6 A1-2<br>6 A1-2                                                                                                                                                                                                                      |                                   | /D (On Hold/Spare)<br>/D                                                                  |
| ID : 208040-012 Field ID : DIWATEL<br>hod Name<br>ury by EPA 7470A<br>45 TCL List by EPA 8270C<br>Notals by EPA 6010B<br>He Organic Compounds by SW8260B TCL List<br>Ic Organic Compounds by SW8260B TCL List                  | R-SAIC01 Date Co                                                                                                                                  | llected : 06-AUG-02<br><u>Coni</u> <u>lorage Loc</u><br>6 B-1D<br>6 B-1D<br>6 B-1D<br>6 B-1D<br>6 A1-2<br>6 A1-2                                                                                                                      | NFC 2<br>COOL 7<br>NFC 7<br>IIC 7 | <u>AT</u> <u>omments</u><br>TD<br>(Un Tiold/Spare)<br>D<br>D<br>D<br>(Un Hold/Spare)<br>D |
| ID: 208040-013 Field ID: GEOWAT<br>od Name<br>ry by EPA 7470A<br>r TCL List by EPA 8270C<br>TCL List by EPA 8270C<br>retain by EPA 6010B<br>: Organic Compounds by SW8260B TCL List<br>: Organic Compounds by SW8260B TCL List | ER-SAICOI Date C<br><u><u><u>k</u></u><br/><u>w</u><br/><u>w</u><br/><u>w</u><br/><u>w</u><br/><u>w</u><br/><u>w</u><br/><u>w</u><br/><u></u></u> | Collected : 06-AUG-0           Cont         twrage Loc           6         U-TD           6         U-TD           6         U-TD           6         B-TD           6         B-TD           6         A1-2           6         A1-2 |                                   | D (On Hold/Spare)<br>D<br>D (On Hold/Spare)                                               |

i. L

Date and Time Approved :\_

Scie pplic COC No.: WIG993-GP International Corporation Page Jol 2 JP 8/6/02 Date: An Employee Owned Company Name Science Applications International Corporation Requested Parameters Laboratory Name GPL Address 11251 Roger Bacon Dr., Reston, VA 20190 N O Environmental Phone Number (703) 318-4759 0 F Address 202 Perry Parkway Project Manager John Pendleton (C) (C) (E)(Y) Gailhersburg, Md 20877 (A)(35) Project Name Wallops Island (A)(39) C-WA (B)(73) C O N T U Phone (301)-926-6802 Job/P.O. No. 01-0827-04-2164-METALS-WA STUR. Fax (301)-840-1209 ğ Sampler (Signature) õ (Printed Name) õ Contaci N E R Š Ko Q OBSERVATIONS, COMMENTS Sta ID Field Sample # Sits Type Deph Dala Time Mabla S SPECIAL INSTRUCTIONS SB-IWL-01 SAIC01 BORE 0 Alilon 13 0932 SO 67 (n SB-IWL-01 SAIC02 BORE A/102 16.5 1 2 50 1031 10 SB-IWL-02 SAIC01 BORE 0 SO 2 1329 (p SB-IWL-02 SAIC02 BORE 16 1406 SO 71 1 1 9i/c/n7 (n SB-IWL-03 SAIC01 BORE 0 1544 5/6 br SO 121 1 n 7 SB-IWL-03 SAIC02 BORE 19 8 Kloz 1635 SO hr 6 SB IML 64 SAIC01 ROPE P3/6/02 SALCOO 35-111-84-HOPE 07 9/6/07 HP-IWL-01 2602 1150 SAIC01 PNCH 16.5 WA 2 Э 6 HNO. KEMOVED HP-IWL-01 SAICOID PNCH 06/02/150 SHICO 16.5 WA 2 3 1 6 Duplicate REMOVED 55-DUL-01 HP-IWL-02 SAIC01 PNCH 1450 16 WA 2 3 1 6 HP-11W-02-SACTOR TRIP Peror 2 o tod WA O 2 Trip Blank 5 dula -Of- HP-IWL-03 SAIC01 PNCH 19 1700 WA 3 2 6 Relincuishert hv Date Received by Date Noles; Total Number of Containers: ¢, A. Cool 4º C Shipment Method: 62 58 B. HCL to pH <2 Cool 4" C Airbil No.: Signature C. HNO3 10 pH +2 Cool 4" C 8/02 62 Custody Seal 1 No.: 10Z Custody Seal 2 No.: Time Time 3.11.003.1 Field COC No.st Primed Name 17. NM04.0 A3D 39. OU/04.2 73. CAC02.1 Company NATRIL ACID REMOVED AND BOTTLES WASHED OUT, NEEDS TO Relinquished by Date Received by Date Temperature Blank Signature Similare 4°C Field: BE FILTERED FOR Lob: Time lime Printed Name Primied Nam **SAIC Location** METALS GPL Carriel Reston, Virginia 11251 Roger Bacon Dr., Reston, VA, 20190 Company (703) 318-4753 Science Applications International Corporation White: Laboratory Pink: Project Manager Yellow: Project QAO Goldervod: Reld Project Manager 20040

|   | Addres<br>Phone<br>Project<br>Project | Science Applic<br>s 11251 Roge<br>Number (703)<br>Manager Joh<br>Name Wallop | er Bacon D<br>318-4759<br>n Pendleto<br>os Island | ir., Rest<br>)<br>on | al Corpor<br>on, VA 20 | ation<br>0190   |                |        |        | (C)(3) | )(73) | (73) |          |                   | Reque   | sbed P   | aramet   | era                      |        |             |       | NO OF CO | Environmenta                                             | <u>l</u><br>Perry Parkway<br>Md 20877 |
|---|---------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|----------------------|------------------------|-----------------|----------------|--------|--------|--------|-------|------|----------|-------------------|---------|----------|----------|--------------------------|--------|-------------|-------|----------|----------------------------------------------------------|---------------------------------------|
|   | Sample                                | ). No. 01-082<br>(Signature)                                                 | ne)                                               | fa                   | METALS-WA (            | SVOC-WA (A)(73) | VOC-WA (B)(73) |        |        |        |       |      |          |                   |         |          | ONTALNER | Fax (301)-84(<br>Contact |        |             |       |          |                                                          |                                       |
| ţ | 1.                                    |                                                                              | Field Sample #<br>SAICD1                          | Site Type<br>FBLK    | Depth                  | Del             |                | Tirk   | Matrix |        |       |      | _        | _                 |         |          |          |                          |        |             |       | R<br>S   | SPECIA                                                   | LINSTRUCTIONS                         |
| 1 | /                                     | GEO-WATER                                                                    | SAIC01                                            | FBLK                 | 0                      | 39              | æ              | 1200   | WA     |        | 2     | 3    | _        |                   |         |          |          | · _                      |        |             |       | 6        |                                                          |                                       |
| 个 |                                       |                                                                              | 0.1001                                            | TUCK                 | 0                      | 1910)           | 07             | 1143   | WA     | 니      | 2     | 3    | -        |                   |         |          |          |                          |        |             |       | 6        |                                                          | •                                     |
| f |                                       | CONLINE                                                                      |                                                   |                      |                        | alit            |                |        |        |        |       |      | <u> </u> | _                 | $\perp$ |          |          |                          |        |             |       |          | tee:                                                     | P 8/6/02                              |
| ł |                                       | CONATT                                                                       |                                                   |                      | 0                      |                 |                | 0900   |        |        |       |      | _        |                   |         |          |          |                          |        |             |       | T        | 4°C                                                      | <u> </u>                              |
| ł |                                       | Gourt                                                                        |                                                   |                      | 0                      | 194             | 20             | 0900   | hA.    |        |       |      | _        |                   |         |          |          |                          |        |             |       | 1        | 400                                                      |                                       |
| ł |                                       |                                                                              |                                                   |                      |                        |                 |                |        |        |        |       | -    | -        |                   |         |          |          |                          |        |             |       |          |                                                          |                                       |
| ł |                                       |                                                                              |                                                   |                      |                        |                 |                |        |        |        |       |      |          |                   |         |          |          |                          |        |             |       |          |                                                          |                                       |
| ł |                                       |                                                                              |                                                   |                      |                        | <u>_</u>        |                |        |        |        |       |      | _        | 1                 | _       |          |          |                          |        | ŀ           |       |          |                                                          |                                       |
| ŀ | - <u></u>                             |                                                                              |                                                   |                      |                        |                 |                |        | [      |        |       | _    |          |                   |         |          |          |                          |        |             |       |          |                                                          |                                       |
| ł |                                       |                                                                              | ·                                                 |                      |                        |                 |                |        |        |        |       |      |          |                   |         | <u> </u> |          |                          |        |             | Τ     | T        |                                                          |                                       |
| ł | <u></u>                               | ·                                                                            |                                                   |                      |                        | <u> </u>        |                |        |        |        |       |      |          |                   |         |          |          |                          |        |             | Τ     |          |                                                          |                                       |
| ŀ |                                       |                                                                              |                                                   |                      |                        |                 |                |        |        |        |       |      |          | _                 |         |          |          |                          |        |             | T     |          |                                                          |                                       |
| ł | Relipius                              | bed by                                                                       | 1-04                                              | Date                 | Received               |                 |                |        | Ļ      |        |       |      | 4        |                   |         |          |          |                          |        |             |       |          |                                                          |                                       |
|   | ЛЪ                                    | 5 1                                                                          | I All-                                            | \$                   |                        | i Uy            |                | •      |        |        | Date  | 9    |          | lahes:<br>I. Codi |         | al Nu    | umbe     | rof(                     | Cont   | oiner       | S:    | -12      |                                                          |                                       |
| ł | Biggerium.                            | Val                                                                          | <u>ND</u>                                         | 16/                  | Signature              |                 |                |        |        |        |       |      | B        | HCL               | o pH <  |          | al, 4" C |                          |        |             |       | 14       | Shipment Method<br>Airbill No.:                          |                                       |
| ľ | 1.                                    | 201                                                                          | 1.1                                               | 102                  | -o-Unitate             |                 |                |        |        |        |       | •    | Ċ        | . HNO             | 3 to pl | i<2 C    | :00l 4º  | С                        | ı      | <u> ጉ</u> ? | > slo |          |                                                          | <b>.</b> :                            |
|   | <u>777</u>                            | - U. Kend                                                                    | cton                                              | Time                 | L                      |                 | _              |        |        |        | Time  |      | -        | . 11.CO3          | .1      |          |          |                          |        | 21          | 7     | por      | Custody Seal 1 No<br>Custody Seal 2 No<br>Field COC No r | <b>).;</b>                            |
| 1 | Printed Nam                           | <b>)</b><br>                                                                 |                                                   | 110                  | Printed Name           |                 |                |        |        |        |       |      |          | 3. OLC            |         |          |          |                          |        |             |       |          | Field COC No.s:                                          |                                       |
|   | S                                     | HIC                                                                          |                                                   | A30                  |                        |                 |                |        |        |        |       |      | - {      |                   |         |          |          |                          |        |             |       |          | { .                                                      |                                       |
| - | Company                               |                                                                              |                                                   | 1                    | Company                |                 |                |        |        |        |       |      |          |                   | · ·     |          |          |                          |        |             |       |          |                                                          |                                       |
| l | Relinquis                             | hed by                                                                       |                                                   | Dote                 | Received               | f by            |                |        |        |        | Date  | e /  | ,        |                   |         |          |          |                          |        |             |       |          |                                                          | -                                     |
|   |                                       | ······································                                       |                                                   |                      | _50                    | ott             | 6              | im     |        | _      | Ŋ     | 'n   | 1        |                   |         |          |          |                          |        |             |       |          | Former and the Plan                                      |                                       |
|   | Signeture                             |                                                                              |                                                   |                      | Signature              |                 |                | -      | 2      | -      | Y     |      | 12       | /                 |         |          |          |                          |        |             |       |          | Temperature Blan<br>F2 Fie                               |                                       |
|   |                                       |                                                                              | · .                                               | Time                 | 2                      |                 | 2              |        |        |        | Time  |      | -        |                   |         |          |          |                          |        |             |       |          |                                                          | ab:                                   |
|   | Printed Num                           |                                                                              |                                                   | ]                    | Printed Nam            | 8               |                |        |        |        |       | -    |          |                   |         |          |          |                          |        |             |       |          | SAIC Location                                            |                                       |
|   |                                       |                                                                              |                                                   | ļ                    | CP                     | L.              | N              | 1-1-81 | /      | 1      |       |      | -        |                   |         |          |          |                          |        |             |       |          | Reston, Virginia                                         |                                       |
|   | Company                               |                                                                              |                                                   | 1                    | Company                |                 |                |        |        |        | 9     | 11.5 | 74       | $\neg \land$      | ~       | -        |          |                          |        |             |       |          | 11251 Roger Bacon D<br>(703) 318-4753                    | r., Reston, VA, 20190                 |
|   | Science /                             | Applications Inte                                                            | mational Co                                       | rporation            |                        |                 |                |        | White  | lobe   | xolan | Y    | Pi:      | ic Proje          | ect Ma  | nage     | r .      | Yest                     | low: A | vject       | QAO   |          | Goldenrod: Field Projec                                  | Monager                               |

# GPL Laboratories, LLLP

|                                                                                                                |                                       |                      | CHECKLIST                                  |                     |                                        |         |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------|--------------------------------------------|---------------------|----------------------------------------|---------|
| V.O. No:                                                                                                       | 208040                                | •                    | Fela                                       | -                   |                                        |         |
| Client Name:                                                                                                   | SALC                                  |                      | ed In) By:                                 | oslot               | n                                      |         |
| ate Received:                                                                                                  | 8/07/02                               | Project: 1           | d Initiala                                 | Date                |                                        |         |
| nime Received;                                                                                                 | 9:15 An                               | Site:                |                                            |                     |                                        |         |
| eceived By:                                                                                                    | 5                                     | VOA Holding Bla      | ink I.D. No:                               |                     |                                        |         |
|                                                                                                                |                                       | YES NO               |                                            | •                   |                                        |         |
| Airbill/Manifest Prese                                                                                         | ent?                                  | ¥ _                  | Trip Blanks: No. o                         |                     | YES NO                                 |         |
| 1 to. Brall                                                                                                    | ORTHUM                                | •                    | Field Blanks: No. o                        |                     |                                        | ~       |
| 7771                                                                                                           | F7894/33                              |                      | Equip, Blank; No. o<br>Field Duplicate: No | n Sets              | - ¥                                    |         |
| Shipping Container in                                                                                          | n Good Condition?                     | ¥ _                  | MS/MSD: No of Se                           |                     | - 4                                    |         |
| stody Seals Prese<br>ondition: Broken                                                                          | nt on Shipping Container?             | × _                  | VOA Vials Have Ze                          | ro Headspace?       |                                        |         |
| Intact-no                                                                                                      | ot dated or signed                    |                      | Preservatives Adde                         | ad to Samole?       |                                        |         |
| Intact-da                                                                                                      | ited and signed                       |                      |                                            | io to comple :      |                                        |         |
| usage of Tamper E                                                                                              | TOL TAPE                              |                      | pH Check Required                          | 1?                  | _/_                                    |         |
|                                                                                                                |                                       | ¥                    | Performed By?                              |                     | + 1-                                   |         |
| Chain-of-Custody Pre                                                                                           | sent?                                 | ¥                    | Ice Present in Shipp                       | oing Container?     | ¥ -                                    |         |
| ain-of-Custody Agr                                                                                             | ees with Sample Labels?               | ¥ _                  | Container #                                | Temp. Conta         | ainer# Temp,                           |         |
| Chain-of-Custody Sign                                                                                          | ned?                                  | <u></u>              | #1                                         | 3.92                | •<br>•                                 |         |
| Ling Despertin Ob                                                                                              |                                       |                      | 42                                         | · Jare              |                                        |         |
| king Present in Sh<br>Type of Packing                                                                          |                                       |                      | 7                                          | 311                 |                                        |         |
| stody seals on Sar                                                                                             | nple-Bottles?                         | i                    |                                            |                     |                                        |         |
| Sood                                                                                                           | Broken                                |                      | · · · · · · · · · · · · · · · · · · ·      |                     |                                        |         |
| Total Number of Samp                                                                                           | le Bottles 74                         |                      |                                            | AN                  | $\leq$ _                               |         |
| al Number of Samp                                                                                              |                                       |                      |                                            |                     |                                        |         |
| amples Intact?                                                                                                 | -<br>-                                |                      |                                            |                     |                                        |         |
| icient Sample Volu                                                                                             | me for Indicated Test?                |                      | roject Manager Col                         | ntacted?            |                                        |         |
|                                                                                                                |                                       |                      | Name:<br>Date Contacted:                   | - CATE!             |                                        |         |
| NO response must<br>rould be marked N/A/                                                                       | t be detailed in the comments se      | ction below. If iter | ns are not applicabl                       | e to particular sam | ples or contracts, the                 | y       |
| MENTS: Unte                                                                                                    | i metils samples for                  | tuck to              | uservel by                                 | 4b le               |                                        |         |
| la de la companya de | 0                                     |                      | 0                                          |                     |                                        |         |
|                                                                                                                |                                       | - <b> </b>           |                                            |                     |                                        | ******* |
|                                                                                                                | · · · · · · · · · · · · · · · · · · · | · ·                  | · · · · ·                                  |                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |         |
|                                                                                                                |                                       |                      |                                            |                     | <u></u>                                | -       |
|                                                                                                                |                                       | Checklist C          | Completed By:                              |                     |                                        |         |
|                                                                                                                |                                       |                      |                                            | 1/11                | $\overline{}$                          |         |
| r                                                                                                              |                                       |                      | Date:                                      | 18101/2             | -6                                     |         |

!

## APPENDIX D DATA QUALITY ASSESSMENT

### APPENDIX D. DATA QUALITY ASSESSMENT

#### D.1 INTRODUCTION

A comprehensive quality assurance/quality control (QA/QC) program was followed during the Limited Site Investigation (LSI) conducted at the Wallops Flight Facility (WFF), Wallops Island, Virginia, to ensure that analytical results and the decisions based on these results are representative of the environmental conditions at Wallops Island. The objective of the LSI was to determine whether contaminants were present at the sites addressed in the Field Sampling Plan (FSP) prepared by Science Applications International Corporation (SAIC) (SAIC 2002). GPL Laboratories, Inc. (GPL), 202 Perry Parkway, Gaithersburg, Maryland, performed the analytical work in accordance with the U.S. Environmental Protection Agency (EPA) *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW846*. The following were used during the evaluation of the QC data: QC requirements contained within the guidelines and specifications presented in the Quality Assurance Project Plan (QAPP) submitted as Appendix A of the FSP; the EPA *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW846*; and the EPA *Contract Laboratory Program (CLP) National Functional Guidelines for Organic and Inorganic Data Review* (EPA 1994a and b) with modifications for non-CLP methods. All tables referenced throughout the text are presented at the end of this appendix.

#### D.2 LABORATORY QUALITY CONTROL ASSESSMENT

All environmental samples (i.e., soil and groundwater) and field QC blanks (i.e., trip blank, equipment rinsate blanks, and field blanks) collected during the WFF LSI are presented in Tables D-1a and D-1b and were analyzed using EPA *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW846* (SW8260B for volatile organic compounds [VOCs], SW8270C for semivolatile organic compounds [SVOCs], and SW6010B/SW7470 for metals).

SAIC systematically reviewed 100 percent of the VOC, SVOC, and metals data (i.e., all analytical QC results and laboratory documentation) based on the guidelines and specifications in the *National Functional Guidelines for Organic and Inorganic Data Review* (EPA 1994a and b), with modifications for non-CLP methods, as well as the requirements specified in the QAPP (SAIC 2002).

### D.2.1 Differences Between the Analytical Methods (SW8260B and SW8270C) and National Functional Guidelines that Resulted in the Qualification of Data

Differences between the laboratory analytical criteria and data validation acceptance criteria (EPA 1994a) resulted in the application of data validation qualifiers for VOCs and SVOCs (see Sections D.2.2.3 and D.2.2.4). In all cases, GPL met the EPA method analytical requirements. The differences between the criteria are summarized below.

Volatile Organic Compound Analysis (SW8260B)—SW846 Method 8260B criteria require that the mean of the percent relative standard deviation (%RSD) values for all compounds in the initial calibration are less than or equal to 15 percent. In addition, only calibration check compounds (CCCs) must have a %RSD of less than or equal to 30 percent for the initial calibration and a percent difference (%D) of less than or equal to 20 percent for the continuing calibration verification (CCV). The CCCs are 1,1-dichloroethene (1,1-DCE), chloroform, 1,2-dichloropropane, toluene, ethylbenzene, and vinyl chloride. SW846 Method 8260B has the following minimum relative response factor (RRF) criteria for only these compounds: chloromethane (0.10); 1,1-dichloroethane (1,1-DCA) (0.10); bromoform (0.10); chlorobenzene (0.30); and 1,1,2,2-tetrachloroethane (1,1,2,2-PCA) (0.30). These criteria apply to both initial and continuing calibrations.

National Functional Guidelines (EPA 1994a) indicate that analytical results for any compounds with a %RSD greater than 30 percent in the initial calibration and a %D greater than 25 percent in the continuing calibration must be qualified as estimated "J" (detect) or "UJ" (nondetect). If the RRF criteria ( $\geq 0.05$ ) are exceeded for any compound, all associated samples are qualified as estimated "J" (detect) or rejected "R"(nondetect).

Semivolatile Organic Compound Analysis (SW8270C)—SW846 Method 8270C criteria require that the %RSD value for all compounds in the initial calibration should be equal or less than 15 percent. In only the CCCs (i.e., acenaphthene, 1,4-dichlorobenzene, n-nitrosodiphenylamine, addition. fluoranthene, benzo[a]pyrene, 4-chloro-3-methylphenol, 2.4-dichlorophenol. di-n-octvlphthalate. 2-nitrophenol, phenol, pentachlorophenol (PCP), and 2,4,6-trichlorophenol) must have a %RSD less than or equal to 30 percent for the initial calibration. The initial calibration is still acceptable if the mean of the %RSD value for all compounds in the initial calibration is less than or equal to 15 percent. The use of this approach is limited to the compounds that exceeded the 20 percent RSD but are less than a %RSD of 40 percent. A regression equation or a quaderatic model needs to be performed for those compounds that did not meet the above-mentioned %RSD criteria. Linearity is presumed acceptable if the correlation coefficient is equal to or greater than 0.995 or the coefficient of determination is equal to or greater than 0.99. System performance check compounds (SPCCs) (i.e., n-nitroso-di-n-propylamine, hexachlorocyclopentadiene, 2,4-dinitrophenol [24DNP], and 4-nitrophenol [4NP]) should have a minimum RRF of 0.05. All other compounds should have a minimum RRF of 0.01.

SW846 Method 8270C criteria require that the %D for CCCs in the continuing calibration be less than or equal to 20 percent. Non CCCs should have a %D less than 20 percent, but allows up to eight poor performing compounds to have a %D less than 40 percent. SPCCs in the continuing calibration should have a minimum RRF of 0.05. All other compounds should have a minimum RRF of 0.01.

The National Functional Guidelines (EPA 1994a) do not allow any failures of minimum RRF, %RSD, or %D criteria. In accordance with the National Functional Guidelines, any RRF less than 0.05, any %RSD greater than 30 percent, and any %D greater than 25 percent require qualification of the associated data.

### D.2.2 Data Validation Report

Soil, groundwater, and field QC samples collected at WFF were submitted to GPL for VOC analyses using SW846 Method 8260B, SVOC analyses using SW846 Method 8270C, and metals analysis using SW846 Methods 6010B/7470. Technical criteria identified in the National Functional Guidelines (EPA 1994a and 1994b) were used to validate the data. A data validation report was prepared for each GPL sample batch generated. This section summarizes these batch-specific (i.e., sample delivery group [SDG]) data validation reports.

The following data validation qualifiers were applied to the results:

- *B*—The reported metal value was obtained from a reading that was less than the contract required detection limit (CRDL), but greater than the instrument detection limit (IDL). These results are qualitatively acceptable and will be used in the risk assessment.
- *U*—The analyte was analyzed for, but was not detected above the reported sample quantitation limit. These results are qualitatively acceptable.
- *J*—The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. These results are qualitatively acceptable, but estimates.
- *N*—The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."

- *NJ*—The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- *UJ*—The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. These results are qualitatively acceptable, but estimates.
- *R*—The sample results were rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified.

All data validation qualifiers SAIC applied (i.e., detected and nondetected values) are identified in Table D-2. No data collected during the WWF LSI were rejected as a result of the data validation process.

### D.2.2.1 Technical Holding Times

Based on an evaluation of the environmental samples and field QC blanks, all technical holding time criteria were met, with the exceptions summarized below and in Table D-2.

Volatile Organic Compound Analysis—All water sample reanalyses were analyzed outside the holding time by 2 to 9 days. As a result for all water reanalyses, all nondetect VOCs were qualified as estimated "UJ" and positive results were qualified as estimated "J."

Semivolatile Organic Compound Analysis—One water sample, analyzed in SDG 208082, was extracted outside the holding time by 1 day. As a result, all nondetect SVOCs in SB-CDL-03 (SAICRB02) were qualified as estimated "UJ." No positive results were reported.

#### **D.2.2.2** Instrument Performance Checks

VOCs and SVOCs were tuned in accordance with SW846 Method criteria. Based on an evaluation of the tuning solutions, all criteria were met.

#### **D.2.2.3** Initial Calibration Results

Initial calibration of each instrument was completed in accordance with all SW846 Method requirements for VOCs, SVOCs, and metals. Based on an evaluation of the initial calibration analyses, all criteria were met, with the exceptions summarized below and in Table D-2. Tables D-3, D-4, and D-7 summarize the initial calibration outliers for soil and water samples.

Volatile Organic Compound Analysis—For soils, two %RSDs (i.e., acetone and methylene chloride) exceeded the QC limit. Nondetected analytical results were qualified as estimated "UJ." Positive results were qualified as estimated "J."

2-Butanone (MEK) in the soil initial calibration analyzed on August 3, 2002 did not meet the technical data review acceptance criteria for the RRF. Therefore, MEK nondetected results were qualified as estimated "UJ" and positive results were qualified as estimated "J" for samples in the affected SDGs.

For waters, two %RSDs (i.e., acetone and trans-1,3-dichloropropene) exceeded the QC limit. Nondetected analytical results were qualified as estimated "UJ." Positive results were qualified as estimated "J."

Acetone in the water initial calibration analyzed on August 29, 2002 did not meet the technical data review acceptance criteria for the RRF. Therefore, acetone nondetected results were qualified as estimated "UJ" and positive results were qualified as estimated "J" for samples in the affected SDGs.

#### D.2.2.4 Continuing Calibration Results

Continuing calibration of each instrument was completed in accordance with all SW846 Method requirements for VOCs, SVOCs, and metals. Based on an evaluation of the continuing calibrations conducted for all analyses, all criteria were met, with the exceptions summarized below and in Table D-2. Tables D-5 though D-7 summarize the continuing calibration outliers for soil and water samples.

*Volatile Organic Compound Analysis*—Three soil %Ds (of 140 reviewed values) met the SW846 Method criteria, but did not meet the National Functional Guidelines calibration criteria for three compounds (i.e., acetone, bromomethane, and 1,1,2,2-PCA). Nondetected analytical results were qualified as estimated "UJ" and positive results were qualified as estimated "J."

Two soil sample calibrations met all SW846 RRF requirements, but did not meet the National Functional Guidelines RRF acceptance criteria for MEK. Therefore, MEK nondetected results were qualified as estimated "UJ" and positive results were qualified as estimated "J" for samples in the affected SDGs.

Eleven water %Ds (of 175 reviewed values) met the SW846 Method criteria, but did not meet the National Functional Guidelines calibration criteria for eight compounds (i.e., acetone, bromomethane, MEK, cis-1,3-dichloropropene, chloromethane, methylene chloride, 4-methyl-2-pentanone [MIBK], and 2-hexanone [MNBK]). Nondetected analytical results were qualified as estimated "UJ" and positive results were qualified as estimated "J."

Semivolatile Organic Compound Analysis—For all of the SDGs, three SVOCs (i.e., 4-chloroaniline [4CA], 4NP, and pyrene) and two surrogate compounds (i.e., nitrobenzene-d5 [NBZ] and terphenyl-d14 [TPHD14]) exceeded the %D QC limits. As a result, 7 4CA and 6 4NP soil concentrations, as well as 11 pyrene, 6 4CA, and 4 4NP water concentrations, were qualified as estimated "UJ." No positive results were detected.

#### D.2.2.5 Method Blank Results

Method blanks were analyzed with each SDG in accordance with all SW846 Method requirements for VOCs, SVOCs, and metals. The method blank results for soil and water were below the reporting limits with the exceptions listed below and in Table D-2. Tables D-8 through D-11 summarize the blank contamination for soil and water samples. Trip blank, equipment rinsate blank, and field blank analyses are discussed in Section D.3.

Volatile Organic Compound Analysis—Methylene chloride, acetone, and trichloroethene (TCE) were detected at concentrations and frequencies that might bias the analytical results. The data validation qualifier "U" was applied to 22 methylene chloride, 14 acetone, and 15 TCE soil concentrations, as well as 37 methylene chloride water concentrations, that were less than 10 or 5 times the concentration detected in the associated method blanks. These results may be biased high due to method blank contaminants and should be considered nondetect.

Metals Analysis—Calcium, copper, iron, magnesium, manganese, sodium, and zinc were detected above the IDL in the water method blanks. As a result, the data validation qualifier "U" was applied to 2 calcium, 2 copper, 1 iron, 2 magnesium, 1 manganese, 2 sodium, and 11 zinc water results that were less than 5 times the concentration detected in the associated method blanks. Arsenic, magnesium, thallium, and vanadium were detected above the IDL in the water initial calibration blanks (ICBs) or continuing calibration blanks (CCBs). As a result, the data validation qualifier "U" was applied to 4 arsenic, 1 magnesium, 3 thallium, and 1 vanadium water results that were less than 5 times that detected in the associated ICB or CCB.

.

Copper, sodium, and zinc were detected above the IDL in the soil method blanks. As a result, the data validation qualifier "U" was applied to 2 copper, 12 sodium, and 9 zinc soil results that were less than 5 times the concentration detected in the associated method blanks. A few soil ICBs/CCBs had negative results for antimony, cobalt, nickel, sodium, and vanadium greater than the absolute value of the IDL; therefore, 6 antimony, 5 cobalt, 22 nickel, 22 sodium, and 7 vanadium soil results were qualified as estimated "UJ" or "J." These qualified results may be biased high due to blank contamination and should be considered nondetect.

#### D.2.2.6 Surrogate Results

Surrogates for VOCs and SVOCs were analyzed in accordance with SW846 Method criteria. Tables D-12 through D-15 summarize all surrogate recovery results. Deviations are listed below and in Table D-2.

Volatile Organic Compound Analysis—Two soil percent recovery values (of 136 total values) were above the upper control limit (UCL). As a result, positive results in associated samples were qualified as estimated "J."

Three water percent recovery values (of 200 total values) were above the UCL. As a result, positive results in associated samples were qualified as estimated "J." Thirty-one percent recoveries were below the lower control limit (LCL). As a result, positive results in associated samples were qualified as estimated "J" and nondetect results were qualified as estimated "UJ."

Semivolatile Organic Compound Analysis—Six water surrogate percent recovery values (of 132 total values) were above the UCLs. No data validation qualifiers were applied based on surrogate results, since SVOCs were not detected in the associated water samples. One water surrogate recovery percent value was below the LCL. Data validation qualifiers were not applied due to surrogate recoveries outside the control limits, when only one percent recovery for a fraction was outside the QC limits.

#### D.2.2.7 Interference Check Sample Results

Interference check sample (ICS) criteria requirements are described in SW846 Method 6010B. Based on an evaluation of the ICS solution AB, all target recoveries were within the required control limits for all lots. All requirements were met.

### D.2.2.8 Matrix Spike/Matrix Spike Duplicate Results

Matrix spike/matrix spike duplicate (MS/MSD) analyses were conducted to assess the accuracy and precision of the analytical system and to evaluate the matrix effect of the sample upon the analytical methodology based upon the percent recovery of each compound. The control limits for percent recoveries and relative percent differences (RPDs) in water samples are described in SW846 Method 8260B for VOCs, SW846 Method 8270C for SVOCs, and the QAPP (SAIC 2002). Because the National Functional Guidelines do not recommend the application of data validation qualifiers based solely on MS/MSD results, these results were used in conjunction with other QC indicators (i.e., surrogates, laboratory control samples [LCSs], and internal standards [ISs]) when qualifying the data. Tables D-16 through D-18 summarize MS/MSD results for soil and water samples. Recoveries and reproducibilities of the spiked compounds were within acceptable ranges with the exceptions listed below and in Table D-2.

Semivolatile Organic Compound Analysis—Six soil percent recovery values (of 36 total values) were outside the control limits. No data validation qualifiers were applied based only on MS/MSD results, since all other QC criteria were met.

### D.2.2.9 Matrix Spike Sample Results

Metals matrix spike sample (MSS) analyses were conducted in accordance with SW846 Methods 6010B and 7470 for metals and the QAPP (SAIC 2002). The control limits for percent recoveries of metals in water samples is 75 to 125 percent. Tables D-19 and D-20 summarize the MSS results for soil and water samples. Recoveries of the spiked compounds were within acceptable ranges with the exceptions listed below and in Table D-2.

*Metals Analysis*—Two soil MSS percent recovery values (of 46 total values) were outside the QC limits. As a result, antimony in 11 samples was qualified as estimated "UJ" or "J."

### D.2.2.10 Laboratory Duplicate Results

Laboratory duplicate analyses were conducted in accordance with SW846 Methods 6010B and 7470 for metals and the QAPP (SAIC 2002). The RPD is used when assessing precision between two samples. Tables D-19 and D-20 summarize the laboratory duplicate results for soil and water samples. The RPDs of the target analytes were within acceptable ranges.

### D.2.2.11 Laboratory Control Sample Results

The LCS monitors the overall accuracy and performance of all analytical steps, in accordance with SW846 Method 8260B for VOCs, SW846 Method 8270C for SVOCs, and SW846 Methods 6010B and 7470 for metals. Recoveries of the LCS compounds and analytes were within acceptable ranges with the following exceptions. Tables D-21 through D-26 summarize the LCS results for soil and water samples.

Semivolatile Organic Compound Analysis—4-Chloro-3-methylphenol, 4NP, and PCP each had an LCS recovery above the UCL in one water lot. 2,4-Dinitrotoluene (2,4-DNT) and phenol each had LCS recoveries above the UCLs in two soil lots. No data validation qualifiers were applied, since no positive results were identified in the associated soil and water samples.

### D.2.2.12 Internal Standard Results

ISs were added in all calibration standards, environmental samples, and QC blanks in accordance with SW846 Method 8260B for VOCs and SW846 Method 8270C for SVOCs. IS performance QC criteria were met.

### **D.2.2.13 Serial Dilution Results**

The frequency and difference criteria specified in SW846 Method 6010B for metals was met for all serial dilution analyses.

### D.2.2.14 Target Compound Identification

The target organic compounds reported as detects satisfied all qualitative and quantitative identification criteria specified in the SW846 Methods.

### D.2.2.15 Reporting Limits

All reporting limit criteria specified in the QAPP (SAIC 2002) were met.

#### D.2.2.16 Tentatively Identified Compound Results

VOC and SVOC tentatively identified compounds (TICs) were identified in many soil and water samples. Many TICs were identified as hydrocarbons, alkanes, cycloalkane, alkene, alkyl benzene, carboxylic acids, polynuclear aromatic hydrocarbons (PAHs), and unknowns. The majority of TICs reported unknown organic chemical classes (e.g., unknown hydrocarbons, unknown PAH, unknown acid, unknown alkane, unknown alkanol) or only unknown. As such, these compounds were not specifically interpreted due to errors in library matching, variations in the initial gas chromatograph (GC) oven temperature, changes in the chemical nature of the stationary phase with extended use, and/or the unknown spectrum may not be that of a pure compound but of two coeluting compounds.

#### D.2.2.17 System Performance

Based on instrument performance indicators, all analytical systems remained within parameters throughout the duration of all of the soil and water sample analysis with the exceptions noted in Sections D.2.2.1 through D.2.2.16.

### D.3 FIELD QUALITY CONTROL ASSESSMENT

During the WFF LSI, QC samples were collected to gauge the impacts from various field activity components. Field QC samples were obtained to determine the degree of cross-contamination, document successful decontamination procedures, or determine the effects of media heterogeneity on results. Four trip blanks, two equipment rinsate blanks, and two field blanks were collected and analyzed for VOCs, SVOCs, and metals using the same laboratory techniques as those used for the environmental samples. Trip blanks, equipment rinsate blanks, and field blanks provide a measure of various cross-contamination, decontamination efficiency, and any other potential error that can be introduced from sources other than the sample. Table D-2 summarizes the data validation qualifiers applied to data due to field QC blank contamination.

#### D.3.1 Trip Blanks

Methylene chloride, acetone, and carbon disulfide were not noted with any frequency or at concentrations of concern in the trip blanks. One carbon disulfide and seven acetone soil concentrations, as well as six carbon disulfide and four acetone water concentrations, were qualified "U" due to trip blank contamination. Therefore, carbon disulfide and acetone results qualified as "U" in these samples may be biased high due to trip blank contamination and should be considered nondetect. Table D-27 summarizes the concentrations of the compounds detected in the trip blanks collected during the WFF LSI.

#### D.3.2 Equipment Rinsate Blanks

The following subsections summarize the compounds and elements detected in the equipment rinsate blanks and the impact of this interference on the environmental data quality. Table D-28 summarizes the concentrations of the compounds and elements detected in the equipment rinsate blanks collected during the WFF LSI.

Volatile Organic Compound Analysis—Toluene, carbon disulfide and acetone were detected in the equipment rinsate blanks at concentrations below the contract required quantitation limit (CRQL). The data validation qualifier "U" was applied to three toluene soil concentrations due to equipment rinsate blank contamination. Therefore, toluene results qualified as "U" in these samples may be biased high due to equipment rinsate blank contamination and should be considered nondetect.

Semivolatile Organic Compound Analysis—Di-n-butyl phthalate (DNBP) was detected in one equipment rinsate blank at a concentration below the CRQL. The data validation qualifier "U" was applied to four DNBP soil results that were less than 10 times the concentration detected in the associated equipment rinsate blank. Therefore, DNBP results qualified as "U" in these samples may be biased high due to equipment rinsate blank contamination and should be considered nondetect.

Metals Analysis—Antimony, chromium, cobalt, copper, and potassium were detected in the equipment rinsate blanks at concentrations that may bias the analytical results. As a result, the data

validation qualifier "U" was applied to 4 antimony, 1 chromium, 4 cobalt, 2 copper, and 4 potassium soil concentrations, as well as 8 copper water concentrations. Therefore, results qualified as "U" in these samples may be biased high due to equipment rinsate blank contamination and should be considered nondetect.

### D.3.3 Field Blanks

Table D-29 summarizes the concentrations of the compounds and elements detected in the field blanks collected during the WFF LSI. No VOC, SVOC, or metals results were qualified based on field blank results.

ľ

## Table D-1a. Analytical Methods and Total Number of Water SamplesWallops Flight Facility, Accomack County, Virginia

| Parameters | Analytical<br>Method | Detection<br>Limit | Water<br>Samples | Field<br>Duplicates* | Trip<br>Blanks | Equipment<br>Rinsate<br>Blanks | Field<br>Blanks | MS/MSDs | Total<br>Number of<br>Analyses |
|------------|----------------------|--------------------|------------------|----------------------|----------------|--------------------------------|-----------------|---------|--------------------------------|
| VOCs       | SW8260B              | a                  | 11               | 2                    | 4              | 2                              | 2 1             | 1       | 22                             |
| SVOCs      | SW8270C              | а                  | 11               | 2                    | NA             | 2                              | 2               | 1       | 18                             |
| Metals     | SW6010B/SW7470       | а                  | 11               | 2                    | NA             | 2                              | 2               | 1       | 18                             |

a - Reporting limits (RLs) are matrix and sample specific. All detection limits are listed on the summary data tables.

### Table D-1b. Analytical Methods and Total Number of Soil Samples Wallops Flight Facility, Accomack County, Virginia

| Parameters | Analytical<br>Method | Detection<br>Limit | Soil<br>Samples | Field<br>Duplicates | Trip<br>Blanks | Equipment<br>Rinsate<br>Blanks | Field<br>Blanks | MS/MSDs | Totai<br>Number of<br>Analyses |
|------------|----------------------|--------------------|-----------------|---------------------|----------------|--------------------------------|-----------------|---------|--------------------------------|
| VOCs       | SW8260B              | а                  | 20              | 2                   | Ь              | c                              | đ               | 1       | 24                             |
| SVOCs      | SW8270C              | a                  | 20              | 2                   | NA             | с                              | d               | 1       | 24                             |
| Metals     | SW6010B/SW7470       | a                  | 20              | 2                   | NA             | c                              | · d             | 1       | 24                             |

a - Reporting limits (RLs) are matrix and sample specific. All detection limits are listed on the summary tables. b, c, d - Analyzed with water samples in Table D-1a.

|          |        | Wallop | os Fligi | Wallops Flight Facility, Wallops Island, Virginia |        |       |           |        |  |  |  |  |  |  |  |
|----------|--------|--------|----------|---------------------------------------------------|--------|-------|-----------|--------|--|--|--|--|--|--|--|
|          | Field  | Sample |          |                                                   |        | New   |           | Reason |  |  |  |  |  |  |  |
| Site ID  | Sample | Туре   | Matrix   | Test Name                                         | Method | Value | Qualifier | Code   |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | W        | Copper                                            | 6010   |       | U         | 6      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | Ŵ        | Magnesium                                         | 6010   |       | U         | 17     |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | Sodium                                            | 6010   |       | J         | -17A   |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | Vanadium                                          | 6010   |       | UJ        | 6A     |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | Zinc                                              | 6010   |       | U         | 6      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | 1,1,1-Trichloroethane                             | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | 1,1,2,2-Tetrachioroethane                         | 8260   |       | UJ · ·    | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | • w      | 1,1,2-Trichloroethane                             | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | 1,1-Dichloroethane                                | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | 1,1-Dichloroethene                                | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | W        | 1,2-Dichloroethane                                | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | 1,2-Dichloropropane                               | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | 2-Hexanone                                        | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | Acetone                                           | 8260   |       | UJ        | 4,9    |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | W        | Benzene                                           | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | Bromodichloromethane                              | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | W.       | Bromoform                                         | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | W 1      | Bromomethane                                      | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | W        | Carbon Disulfide                                  | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | W        | Carbon Tetrachloride                              | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | W        | Chlorobenzene                                     | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | W        | Chloroethane                                      | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | Chloroform                                        | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | Chloromethane                                     | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | cis-1,2-Dichloroethene                            | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | cis-1,3-Dichloropropene                           | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | Dibromochloromethane                              | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | Ethylbenzene                                      | 8260   | 2     | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | m-and/or p-Xylene                                 | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | W I      | Methyl Ethyl Ketone                               | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | Methyl Isobutyl Ketone                            | 8260   |       | UJ U      | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | Methylene Chloride                                | 8260   | 1     | UJ        | 6,9    |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | W        | o-xylene                                          | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | Styrene                                           | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | Tetrachloroethene                                 | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | Toluene                                           | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | trans-1,2-Dichloroethene                          | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | W        | trans-1,3-Dichloropropene                         | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | Trichloroethene                                   | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | w        | Vinyl Chloride                                    | 8260   |       | UJ        | 9      |  |  |  |  |  |  |  |
| DIWATER  | SAIC01 | FBLK   | W        | Pyrene                                            | 8270   |       | UJ        | 4      |  |  |  |  |  |  |  |
| GEOWATER | SAIC01 | FBLK   | W        | Manganese                                         | 6010   |       | U         | 6      |  |  |  |  |  |  |  |
| GEOWATER | SAIC01 | FBLK   |          | Sodium                                            | 6010   |       | J         | 17A    |  |  |  |  |  |  |  |

Limited Site Investigation - Final Report

May 2003

L

| ·. ·                   | Wallops Flight Facility, Wallops Island, Virginia (Continued) |                |        |                                                                                                                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |  |  |  |  |
|------------------------|---------------------------------------------------------------|----------------|--------|------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|--|--|--|--|
| Site ID                | Field<br>Sample                                               | Sample<br>Type | Matrix | Test Name                                                                                                        | Method       | New<br>Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Qualifier | Reasor<br>Code |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | W      | Vanadium                                                                                                         | 6010         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 6A             |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | 1,1,1-Trichloroethane                                                                                            | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ŰĴ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | 1,1,2,2-Tetrachioroethane                                                                                        | 8260         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | 1,1,2-Trichloroethane                                                                                            | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | 1,1-Dichloroethane                                                                                               | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | W      | 1,1-Dichloroethene                                                                                               | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | 1,2-Dichloroethane                                                                                               | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | W      | 1,2-Dichloropropane                                                                                              | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | 2-Hexanone                                                                                                       | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | W      | Acetone                                                                                                          | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ .      | 4,9            |  |  |  |  |
| 4                      |                                                               | t i            |        | Benzene                                                                                                          | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | -,,5<br>9      |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | W      |                                                                                                                  | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J         |                |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | W      | Bromodichloromethane                                                                                             | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | W      | Bromoform                                                                                                        | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | Bromomethane                                                                                                     | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | W      | Carbon Disulfide                                                                                                 | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | W      | Carbon Tetrachloride                                                                                             | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | Chlorobenzene                                                                                                    | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | W      | Chloroethane                                                                                                     | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | W      | Chloroform                                                                                                       | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J         | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | W      | Chioromethane                                                                                                    | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | W      | cis-1,2-Dichloroethene                                                                                           | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | W      | cis-1,3-Dichloropropene                                                                                          | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | · W    | Dibromochloromethane                                                                                             | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J         | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | Ethylbenzene                                                                                                     | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | W      | m-and/or p-Xylene                                                                                                | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | Methyl Ethyl Ketone                                                                                              | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | Methyl Isobutyl Ketone                                                                                           | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | Methylene Chloride                                                                                               | 8260         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UJ 🕔      | 6,9            |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | o-xylene                                                                                                         | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | Styrene                                                                                                          | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | Tetrachloroethene                                                                                                | 8260         | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19 | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | Toluene                                                                                                          | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | trans-1,2-Dichloroethene                                                                                         | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | trans-1,3-Dichloropropene                                                                                        | 8260         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | Trichloroethene                                                                                                  | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| GEOWATER               | SAIC01                                                        | FBLK           | w      | Vinyl Chloride                                                                                                   | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ .      | 9              |  |  |  |  |
| HP-CDL-01              | SAIC01                                                        | PNCH           | w      | Aluminum                                                                                                         | 6010         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 17A            |  |  |  |  |
| HP-CDL-01              | SAIC01<br>SAIC01                                              | PNCH           | w      | Antimony                                                                                                         | 6010         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 17A            |  |  |  |  |
| HP-CDL-01              | SAICUT<br>SAIC01                                              | PNCH           | W      | Anamony<br>Arsenic                                                                                               | 6010         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U         | 17             |  |  |  |  |
| HP-CDL-01              | SAIC01<br>SAIC01                                              | PNCH           | w      | Cobalt                                                                                                           | 6010         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 6A             |  |  |  |  |
|                        | SAIC01<br>SAIC01                                              |                | 1      |                                                                                                                  | 6010         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U         | 8              |  |  |  |  |
| HP-CDL-01<br>HP-CDL-01 |                                                               | PNCH<br>PNCH   | W      | Copper<br>Zinc                                                                                                   | 6010<br>6010 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U         | 6              |  |  |  |  |
|                        | SAIC01                                                        | 1              | W      | and the second | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ        | 9              |  |  |  |  |
| HP-CDL-01              | SAIC01                                                        | PNCH           | w      | 1,1,1-Trichloroethane                                                                                            | 8260         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 3              |  |  |  |  |

Limited Site Investigation - Final Report

| Field         Sample         Type         Matrix         Test Name         Method         Value         Outalifie           HP-CDL-01         SAIC01         PNCH         W         1,1,2,2-Tetrachloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,1,2,2-Tetrachloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         2-Hexanone         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Benzene         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Bromodichloromethane </th <th>Reason<br/>7 Code<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9</th> | Reason<br>7 Code<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| HP-CDL-01         SAIC01         PNCH         W         1,1,2,2-Tetrachloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,1,2-Trichloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,2-Dichloropropane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,2-Dichloropropane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         2-Hexanone         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Benzene         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Bromodichloromethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Carbon Disulfide         8260                                                                                             | 9<br>9<br>9<br>9<br>9                                         |
| HP-CDL-01         SAIC01         PNCH         W         1,1,2-Trichloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         2-Hexanone         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Berneree         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Bromoform         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Carbon Disulfide         8260         UJ                                                                                                     | 9<br>9<br>9<br>9                                              |
| HP-CDL-01         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         2-Hexanone         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Bernzene         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Bromoform         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Carbon Disulfide         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Carbon tetrachloride         8260         UJ                                                                                                      | 9<br>9<br>9                                                   |
| HP-CDL-01         SAIC01         PNCH         W         1,1-Dichloroethene         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         1,2-Dichloropropane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         2-Hexanone         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Acetone         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Benzene         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Bromodichloromethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Bromodichloromethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Carbon Disulfide         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Chloroethane         8260         UJ <td>9<br/>9</td>                                                                                           | 9<br>9                                                        |
| HP-CDL-01SAIC01PNCHW1,2-Dichloropthane8260UJHP-CDL-01SAIC01PNCHW1,2-Dichloropthane8260UJHP-CDL-01SAIC01PNCHW2-Hexanone8260UJHP-CDL-01SAIC01PNCHWAcetone8260UJHP-CDL-01SAIC01PNCHWBenzene8260UJHP-CDL-01SAIC01PNCHWBromodichloromethane8260UJHP-CDL-01SAIC01PNCHWBromodichloromethane8260UJHP-CDL-01SAIC01PNCHWBromodorm8260UJHP-CDL-01SAIC01PNCHWBromodorm8260UJHP-CDL-01SAIC01PNCHWCarbon Disulfide8260UJHP-CDL-01SAIC01PNCHWCarbon Tetrachloride8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChloroform8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                             |
| HP-CDL-01         SAIC01         PNCH         W         1,2-Dichloropropane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         2-Hexanone         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Acetone         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Benzene         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Bromodichloromethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Bromoform         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Bromoform         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Bromomethane         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Carbon Disulfide         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Chlorobenzene         8260         UJ           HP-CDL-01         SAIC01         PNCH         W         Chloroform         8260         UJ           HP-CDL-01<                                                                                                                        | 1 1                                                           |
| HP-CDL-01SAIC01PNCHW2-Hexanone8260UJHP-CDL-01SAIC01PNCHWAcetone8260UJHP-CDL-01SAIC01PNCHWBenzene8260UJHP-CDL-01SAIC01PNCHWBromodichloromethane8260UJHP-CDL-01SAIC01PNCHWBromodichloromethane8260UJHP-CDL-01SAIC01PNCHWBromodichloromethane8260UJHP-CDL-01SAIC01PNCHWBromomethane8260UJHP-CDL-01SAIC01PNCHWCarbon Disulfide8260UJHP-CDL-01SAIC01PNCHWCarbon Tetrachloride8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChloroform8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWcis-1,2-Dichloroptene8260JHP-CDL-01SAIC01PNCHWcis-1,3-Dichloroptene8260UJHP-CDL-01SAIC01PNCHWEthylbenzene8260JHP-CDL-01SAIC01PNCHWEthylbenzene8260JHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260JH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9                                                             |
| HP-CDL-01SAICO1PNCHWAcetone8260UJHP-CDL-01SAICO1PNCHWBenzene8260UJHP-CDL-01SAICO1PNCHWBromodichloromethane8260UJHP-CDL-01SAICO1PNCHWBromoform8260UJHP-CDL-01SAICO1PNCHWBromomethane8260UJHP-CDL-01SAICO1PNCHWCarbon Disulfide8260UJHP-CDL-01SAICO1PNCHWCarbon Tetrachloride8260UJHP-CDL-01SAICO1PNCHWChlorobenzene8260UJHP-CDL-01SAICO1PNCHWChlorobenzene8260UJHP-CDL-01SAICO1PNCHWChlorobenzene8260UJHP-CDL-01SAICO1PNCHWChlorobenzene8260UJHP-CDL-01SAICO1PNCHWChlorobenzene8260UJHP-CDL-01SAICO1PNCHWChlorobenzene8260UJHP-CDL-01SAICO1PNCHWcis-1,2-Dichlorobethene8260JHP-CDL-01SAICO1PNCHWcis-1,2-Dichloropethene8260UJHP-CDL-01SAICO1PNCHWcis-1,3-Dichloropethene8260JHP-CDL-01SAICO1PNCHWEthylbenzene8260JHP-CDL-01SAICO1PNCHWMethyl Ethyl Ketone8260JH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               |
| HP-CDL-01SAIC01PNCHWBenzene8260UJHP-CDL-01SAIC01PNCHWBromodichloromethane8260UJHP-CDL-01SAIC01PNCHWBromoform8260UJHP-CDL-01SAIC01PNCHWBromomethane8260UJHP-CDL-01SAIC01PNCHWBromomethane8260UJHP-CDL-01SAIC01PNCHWCarbon Disulfide8260UJHP-CDL-01SAIC01PNCHWCarbon Tetrachloride8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWcis-1,2-Dichlorophene8260JHP-CDL-01SAIC01PNCHWcis-1,3-Dichlorophene8260UJHP-CDL-01SAIC01PNCHWEthylbenzene8260JHP-CDL-01SAIC01PNCHWm-and/or p-Xylene8260JHP-CDL-01SAIC01PNCHWMethyl Ethyl Ketone8260UJHP-CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9                                                             |
| HP-CDL-01SAIC01PNCHWBromodichloromethane8260UJHP-CDL-01SAIC01PNCHWBromoform8260UJHP-CDL-01SAIC01PNCHWBromomethane8260UJHP-CDL-01SAIC01PNCHWCarbon Disulfide8260UJHP-CDL-01SAIC01PNCHWCarbon Disulfide8260UJHP-CDL-01SAIC01PNCHWCarbon Tetrachloride8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChloroform8260UJHP-CDL-01SAIC01PNCHWChloroform8260UJHP-CDL-01SAIC01PNCHWChloromethane8260JHP-CDL-01SAIC01PNCHWcis-1,2-Dichloroethene8260JHP-CDL-01SAIC01PNCHWcis-1,3-Dichloropropene8260JHP-CDL-01SAIC01PNCHWEthylbenzene8260JHP-CDL-01SAIC01PNCHWMethyl Ethyl Ketone8260JHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260JHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260 <t< td=""><td>9</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                             |
| HP-CDL-01SAIC01PNCHWBromoform8260UJHP-CDL-01SAIC01PNCHWBromomethane8260UJHP-CDL-01SAIC01PNCHWCarbon Disulfide8260UJHP-CDL-01SAIC01PNCHWCarbon Tetrachloride8260UJHP-CDL-01SAIC01PNCHWCarbon Tetrachloride8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChloroethane8260UJHP-CDL-01SAIC01PNCHWChloroform8260UJHP-CDL-01SAIC01PNCHWChloromethane8260UJHP-CDL-01SAIC01PNCHWCis-1,2-Dichloroethene8260JHP-CDL-01SAIC01PNCHWcis-1,3-Dichloroppene8260UJHP-CDL-01SAIC01PNCHWDibromochloromethane8260UJHP-CDL-01SAIC01PNCHWEthylbenzene8260JHP-CDL-01SAIC01PNCHWm-and/or p-Xylene8260JHP-CDL-01SAIC01PNCHWMethyl Ethyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethylene Chloride8260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                             |
| HP-CDL-01SAIC01PNCHWBromomethane8260UJHP-CDL-01SAIC01PNCHWCarbon Disulfide8260UJHP-CDL-01SAIC01PNCHWCarbon Tetrachloride8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChloroform8260UJHP-CDL-01SAIC01PNCHWChloroform8260UJHP-CDL-01SAIC01PNCHWChloroform8260UJHP-CDL-01SAIC01PNCHWCis-1,2-Dichloroethane8260JHP-CDL-01SAIC01PNCHWcis-1,3-Dichloropropene8260UJHP-CDL-01SAIC01PNCHWDibromochloromethane8260UJHP-CDL-01SAIC01PNCHWEthylbenzene8260JHP-CDL-01SAIC01PNCHWMethyl Ethyl Ketone8260JHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                                                             |
| HP-CDL-01SAIC01PNCHWCarbon Disulfide8260UJHP-CDL-01SAIC01PNCHWCarbon Tetrachloride8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChloroethane8260UJHP-CDL-01SAIC01PNCHWChloroform8260UJHP-CDL-01SAIC01PNCHWChloroform8260UJHP-CDL-01SAIC01PNCHWChloromethane8260JHP-CDL-01SAIC01PNCHWcis-1,2-Dichloroethene8260JHP-CDL-01SAIC01PNCHWcis-1,3-Dichloropropene8260UJHP-CDL-01SAIC01PNCHWDibromochloromethane8260UJHP-CDL-01SAIC01PNCHWEthylbenzene8260JHP-CDL-01SAIC01PNCHWMethyl Ethyl Ketone8260JHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethylene Chloride8260UJHP-CDL-01SAIC01PNCHWMethylene Chloride8260UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                             |
| HP-CDL-01SAIC01PNCHWCarbon Tetrachloride8260UJHP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChloroethane8260UJHP-CDL-01SAIC01PNCHWChloroform8260UJHP-CDL-01SAIC01PNCHWChloromethane8260UJHP-CDL-01SAIC01PNCHWChloromethane8260JHP-CDL-01SAIC01PNCHWcis-1,2-Dichloroethene8260JHP-CDL-01SAIC01PNCHWcis-1,3-Dichloropropene8260UJHP-CDL-01SAIC01PNCHWDibromochloromethane8260UJHP-CDL-01SAIC01PNCHWEthylbenzene8260JHP-CDL-01SAIC01PNCHWMethyl Ethyl Ketone8260JHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,9                                                           |
| HP-CDL-01SAIC01PNCHWChlorobenzene8260UJHP-CDL-01SAIC01PNCHWChloroethane8260UJHP-CDL-01SAIC01PNCHWChloroform8260UJHP-CDL-01SAIC01PNCHWChloromethane8260JHP-CDL-01SAIC01PNCHWChloromethane8260JHP-CDL-01SAIC01PNCHWcis-1,2-Dichloroethene8260JHP-CDL-01SAIC01PNCHWcis-1,3-Dichloropropene8260UJHP-CDL-01SAIC01PNCHWDibromochloromethane8260UJHP-CDL-01SAIC01PNCHWEthylbenzene8260JHP-CDL-01SAIC01PNCHWm-and/or p-Xylene8260JHP-CDL-01SAIC01PNCHWMethyl Ethyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl lsobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl lsobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethylene Chloride8260UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                                             |
| HP-CDL-01SAIC01PNCHWChloroethane8260UJHP-CDL-01SAIC01PNCHWChloroform8260UJHP-CDL-01SAIC01PNCHWChloromethane8260JHP-CDL-01SAIC01PNCHWcis-1,2-Dichloroethene8260JHP-CDL-01SAIC01PNCHWcis-1,3-Dichloropropene8260UJHP-CDL-01SAIC01PNCHWcis-1,3-Dichloropropene8260UJHP-CDL-01SAIC01PNCHWDibromochloromethane8260UJHP-CDL-01SAIC01PNCHWEthylbenzene8260JHP-CDL-01SAIC01PNCHWMethyl Ethyl Ketone8260JHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                             |
| HP-CDL-01SAIC01PNCHWChloroform8260UJHP-CDL-01SAIC01PNCHWChloromethane8260JHP-CDL-01SAIC01PNCHWcis-1,2-Dichloroethene8260JHP-CDL-01SAIC01PNCHWcis-1,3-Dichloropropene8260UJHP-CDL-01SAIC01PNCHWcis-1,3-Dichloropropene8260UJHP-CDL-01SAIC01PNCHWDibromochloromethane8260UJHP-CDL-01SAIC01PNCHWEthylbenzene8260JHP-CDL-01SAIC01PNCHWm-and/or p-Xylene8260JHP-CDL-01SAIC01PNCHWMethyl Ethyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethylene Chloride8260UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                             |
| HP-CDL-01SAIC01PNCHWChloromethane8260JHP-CDL-01SAIC01PNCHWcis-1,2-Dichloroethene8260JHP-CDL-01SAIC01PNCHWcis-1,3-Dichloropropene8260UJHP-CDL-01SAIC01PNCHWDibromochloromethane8260UJHP-CDL-01SAIC01PNCHWDibromochloromethane8260JHP-CDL-01SAIC01PNCHWEthylbenzene8260JHP-CDL-01SAIC01PNCHWm-and/or p-Xylene8260JHP-CDL-01SAIC01PNCHWMethyl Ethyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethylene Chloride8260UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                                                             |
| HP-CDL-01SAIC01PNCHWcis-1,2-Dichloroethene8260JHP-CDL-01SAIC01PNCHWcis-1,3-Dichloropropene8260UJHP-CDL-01SAIC01PNCHWDibromochloromethane8260UJHP-CDL-01SAIC01PNCHWEthylbenzene8260JHP-CDL-01SAIC01PNCHWm-and/or p-Xylene8260JHP-CDL-01SAIC01PNCHWMethyl Ethyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethylene Chloride8260UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                             |
| HP-CDL-01SAIC01PNCHWcis-1,2-Dichloroethene8260JHP-CDL-01SAIC01PNCHWcis-1,3-Dichloropropene8260UJHP-CDL-01SAIC01PNCHWDibromochloromethane8260UJHP-CDL-01SAIC01PNCHWEthylbenzene8260JHP-CDL-01SAIC01PNCHWm-and/or p-Xylene8260JHP-CDL-01SAIC01PNCHWMethyl Ethyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethylene Chloride8260UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                             |
| HP-CDL-01SAIC01PNCHWcis-1,3-Dichloropropene8260UJHP-CDL-01SAIC01PNCHWDibromochloromethane8260UJHP-CDL-01SAIC01PNCHWEthylbenzene8260JHP-CDL-01SAIC01PNCHWm-and/or p-Xylene8260JHP-CDL-01SAIC01PNCHWMethyl Ethyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethylene Chloride8260UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9                                                             |
| HP-CDL-01SAIC01PNCHWDibromochloromethane8260UJHP-CDL-01SAIC01PNCHWEthylbenzene8260JHP-CDL-01SAIC01PNCHWm-and/or p-Xylene8260JHP-CDL-01SAIC01PNCHWMethyl Ethyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethylene Chloride8260UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4,9                                                           |
| HP-CDL-01SAIC01PNCHWEthylbenzene8260JHP-CDL-01SAIC01PNCHWm-and/or p-Xylene8260JHP-CDL-01SAIC01PNCHWMethyl Ethyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethylene Chloride8260UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .9                                                            |
| HP-CDL-01SAIC01PNCHWm-and/or p-Xylene8260JHP-CDL-01SAIC01PNCHWMethyl Ethyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl ethyl ethyl sobutyl Ketone8260UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                             |
| HP-CDL-01SAIC01PNCHWMethyl Ethyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethylene Chloride8260UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                             |
| HP-CDL-01SAIC01PNCHWMethyl Isobutyl Ketone8260UJHP-CDL-01SAIC01PNCHWMethylene Chloride8260UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                             |
| HP-CDL-01 SAIC01 PNCH W Methylene Chloride 8260 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,9                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4,9                                                           |
| HP-CDL-01   SAIC01   PNCH   W   o-xylene   8260   J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                             |
| HP-CDL-01 SAIC01 PNCH W Styrene 8260 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                             |
| HP-CDL-01 SAIC01 PNCH W Tetrachloroethene 8260 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                             |
| HP-CDL-01 SAIC01 PNCH W Toluene 8260 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                             |
| HP-CDL-01 SAIC01 PNCH W trans-1,2-Dichloroethene 8260 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                             |
| HP-CDL-01 SAIC01 PNCH W trans-1,3-Dichloropropene 8260 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                                                             |
| HP-CDL-01 SAIC01 PNCH W Trichloroethene 8260 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9                                                             |
| HP-CDL-01 SAIC01 PNCH W Vinyl Chloride 8260 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9                                                             |
| HP-CDL-01 SAIC01 PNCH W Pyrene 8270 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                             |
| HP-CDL-02 SAIC01 PNCH W Aluminum 6010 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17A                                                           |
| HP-CDL-02 SAIC01 PNCH W Antimony 6010 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17A                                                           |
| HP-CDL-02 SAIC01 PNCH W Cobalt 6010 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6A                                                            |
| HP-CDL-02 SAIC01 PNCH W Copper 6010 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                             |
| HP-CDL-02 SAIC01 PNCH W Zinc 6010 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                             |
| HP-CDL-02 SAIC01 PNCH W Bromomethane 8260 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                             |
| HP-CDL-02 SAIC01 PNCH W cis-1,3-Dichloropropene 8260 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                             |
| HP-CDL-02 SAIC01 PNCH W Methyl Isobutyl Ketone 8260 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                             |

Limited Site Investigation - Final Report

.

May 2003

l

| Site ID         Sample         Type         Matrix         Tost Name         Method         Value         Qualifier         Col           HP-CDL-02         SAIC01         PNCH         W         Methylene Chloride         8260         UJ         44           HP-CDL-02         SAIC01         PNCH         W         Aluminum         6010         UJ         17           HP-CDL-03         SAIC01         PNCH         W         Antimony         6010         UJ         17           HP-CDL-03         SAIC01         PNCH         W         Antimony         6010         UJ         17           HP-CDL-03         SAIC01         PNCH         W         Copper         6010         U         8           HP-CDL-03         SAIC01         PNCH         W         1,1,2-Trichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1,2-Trichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ <th></th> <th></th> <th>ops i ng</th> <th></th> <th>inty, wanops island, virg</th> <th></th> <th>mucuj</th> <th></th> <th></th> <th></th>                       |           |        | ops i ng |        | inty, wanops island, virg |        | mucuj |           |        |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|----------|--------|---------------------------|--------|-------|-----------|--------|--------|
| HP-CDL-02         SAIC01         PNCH         W         Methylene Chloride         8260         UJ         44           HP-CDL-03         SAIC01         PNCH         W         Pyrene         8270         UJ         4           HP-CDL-03         SAIC01         PNCH         W         Aluminum         6010         UJ         17.           HP-CDL-03         SAIC01         PNCH         W         Cobatt         6010         UJ         17.           HP-CDL-03         SAIC01         PNCH         W         Cobatt         6010         UJ         18.           HP-CDL-03         SAIC01         PNCH         W         1,1,2-Trichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichlorophopane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichlorophopane         8260         UJ         1 <th></th> <th>Field</th> <th>Sample</th> <th></th> <th></th> <th></th> <th>New</th> <th></th> <th>Reason</th> <th></th>                                                   |           | Field  | Sample   |        |                           |        | New   |           | Reason |        |
| HP-CDL-02         SAIC01         PNCH         W         Pyrene         8270         UJ         4           HP-CDL-03         SAIC01         PNCH         W         Aluminum         6010         UJ         17.           HP-CDL-03         SAIC01         PNCH         W         Cobatt         6010         UJ         17.           HP-CDL-03         SAIC01         PNCH         W         Cobatt         6010         UJ         17.           HP-CDL-03         SAIC01         PNCH         W         Cobatt         6010         UJ         11.           HP-CDL-03         SAIC01         PNCH         W         1,1.2-Trichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ         1                                                                                                                                                                                        | Site ID   | Sample | Туре     | Matrix | Test Name                 | Method | Value | Qualifier | Code   |        |
| HP-CDL-03         SAIC01         PNCH         W         Atuminum         6010         UJ         17.           HP-CDL-03         SAIC01         PNCH         W         Antimony         6010         UJ         16.           HP-CDL-03         SAIC01         PNCH         W         Cobatt         6010         UJ         66.           HP-CDL-03         SAIC01         PNCH         W         1,1,1-Trichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1,2-Trichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         2-Hexanone         8260         UJ         1                                                                                                                                                                     | HP-CDL-02 | SAIC01 | PNCH     | W      | Methylene Chloride        | 8260   |       | UJ        | 4,6    |        |
| HP-CDL-03         SAIC01         PNCH         W         Antimony         6010         UJ         17.           HP-CDL-03         SAIC01         PNCH         W         Copper         6010         UJ         66           HP-CDL-03         SAIC01         PNCH         W         1,1,1-Trichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1,2-Trichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloropropane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Acetone         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromodichloromethane         8260         UJ         1<                                                                                                                                                             | HP-CDL-02 | SAIC01 | PNCH     | W      | Pyrene                    | 8270   |       | UJ        | 4      |        |
| HP-CDL-03         SAIC01         PNCH         W         Cobait         6010         UJ         64           HP-CDL-03         SAIC01         PNCH         W         Copper         6010         U         8           HP-CDL-03         SAIC01         PNCH         W         1,1.2-Trichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1.2-Trichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         2-Hexanone         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromotionm         8260         UJ         1 <td>HP-CDL-03</td> <td>SAIC01</td> <td>PNCH</td> <td>W</td> <td>Aluminum .</td> <td>6010</td> <td></td> <td>IJ</td> <td>17A</td> <td></td>                                | HP-CDL-03 | SAIC01 | PNCH     | W      | Aluminum .                | 6010   |       | IJ        | 17A    |        |
| HP-CDL-03         SAIC01         PNCH         W         Copper         6010         U         8           HP-CDL-03         SAIC01         PNCH         W         1,1,1-Trichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1,2-Trichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloropropane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloropropane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         2-Hexanone         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Beromodrhane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Baromodrm         8260         UJ         1                                                                                                                                                                     | HP-CDL-03 | SAIC01 | PNCH     | w      | Antimony                  | 6010   |       | UJ        | 17A    |        |
| HP-CDL-03         SAIC01         PNCH         W         1,1,1-Trichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1,2-Trichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1-2-Trichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloropopane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Acetone         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromodram         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromodram         8260         UJ         1                                                                                                                                                             | HP-CDL-03 | SAIC01 | PNCH     | W      | Cobalt                    | 6010   |       | UJ        | 6A     |        |
| HP-CDL-03         SAIC01         PNCH         W         1,1,2,2-Tetrachloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloropropane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         2-Hexanone         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Beromodichloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromodorn         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Disulifide         8260         UJ                                                                                                                                                          | HP-CDL-03 | SAIC01 | PNCH     | W      | Copper                    | 6010   |       | U         | 8      |        |
| HP-CDL-03         SAIC01         PNCH         W         1,1,2-Trichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloropropane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         2-Hexanone         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Beromodichloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Beromodichloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Beromodichloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Disulfide         8260 <t< td=""><td>HP-CDL-03</td><td>SAIC01</td><td>PNCH</td><td>w</td><td>1,1,1-Trichloroethane</td><td>8260</td><td></td><td>UJ</td><td>1</td><td></td></t<> | HP-CDL-03 | SAIC01 | PNCH     | w      | 1,1,1-Trichloroethane     | 8260   |       | UJ        | 1      |        |
| HP-CDL-03         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroptopane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         2-Hexanone         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Acetone         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bernonform         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bernonform         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Disulfide         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chiorobenzene         8260         UJ         1      <                                                                                                                                                                           | HP-CDL-03 | SAIC01 | PNCH     | w      | 1,1,2,2-Tetrachloroethane | 8260   |       | UJ        | 1      |        |
| HP-CDL-03         SAIC01         PNCH         W         1,1-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloropropane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloropropane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         2-Hexanone         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Beromodichloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromodichloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Disulfide         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Disulfide         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chloroethane         8260         UJ                                                                                                                                                              | HP-CDL-03 | SAIC01 | PNCH     | w      | 1,1,2-Trichloroethane     | 8260   |       | UJ        | 1      |        |
| HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloropthane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloropthane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         2-Hexanone         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Acetone         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Benzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromodichloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromooftm         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Disulfide         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Tetrachloride         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chiorobrm         8260         UJ         1                                                                                                                                                                                       | HP-CDL-03 | SAIC01 | PNCH     | W.     | 1,1-Dichloroethane        | 8260   |       | UJ        | 1      |        |
| HP-CDL-03         SAIC01         PNCH         W         1,2-Dichloropropane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         2-Hexanone         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Acetone         8260         UJ         1,5           HP-CDL-03         SAIC01         PNCH         W         Benzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromotichloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromotethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Tetrachloride         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chiorobenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chioroform         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chioroethane         8260         UJ         1                                                                                                                                                                                         | HP-CDL-03 | SAIC01 | PNCH     | Ŵ      | 1,1-Dichloroethene        | 8260   |       | UJ        | 1      |        |
| HP-CDL-03         SAIC01         PNCH         W         2-Hexanone         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Acetone         8260         UJ         1,3           HP-CDL-03         SAIC01         PNCH         W         Benzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromodichloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromostethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromostethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Disulfide         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Disulfide         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chlorobenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chlorobenzene         8260         UJ         1                                                                                                                                                                                           | HP-CDL-03 | SAIC01 | PNCH     | w      | 1,2-Dichloroethane        | 8260   |       | UJ        | 1 .    |        |
| HP-CDL-03         SAIC01         PNCH         W         Acetone         8260         UJ         1,5           HP-CDL-03         SAIC01         PNCH         W         Benzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromodichloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromomethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromomethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Disulfide         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Tetrachloride         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chlorobenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,2-Dichloroethene         8260         UJ         1                                                                                                                                                                             | HP-CDL-03 | SAIC01 | PNCH     | w      | 1,2-Dichloropropane       | 8260   |       | UJ        | 1      |        |
| HP-CDL-03         SAIC01         PNCH         W         Benzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromodichloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromodichloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromomethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Disulfide         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Tetrachloride         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chlorobenzene         8260         UJ         1 <td>HP-CDL-03</td> <td>SAIC01</td> <td>PNCH</td> <td>w</td> <td>2-Hexanone</td> <td>8260</td> <td></td> <td>UJ</td> <td>1</td> <td></td>                                 | HP-CDL-03 | SAIC01 | PNCH     | w      | 2-Hexanone                | 8260   |       | UJ        | 1      |        |
| HP-CDL-03         SAIC01         PNCH         W         Bromodichloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromoform         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromomethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Disulfide         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Tetrachloride         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chlorobenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chlorobenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chloroform         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,2-Dichloropthene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,3-Dichloropthene         8260         UJ         1 <td>HP-CDL-03</td> <td>SAIC01</td> <td>PNCH</td> <td>w</td> <td>Acetone</td> <td>8260</td> <td></td> <td>UJ</td> <td>1,3</td> <td></td>                        | HP-CDL-03 | SAIC01 | PNCH     | w      | Acetone                   | 8260   |       | UJ        | 1,3    |        |
| HP-CDL-03         SAIC01         PNCH         W         Bromoform         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Bromomethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Disulfide         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Tetrachloride         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Tetrachloride         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chlorobenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chloroform         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Cis-1,2-Dichloroethene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,3-Dichloropropene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Dibromchloromethane         8260         UJ         <                                                                                                                                                         | HP-CDL-03 | SAIC01 | PNCH     | w      | Benzene                   | 8260   | •     | UJ        | 1      |        |
| HP-CDL-03         SAIC01         PNCH         W         Bromomethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Disulfide         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Tetrachloride         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chlorobenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chlorobenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chlorobenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chloroform         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,2-Dichloroethene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,3-Dichloropropene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         meand/or p-Xylene         8260         UJ         1<                                                                                                                                                             | HP-CDL-03 | SAIC01 | PNCH     | w      | Bromodichloromethane      | 8260   |       | UJ        | 1      |        |
| HP-CDL-03         SAIC01         PNCH         W         Carbon Disulfide         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Carbon Tetrachloride         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chlorobenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chlorobenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chloroform         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,2-Dichloroethene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,3-Dichloroptopene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,3-Dichloroptopene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         methylbenzene         8260         UJ                                                                                                                                                                 | HP-CDL-03 | SAIC01 | PNCH     | w      | Bromoform                 | 8260   |       | UJ        | 1      | ٩.     |
| HP-CDL-03         SAIC01         PNCH         W         Carbon Tetrachloride         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chlorobenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chlorobenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chloroform         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chloroform         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Cis-1,2-Dichloroethene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,3-Dichloroptopene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,3-Dichloroptopene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,3-Dichloroptopene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         m-and/or p-Xylene         8260         UJ                                                                                                                                                         | HP-CDL-03 | SAIC01 | PNCH     | w      | Bromomethane              | 8260   |       | UJ        | 1      |        |
| HP-CDL-03         SAIC01         PNCH         W         Chlorobenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chloroform         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,2-Dichloroethene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,3-Dichloropropene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Ethylbenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         me-and/or p-Xylene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Methyl Isobutyl Ketone         8260         UJ         1 </td <td>HP-CDL-03</td> <td>SAIC01</td> <td>PNCH</td> <td>w</td> <td>Carbon Disulfide</td> <td>8260</td> <td>· .</td> <td>UJ</td> <td>់1 ៖</td> <td>-</td>    | HP-CDL-03 | SAIC01 | PNCH     | w      | Carbon Disulfide          | 8260   | · .   | UJ        | ់1 ៖   | -      |
| HP-CDL-03         SAIC01         PNCH         W         Chloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chloroform         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chloroethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Cis-1,2-Dichloroethene         8260         J         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,3-Dichloroptopene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,3-Dichloroptopene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Dibromochloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Ethylbenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         methyl Ethyl Ketone         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Methyl Isobutyl Ketone         8260         UJ                                                                                                                                                         | HP-CDL-03 | SAIC01 | PNCH     | w      | Carbon Tetrachloride      | 8260   |       | IJ        | 1      |        |
| HP-CDL-03         SAIC01         PNCH         W         Chloroform         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Chloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,2-Dichloroethene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,2-Dichloroethene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,3-Dichloropropene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,3-Dichloropropene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Ethylbenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         meand/or p-Xylene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Methyl Isobutyl Ketone         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         o-xylene         8260         UJ                                                                                                                                                           | HP-CDL-03 | SAIC01 | PNCH     | w      | Chlorobenzene             | 8260   | l     | IJ        | 1      |        |
| HP-CDL-03         SAIC01         PNCH         W         Chloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,2-Dichloroethene         8260         J         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,3-Dichloropropene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Dibromochloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Dibromochloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Ethylbenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         m-and/or p-Xylene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Methyl Isobutyl Ketone         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Methyl Isobutyl Ketone         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         o-xylene         8260         UJ<                                                                                                                                                    | HP-CDL-03 | SAIC01 | PNCH     | W      | Chloroethane              | 8260   |       | UJ        | 1      |        |
| HP-CDL-03         SAIC01         PNCH         W         cis-1,2-Dichloroethene         8260         J         1           HP-CDL-03         SAIC01         PNCH         W         cis-1,3-Dichloropropene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Dibromochloromethane         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Ethylbenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Ethylbenzene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         m-and/or p-Xylene         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Methyl Ethyl Ketone         8260         UJ         1,4           HP-CDL-03         SAIC01         PNCH         W         Methyl Isobutyl Ketone         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         Methyl Isobutyl Ketone         8260         UJ         1           HP-CDL-03         SAIC01         PNCH         W         o-xylene         8260         UJ<                                                                                                                                                    | HP-CDL-03 | SAIC01 | PNCH     | w      | Chloroform                | 8260   | [     | UJ        | 1      |        |
| HP-CDL-03SAIC01PNCHWcis-1,3-Dichloropropene8260UJ1HP-CDL-03SAIC01PNCHWDibromochloromethane8260UJ1HP-CDL-03SAIC01PNCHWEthylbenzene8260UJ1HP-CDL-03SAIC01PNCHWm-and/or p-Xylene8260UJ1HP-CDL-03SAIC01PNCHWm-and/or p-Xylene8260UJ1HP-CDL-03SAIC01PNCHWMethyl Ethyl Ketone8260UJ1HP-CDL-03SAIC01PNCHWMethyl Isobutyl Ketone8260UJ1HP-CDL-03SAIC01PNCHWMethyl Isobutyl Ketone8260UJ1HP-CDL-03SAIC01PNCHWMethylene Chloride8260UJ1HP-CDL-03SAIC01PNCHWo-xylene8260UJ1HP-CDL-03SAIC01PNCHWTetrachloroethene8260UJ1HP-CDL-03SAIC01PNCHWTetrachloroethene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,2-Dichloroethene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,3-Dichloropropene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,3-Dichloropropene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,3-Dichloropropene8260UJ1 <td>HP-CDL-03</td> <td>SAIC01</td> <td>PNCH</td> <td>w ·</td> <td>Chloromethane</td> <td>8260</td> <td></td> <td>UJ</td> <td>1</td> <td> </td>                                                                                                                                                                                                                                                                                                                                                                                                                                              | HP-CDL-03 | SAIC01 | PNCH     | w ·    | Chloromethane             | 8260   |       | UJ        | 1      |        |
| HP-CDL-03SAIC01PNCHWDibromochloromethane8260UJ1HP-CDL-03SAIC01PNCHWEthylbenzene8260UJ1HP-CDL-03SAIC01PNCHWm-and/or p-Xylene8260UJ1HP-CDL-03SAIC01PNCHWMethyl Ethyl Ketone8260UJ1HP-CDL-03SAIC01PNCHWMethyl Isobutyl Ketone8260UJ1HP-CDL-03SAIC01PNCHWMethyl Isobutyl Ketone8260UJ1HP-CDL-03SAIC01PNCHWMethylene Chloride8260UJ1HP-CDL-03SAIC01PNCHWo-xylene8260UJ1HP-CDL-03SAIC01PNCHWTetrachloroethene8260UJ1HP-CDL-03SAIC01PNCHWTetrachloroethene8260UJ1HP-CDL-03SAIC01PNCHWToluene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,2-Dichloroethene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,3-Dichloropropene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HP-CDL-03 | SAIC01 | PNCH     | W.     | cis-1,2-Dichloroethene    | 8260   |       | J         | 1      |        |
| HP-CDL-03SAIC01PNCHWEthylbenzene8260UJ1HP-CDL-03SAIC01PNCHWm-and/or p-Xylene8260UJ1HP-CDL-03SAIC01PNCHWMethyl Ethyl Ketone8260UJ1,4HP-CDL-03SAIC01PNCHWMethyl Isobutyl Ketone8260UJ1,4HP-CDL-03SAIC01PNCHWMethyl Isobutyl Ketone8260UJ1HP-CDL-03SAIC01PNCHWMethylene Chloride8260UJ1,6HP-CDL-03SAIC01PNCHWo-xylene8260UJ1HP-CDL-03SAIC01PNCHWStyrene8260UJ1HP-CDL-03SAIC01PNCHWTetrachloroethene8260UJ1HP-CDL-03SAIC01PNCHWToluene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,2-Dichloroethene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,3-Dichloropropene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCH<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HP-CDL-03 | SAIC01 | PNCH     | W      | cis-1,3-Dichloropropene   | 8260   |       | UJ        | 1.     | i<br>ſ |
| HP-CDL-03SAIC01PNCHWm-and/or p-Xylene8260UJ1HP-CDL-03SAIC01PNCHWMethyl Ethyl Ketone8260UJ1,4HP-CDL-03SAIC01PNCHWMethyl Isobutyl Ketone8260UJ1HP-CDL-03SAIC01PNCHWMethyl Isobutyl Ketone8260UJ1HP-CDL-03SAIC01PNCHWMethylene Chloride8260UJ1,6HP-CDL-03SAIC01PNCHWo-xylene8260UJ1HP-CDL-03SAIC01PNCHWStyrene8260UJ1HP-CDL-03SAIC01PNCHWTetrachloroethene8260UJ1HP-CDL-03SAIC01PNCHWToluene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,2-Dichloroethene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,3-Dichloropropene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWVinyl Chloride8260UJ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HP-CDL-03 | SAIC01 | PNCH     | w      | Dibromochloromethane      | 8260   |       | UJ        | 1      | 1      |
| HP-CDL-03SAIC01PNCHWMethyl Ethyl Ketone8260UJ1,4HP-CDL-03SAIC01PNCHWMethyl Isobutyl Ketone8260UJ1HP-CDL-03SAIC01PNCHWMethylene Chloride8260UJ1,6HP-CDL-03SAIC01PNCHWo-xylene8260UJ1HP-CDL-03SAIC01PNCHWo-xylene8260UJ1HP-CDL-03SAIC01PNCHWStyrene8260UJ1HP-CDL-03SAIC01PNCHWTetrachloroethene8260UJ1HP-CDL-03SAIC01PNCHWToluene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,2-Dichloroethene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,3-Dichloropropene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWVinyl Chloride8260UJ1HP-CDL-03SAIC01PNCHWVinyl Chloride8260UJ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HP-CDL-03 | SAIC01 | PNCH     | w i    | Ethylbenzene              | 8260   |       | UJ -      | 1      |        |
| HP-CDL-03SAIC01PNCHWMethyl Isobutyl Ketone8260UJ1HP-CDL-03SAIC01PNCHWMethylene Chloride8260UJ1,6HP-CDL-03SAIC01PNCHWo-xylene8260UJ1HP-CDL-03SAIC01PNCHWo-xylene8260UJ1HP-CDL-03SAIC01PNCHWStyrene8260UJ1HP-CDL-03SAIC01PNCHWTetrachloroethene8260UJ1HP-CDL-03SAIC01PNCHWToluene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,2-Dichloroethene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,3-Dichloropropene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWVinyl Chloride8260UJ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HP-CDL-03 | SAIC01 | PNCH     | w      | m-and/or p-Xylene         | 8260   |       | UJ        | 1      |        |
| HP-CDL-03SAIC01PNCHWMethyl Isobutyl Ketone8260UJ1HP-CDL-03SAIC01PNCHWMethylene Chloride8260UJ1,6HP-CDL-03SAIC01PNCHWo-xylene8260UJ1HP-CDL-03SAIC01PNCHWStyrene8260UJ1HP-CDL-03SAIC01PNCHWTetrachloroethene8260UJ1HP-CDL-03SAIC01PNCHWTetrachloroethene8260UJ1HP-CDL-03SAIC01PNCHWToluene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,2-Dichloroethene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,3-Dichloropropene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWVinyl Chloride8260UJ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HP-CDL-03 | SAIC01 | PNCH     | w      | Methyl Ethyl Ketone       | 8260   |       | UJ        | 1,4    |        |
| HP-CDL-03SAIC01PNCHWMethylene Chloride8260UJ1,6HP-CDL-03SAIC01PNCHWo-xylene8260UJ1HP-CDL-03SAIC01PNCHWStyrene8260UJ1HP-CDL-03SAIC01PNCHWTetrachloroethene8260UJ1HP-CDL-03SAIC01PNCHWTetrachloroethene8260UJ1HP-CDL-03SAIC01PNCHWToluene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,2-Dichloroethene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,3-Dichloropropene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWVinyl Chloride8260UJ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HP-CDL-03 | SAIC01 | PNCH     | w      |                           | 8260   |       | UJ        |        |        |
| HP-CDL-03SAIC01PNCHWo-xylene8260UJ1HP-CDL-03SAIC01PNCHWStyrene8260UJ1HP-CDL-03SAIC01PNCHWTetrachloroethene8260UJ1HP-CDL-03SAIC01PNCHWToluene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,2-Dichloroethene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,3-Dichloropropene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWVinyl Chloride8260UJ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HP-CDL-03 | SAIC01 | PNCH     | w .    |                           | 8260   |       | UJ        | 1,6    |        |
| HP-CDL-03SAIC01PNCHWStyrene8260UJ1HP-CDL-03SAIC01PNCHWTetrachloroethene8260UJ1HP-CDL-03SAIC01PNCHWToluene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,2-Dichloroethene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,3-Dichloropropene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWVinyl Chloride8260UJ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HP-CDL-03 | SAIC01 | PNCH     | w      | -                         | 8260   |       | UJ        |        |        |
| HP-CDL-03SAIC01PNCHWToluene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,2-Dichloroethene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,3-Dichloropropene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWVinyl Chloride8260UJ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HP-CDL-03 | SAIC01 |          | w      |                           | 8260   |       | UJ        | 1      |        |
| HP-CDL-03SAIC01PNCHWtrans-1,2-Dichloroethene8260UJ1HP-CDL-03SAIC01PNCHWtrans-1,3-Dichloropropene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWVinyl Chloride8260UJ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HP-CDL-03 | SAIC01 | PNCH     | w      | Tetrachloroethene         | 8260   |       | UJ        | 1      |        |
| HP-CDL-03SAIC01PNCHWtrans-1,3-Dichloropropene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWVinyl Chloride8260UJ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HP-CDL-03 | SAIC01 | PNCH     | W      | Toluene                   | 8260   |       | UJ        | .1     |        |
| HP-CDL-03SAIC01PNCHWtrans-1,3-Dichloropropene8260UJ1HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWVinyl Chloride8260UJ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HP-CDL-03 | SAIC01 |          | w      | trans-1,2-Dichloroethene  | 8260   |       | UJ        | 1      |        |
| HP-CDL-03SAIC01PNCHWTrichloroethene8260UJ1HP-CDL-03SAIC01PNCHWVinyl Chloride8260UJ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HP-CDL-03 | SAIC01 |          |        |                           |        |       | IJ        | 1      |        |
| HP-CDL-03         SAIC01         PNCH         W         Vinyl Chloride         8260         UJ         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HP-CDL-03 | SAIC01 |          | w      |                           | 8260   |       | IJ        | 1      |        |
| HP-CDL-03 SAIC01 PNCH W Pvrene 8270 UJ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1       |        | PNCH     | w      | Vinyl Chloride            |        |       | UJ        | 1      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HP-CDL-03 | SAIC01 | PNCH     | w      | Pyrene                    | 8270   |       | IJ        | 4      |        |
| HP-IWL-01 SAIC01 PNCH W Copper 6010 U 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HP-IWL-01 | SAIC01 | PNCH     | w      | Copper                    | 6010   |       | U         | 8      |        |

Limited Site Investigation - Final Report

li i

ا المربعة

-

|           |                 |                | 1      |                           |        |              |           |                 |
|-----------|-----------------|----------------|--------|---------------------------|--------|--------------|-----------|-----------------|
| Site ID   | Field<br>Sample | Sample<br>Type | Matrix | Test Name                 | Method | New<br>Value | Qualifier | Reason<br>Code  |
| HP-IWL-01 | SAIC01          | PNCH           | W      | Sodium                    | 6010   |              | J         | 17A             |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Vanadium                  | 6010   |              | IJ        | 6A              |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Zinc                      | 6010   | · .          | U         | 6               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | 1,1,1-Trichloroethane     | 8260   |              | IJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | 1,1,2,2-Tetrachloroethane | 8260   | · ·          | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | 1,1,2-Trichloroethane     | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | 1,1-Dichloroethane        | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | 1,1-Dichloroethene        | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | 1,2-Dichloroethane        | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | 1,2-Dichloropropane       | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | 2-Hexanone                | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Acetone                   | 8260   |              | IJ        | 7,4             |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Benzene                   | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | : w    | Bromodichloromethane      | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Bromoform                 | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Bromomethane              | 8260   |              | IJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Carbon Disulfide          | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Carbon Tetrachloride      | 8260   | 1            | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Chlorobenzene             | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Chloroethane              | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Chloroform                | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Chloromethane             | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | cis-1,2-Dichloroethene    | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | cis-1,3-Dichloropropene   | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | Ŵ      | Dibromochloromethane      | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Ethylbenzene              | 8260   | ·            | IJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | m-and/or p-Xylene         | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Methyl Ethyl Ketone       | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Methyl Isobutyl Ketone    | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Methylene Chloride        | 8260   | 1            | UJ        | 6, <del>9</del> |
| HP-IWL-01 | SAIC01          | PNCH           | w      | o-xylene                  | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Styrene                   | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | W .    | Tetrachloroethene         | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Toluene                   | 8260   | .            | J         | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | trans-1,2-Dichloroethene  | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | trans-1,3-Dichloropropene | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Trichloroethene           | 8260   |              | UJ        | 9 /             |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Vinyl Chloride            | 8260   |              | UJ        | 9               |
| HP-IWL-01 | SAIC01          | PNCH           | w      | Pyrene                    | 8270   |              | UJ        | 4               |
| HP-IWL-01 | SAIC01D         | PNCH           | w      | Calcium                   | 6010   |              | J         | 20              |
| HP-IWL-01 | SAIC01D         | PNCH           | • w •  | Cobalt                    | 6010   |              | U         | 8               |
| HP-IWL-01 | SAIC01D         | PNCH           | w      | Copper                    | 6010   |              | U         | 6               |
| HP-IWL-01 | SAIC01D         | PNCH           | w      | Sodium                    | 6010   |              | UJ        | 17A             |

Limited Site Investigation - Final Report

May 2003

.

| Wanops Fight Facility, Wanops Island, Virginia (Continued) |         |        |        |                           |          |       |           |        |  |  |  |
|------------------------------------------------------------|---------|--------|--------|---------------------------|----------|-------|-----------|--------|--|--|--|
|                                                            | Field   | Sample |        |                           |          | New   |           | Reason |  |  |  |
| Site ID                                                    | Sample  | Туре   | Matrix | Test Name                 | Method   | Value | Qualifier | Code   |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Vanadium                  | 6010     |       | ŬĴ        | 6A     |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | W      | 1,1,1-Trichloroethane     | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | 1,1,2,2-Tetrachloroethane | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | W      | 1,1,2-Trichloroethane     | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | 1,1-Dichloroethane        | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | W      | 1,1-Dichloroethene        | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | 1,2-Dichloroethane        | 8260     |       | UJ        | . 9    |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | 1,2-Dichloropropane       | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | 2-Hexanone                | 8260     |       | IJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Acetone                   | 8260     |       | UJ        | 4,9    |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Benzene                   | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | W      | Bromodichloromethane      | 8260     |       | UJ .      | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | Ŵ      | Bromoform                 | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | W.     | Bromomethane              | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Carbon Disulfide          | 8260     |       | UJ        | 7,9    |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Carbon Tetrachloride      | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Chlorobenzene             | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Chloroethane              | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Chloroform                | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Chloromethane             | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | cis-1,2-Dichloroethene    | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | cis-1,3-Dichloropropene   | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Dibromochloromethane      | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Ethylbenzene              | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | m-and/or p-Xylene         | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Methyl Ethyl Ketone       | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Methyl Isobutyl Ketone    | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Methylene Chloride        | 8260     | 1     | UJ        | 6,9    |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | o-xylene                  | 8260     |       | υJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Styrene                   | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Tetrachloroethene         | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Toluene                   | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | trans-1,2-Dichloroethene  | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | trans-1,3-Dichloropropene | 8260     |       | IJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Trichloroethene           | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Vinyl Chloride            | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-01                                                  | SAIC01D | PNCH   | w      | Pyrene                    | 8270     |       | IJ        | 4      |  |  |  |
| HP-IWL-02                                                  | SAIC01  | PNCH   | w      | Calcium                   | 6010     |       | J         | 20     |  |  |  |
| HP-IWL-02                                                  | SAIC01  | PNCH   | w      | Sodium                    | 6010     |       | J         | 17A    |  |  |  |
| HP-IWL-02                                                  | SAIC01  | PNCH   | w      | Vanadium                  | 6010     |       | UJ        | 6A     |  |  |  |
| HP-IWL-02                                                  | SAIC01  | PNCH   | w      | Zinc                      | 6010     |       | U         | 6      |  |  |  |
| HP-IWL-02                                                  | SAIC01  | PNCH   | w      | 1,1,1-Trichloroethane     | 8260     |       | UJ        | 9      |  |  |  |
| HP-IWL-02                                                  | SAIC01  | PNCH   | w      | 1,1,2,2-Tetrachloroethane | 8260     |       | UJ        | 9      |  |  |  |
|                                                            |         |        |        | .,.,=,=                   | <u> </u> |       | 1         |        |  |  |  |

Limited Site Investigation - Final Report

; |----

| Wallops Flight Facility, Wallops Island, Virginia (Continued) |                 |                |        |                           |        |              |           |                |  |  |  |
|---------------------------------------------------------------|-----------------|----------------|--------|---------------------------|--------|--------------|-----------|----------------|--|--|--|
| Site ID                                                       | Field<br>Sample | Sample<br>Type | Matrix | Test Name                 | Method | New<br>Value | Qualifier | Reason<br>Code |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | W.     | 1,1,2-Trichloroethane     | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | 1,1-Dichloroethane        | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | 1,1-Dichloroethene        | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | 1,2-Dichloroethane        | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | 1,2-Dichloropropane       | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | 2-Hexanone                | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Acetone                   | 8260   |              | UJ        | 4,9            |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Benzene                   | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Bromodichloromethane      | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Bromoform                 | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Bromomethane              | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Carbon Disulfide          | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Carbon Tetrachloride      | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Chlorobenzene             | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Chloroethane              | 8260   |              | บม        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Chloroform                | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Chloromethane             | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | cis-1,2-Dichloroethene    | 8260   |              | IJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | cis-1,3-Dichloropropene   | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Dibromochloromethane      | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Ethylbenzene              | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | m-and/or p-Xylene         | 8260   |              | J         | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Methyl Ethyl Ketone       | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Methyl Isobutyl Ketone    | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | W      | Methylene Chloride        | 8260   | 1            | υJ        | 6,9            |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | o-xylene                  | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Styrene                   | 8260   |              | IJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Tetrachloroethene         | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Toluene                   | 8260   |              | J         | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | trans-1,2-Dichloroethene  | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | trans-1,3-Dichloropropene | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Trichloroethene           | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Vinyl Chloride            | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-02                                                     | SAIC01          | PNCH           | w      | Pyrene                    | 8270   |              | UJ        | 4              |  |  |  |
| HP-IWL-03                                                     | SAIC01          | PNCH           | w      | Calcium                   | 6010   |              | J         | 20             |  |  |  |
| HP-IWL-03                                                     | SAIC01          | PNCH           | w      | Copper                    | 6010   |              | U         | 8              |  |  |  |
| HP-IWL-03                                                     | SAIC01          | PNCH           | w      | Sodium                    | 6010   |              | J         | 17A            |  |  |  |
| HP-IWL-03                                                     | SAIC01          | PNCH           | w      | Vanadium                  | 6010   |              | UJ        | 6A             |  |  |  |
| HP-IWL-03                                                     | SAIC01          | PNCH           | w      | Zinc                      | 6010   |              | U         | 6              |  |  |  |
| HP-IWL-03                                                     | SAIC01          | PNCH           | w      | 1,1,1-Trichloroethane     | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-03                                                     | SAIC01          | PNCH           | w      | 1,1,2,2-Tetrachloroethane | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-03                                                     | SAIC01          | PNCH           | w      | 1,1,2-Trichloroethane     | 8260   |              | UJ        | 9              |  |  |  |
| HP-IWL-03                                                     | SAIC01          | PNCH           | w      | 1,1-Dichloroethane        | 8260   |              | UJ        | 9              |  |  |  |

Limited Site Investigation - Final Report

May 2003

Ē

|           |        |        | 1      | nty, wanops island, virg  |        | -       |           |          |
|-----------|--------|--------|--------|---------------------------|--------|---------|-----------|----------|
|           | Field  | Sample |        |                           |        | New     |           | Reason   |
| Site ID   | Sample | Туре   | Matrix | Test Name                 | Method | Value   | Qualifier | Code     |
| HP-IWL-03 | SAIC01 | PNCH   | W      | 1,1-Dichloroethene        | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | W      | 1,2-Dichloroethane        | 8260   |         | ÛJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | W      | 1,2-Dichloropropane       | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | W      | 2-Hexanone                | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | W ·    | Acetone                   | 8260   |         | UJ        | 4,9      |
| HP-IWL-03 | SAIC01 | PNCH   | W      | Benzene                   | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | W      | Bromodichloromethane      | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | W      | Bromoform                 | 8260   |         | UJ 🗤      | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | w      | Bromomethane              | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | W      | Carbon Disulfide          | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | w      | Carbon Tetrachloride      | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | W      | Chlorobenzene             | 8260   |         | UJ -      | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | w      | Chloroethane              | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | w      | Chloroform                | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | W      | Chloromethane             | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | W      | cis-1,2-Dichloroethene    | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH . | w      | cis-1,3-Dichloropropene   | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | W      | Dibromochloromethane      | 8260   |         | UJ        | 9 .      |
| HP-IWL-03 | SAIC01 | PNCH   | W      | Ethylbenzene              | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | w      | m-and/or p-Xylene         | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | W      | Methyl Ethyl Ketone       | 8260   |         | ĴŪĴ       | 9.       |
| HP-IWL-03 | SAIC01 | PNCH   | w      | Methyl Isobutyl Ketone    | 8260   | · · · · | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | W      | Methylene Chloride        | 8260   | 1       | UJ        | 6,9      |
| HP-IWL-03 | SAIC01 | PNCH   | w      | o-xylene                  | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | W      | Styrene                   | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | w      | Tetrachloroethene         | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | w      | Toluene                   | 8260   |         | J         | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | w      | trans-1,2-Dichloroethene  | 8260   | •       | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | w      | trans-1,3-Dichloropropene | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | w      | Trichloroethene           | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | W      | Vinyl Chloride            | 8260   |         | UJ        | 9        |
| HP-IWL-03 | SAIC01 | PNCH   | w      | Pyrene                    | 8270   |         | UJ        | 4        |
| HP-IWL-04 | SAIC01 | PNCH   | W      | Aluminum                  | 6010   |         | UJ        | 17A      |
| HP-IWL-04 | SAIC01 | PNCH   | W      | Antimony                  | 6010   |         | UJ        | 17A      |
| HP-IWL-04 | SAIC01 | PNCH   | w      | Cobalt                    | 6010   |         | UJ        | 6A       |
| HP-IWL-04 | SAIC01 | PNCH   | w      | Copper                    | 6010   |         | U         | 8        |
| HP-IWL-04 | SAIC01 | PNCH   | w      | Zinc                      | 6010   |         | U         | 6        |
| HP-IWL-04 | SAIC01 | PNCH   | . W    | 1,1,1-Trichloroethane     | 8260   |         | UJ        | 1        |
| HP-IWL-04 | SAIC01 | PNCH   | w      | 1,1,2,2-Tetrachloroethane | 8260   |         | UJ        | 1        |
| HP-IWL-04 | SAIC01 | PNCH   | w      | 1,1,2-Trichloroethane     | 8260   |         | UJ        | 1        |
| HP-IWL-04 | SAIC01 | PNCH   | W_     | 1,1-Dichloroethane        | 8260   |         | υJ        | 1        |
| HP-IWL-04 | SAIC01 | PNCH   | w      | 1,1-Dichloroethene        | 8260   |         | UJ        | 1        |
| HP-IWL-04 | SAIC01 | PNCH   | w      | 1,2-Dichloroethane        | 8260   |         | UJ        | <u> </u> |

Limited Site Investigation - Final Report

May 2003

.

| Wallops Flight Facility, Wallops Island, Virginia (Continued) |        |        |          |                           |        |       |           |        |  |  |  |
|---------------------------------------------------------------|--------|--------|----------|---------------------------|--------|-------|-----------|--------|--|--|--|
| -                                                             | Field  | Sample |          |                           |        | New   |           | Reason |  |  |  |
| Site ID                                                       | Sample | Туре   | Matrix   | Test Name                 | Method | Value | Qualifier | Code   |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | 1,2-Dichloropropane       | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | W        | 2-Hexanone                | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | Ŵ        | Acetone                   | 8260   |       | UJ        | 1,3    |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | Benzene                   | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | Bromodichloromethane      | 8260   | ·     | UJ        | 1 -    |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | Bromoform                 | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | Bromomethane              | 8260   |       | UJ        | 1.     |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | Carbon Disulfide          | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | Carbon Tetrachloride      | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | Chlorobenzene             | 8260   |       | UJ        | 1 -    |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | W        | Chloroethane              | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | Chloroform                | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | Chloromethane             | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | cis-1,2-Dichloroethene    | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | cis-1,3-Dichloropropene   | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | W .      | Dibromochloromethane      | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | <b>W</b> | Ethylbenzene              | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | m-and/or p-Xylene         | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | Methyl Ethyl Ketone       | 8260   |       | UJ -      | 1,4    |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | Methyl Isobutyl Ketone    | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | Methylene Chloride        | 8260   |       | UJ        | 1,6    |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | o-xylene                  | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | Styrene                   | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | Tetrachloroethene         | 8260   |       | ŬJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | Toluene                   | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | trans-1,2-Dichloroethene  | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | trans-1,3-Dichloropropene | 8260   |       | UJ        | . 1    |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | Trichloroethene           | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | Vinyl Chloride            | 8260   |       | UJ        | 1      |  |  |  |
| HP-IWL-04                                                     | SAIC01 | PNCH   | w        | Pyrene                    | 8270   |       | UJ        | 4      |  |  |  |
| SB-CDL-01                                                     | SAIC01 | BORE   | s        | Antimony                  | 6010   |       | UJ        | 20     |  |  |  |
| SB-CDL-01                                                     | SAIC01 | BORE   | S        | Nickel                    | 6010   |       | J         | 6A     |  |  |  |
| SB-CDL-01                                                     | SAIC01 | BORE   | S        | Sodium                    | 6010   |       | UJ        | 6,17A  |  |  |  |
| SB-CDL-01                                                     | SAIC01 | BORE   | s        | Acetone                   | 8260   |       | UU        | 6      |  |  |  |
| SB-CDL-01                                                     | SAIC01 | BORE   | s        | Methyl Ethyl Ketone       | 8260   |       | UJ        | 3      |  |  |  |
| SB-CDL-01                                                     | SAIC01 | BORE   | s        | Methylene Chloride        | 8260   | 5.6   | Ŭ         | 6      |  |  |  |
| SB-CDL-01                                                     | SAIC01 | BORE   | S        | Trichloroethene           | 8260   | 5.5   | U         | 6      |  |  |  |
| SB-CDL-01                                                     | SAIC02 | BORE   | s        | Antimony                  | 6010   |       | UJ        | 20     |  |  |  |
| SB-CDL-01                                                     | SAIC02 | BORE   | s        | Copper                    | 6010   |       | U         | 6      |  |  |  |
| SB-CDL-01                                                     | SAIC02 | BORE   | s        | Nickel                    | 6010   |       | J         | 6A     |  |  |  |
| SB-CDL-01                                                     | SAIC02 | BORE   | s        | Sodium                    | 6010   |       | ΟJ        | 6,17A  |  |  |  |
| SB-CDL-01                                                     | SAIC02 | BORE   | s        | 1,2-Dichloropropane       | 8260   |       | J         | 9      |  |  |  |
| SB-CDL-01                                                     | SAIC02 | BORE   | S        | Acetone                   | 8260   |       | UJ        | 4      |  |  |  |

Limited Site Investigation - Final Report

May 2003

|           |          |        |                | it, y, transpe island, trig |        |          |           |              |
|-----------|----------|--------|----------------|-----------------------------|--------|----------|-----------|--------------|
|           | Field    | Sample |                |                             |        | New      | ••••••••  | Reason       |
| Site ID   | Sample   | Туре   | Matrix         | Test Name                   | Method | Value    | Qualifier | Code         |
| SB-CDL-01 | SAIC02   | BORE   | S              | Ethylbenzene                | 8260   |          | J         | 9            |
| SB-CDL-01 | SAIC02   | BORE   | S              | m-and/or p-Xylene           | 8260   | н.<br>Т  | J         | 9            |
| SB-CDL-01 | SAIC02   | BORE   | S              | Methylene Chloride          | 8260   | 2200     | U ·       | 6            |
| SB-CDL-01 | SAIC02   | BORE   | S              | Tetrachloroethene           | 8260   |          | J         | 9            |
| SB-CDL-01 | SAIC02   | BORE   | S              | Trichloroethene             | 8260   | 2100     | U         | <b>6</b> ° . |
| SB-CDL-02 | SAIC01   | BORE   | S              | Antimony                    | 6010   |          | IJ        | 20           |
| SB-CDL-02 | SAIC01   | BORE   | S              | Nickel                      | 6010   |          | 5 J       | 6A           |
| SB-CDL-02 | SAIC01   | BORE   | S              | Sodium                      | 6010   |          | UJ        | 6,17A        |
| SB-CDL-02 | SAIC01   | BORE   | S              | Acetone                     | 8260   |          | U         | 6            |
| SB-CDL-02 | SAIC01   | BORE   | S <sub>.</sub> | Methyl Ethyl Ketone         | 8260   |          | UJ        | 3            |
| SB-CDL-02 | SAIC01   | BORE   | S              | Methylene Chloride          | 8260   | 6        | U         | 6            |
| SB-CDL-02 | SAIC01   | BORE   | S              | Trichloroethene             | 8260   | 6        | U U       | 6            |
| SB-CDL-02 | SAIC01D  | BORE   | S              | Antimony                    | 6010   |          | UJ .      | 8,20         |
| SB-CDL-02 | SAIC01D  | BORE   | S              | Nickel                      | 6010   |          | J         | 6A           |
| SB-CDL-02 | SAIC01D  | BORE   | S              | Sodium                      | 6010   |          | IJ        | 6,17A        |
| SB-CDL-02 | SAIC01D  | BORE   | S              | Acetone                     | 8260   |          | U         | 6            |
| SB-CDL-02 | SAIC01D  | BORE   | S              | Methyl Ethyl Ketone         | 8260   |          | UJ        | 3            |
| SB-CDL-02 | SAIC01D  | BORE   | S              | Methylene Chloride          | 8260   | 6.4      | U         | 6            |
| SB-CDL-02 | SAIC01D  | BORE   | S              | Trichloroethene             | 8260   | 6.4      | U         | 6            |
| SB-CDL-02 | SAIC02   | BORE   | S              | Antimony                    | 6010   |          | UJ        | 20           |
| SB-CDL-02 | SAIC02   | BORE   | S              | Nickel                      | 6010   |          | J         | 6A           |
| SB-CDL-02 | SAIC02   | BORE   | S              | Sodium                      | 6010   |          | UJ        | 6,17A        |
| SB-CDL-02 | SAIC02   | BORE   | S              | Acetone                     | 8260   | 9.5      | U         | 6            |
| SB-CDL-02 | SAIC02   | BORE   | S              | Methyl Ethyl Ketone         | 8260   |          | UJ        | 3            |
| SB-CDL-02 | SAIC02   | BORE   | S              | Methylene Chloride          | 8260   | 4.8      | υ         | 6            |
| SB-CDL-02 | SAIC02   | BORE   | S              | Trichloroethene             | 8260   | 4.8      | U         | 6            |
| SB-CDL-03 | SAIC01   | BORE   | S              | Antimony                    | 6010   |          | J         | 20           |
| SB-CDL-03 | SAIC01   | BORE   | S              | Nickel                      | 6010   |          | U         | 6A           |
| SB-CDL-03 | SAIC01   | BORE   | S              | Sodium                      | 6010   |          | UJ        | 6,17A        |
| SB-CDL-03 | SAIC01   | BORE   | s              | Acetone                     | 8260   |          | U         | 6            |
| SB-CDL-03 | SAIC01   | BORE   | S              | Methyl Ethyl Ketone         | 8260   | 1. A. A. | UJ        | 3            |
| SB-CDL-03 | SAIC01   | BORE   | S              | Methylene Chloride          | 8260   | 9.7      | UJ        | 6            |
| SB-CDL-03 | SAIC01   | BORE   | S              | Trichloroethene             | 8260   | 9.5      | U         | 6            |
| SB-CDL-03 | SAIC02   | BORE   | S              | Antimony                    | 6010   |          | UJ        | 8,20         |
| SB-CDL-03 | SAIC02   | BORE   | S              | Nickel                      | 6010   |          | J         | 6A           |
| SB-CDL-03 | SAIC02   | BORE   | S              | Sodium                      | 6010   |          | UJ        | 6,17A        |
| SB-CDL-03 | SAIC02   | BORE   | S              | Acetone                     | 8260   |          | U         | 6            |
| SB-CDL-03 | SAIC02   | BORE   | S              | Carbon Disulfide            | 8260   | 5.7      | U         | 7            |
| SB-CDL-03 | SAIC02   | BORE   | s              | Methyl Ethyl Ketone         | 8260   |          | IJ        | 3            |
| SB-CDL-03 | SAIC02   | BORE   | S              | Methylene Chloride          | 8260   | 5.7      | U         | 6            |
| SB-CDL-03 | SAIC02   | BORE   | s              | Trichloroethene             | 8260   | 5.7      | U         | 6            |
| SB-CDL-03 | SAIC02   | BORE   | s              | Di-n-butyl Phthalate        | 8270   | 410      | U         | 8            |
| SB-CDL-03 | SAICRB02 | RNSW   | w              | Aluminum                    | 6010   |          | UJ        | <u>17A</u>   |

Limited Site Investigation - Final Report

┞

ŀ

|           | Wall      | lops Flig | ht Faci | ility, Wallops Island, Virg | inia (Con | tinued  | )               |             |
|-----------|-----------|-----------|---------|-----------------------------|-----------|---------|-----------------|-------------|
|           | Field     | Sample    |         | _                           |           | New     | 0               | Reason      |
| Site ID   | Sample    |           | Matrix  | Test Name                   | Method    | Value   | Qualifier<br>UJ | Code<br>17A |
| SB-CDL-03 | SAICRB02  | 1 .       | W       | Antimony                    | 6010      |         | U U             | 6           |
| SB-CDL-03 | SAICRB02  | 1         | W       | Calcium                     | 6010      |         |                 |             |
| SB-CDL-03 | SAICRB02  | RNSW      | W       | Cobait                      | 6010      |         | U               | 6A          |
| SB-CDL-03 | SAICRB02  | RNSW      | W       | Magnesium                   | 6010      |         | U               | 6           |
| SB-CDL-03 | SAICRB02  | RNSW      | W       | Sodium                      | 6010      |         | U               | 6           |
| SB-CDL-03 | SAICRB02  | RNSW      | W       | Bromomethane                | 8260      |         | UJ .            | 4           |
| SB-CDL-03 | SAICRB02  | RNSW      | Ŵ       | cis-1,3-Dichloropropene     | 8260      |         | UJ              | 4           |
| SB-CDL-03 | SAICRB02  | RNSW      | W       | Methylene Chloride          | 8260      |         | UJ              | 4,6         |
| SB-CDL-03 | SAICRB02  | RNSW      | W       | 1,2,4-Trichlorobenzene      | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | 1,2-Dichlorobenzene         | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | W       | 1,3-Dichlorobenzene         | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | W       | 1,4-Dichlorobenzene         | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | W       | 2,4,5-Trichlorophenol       | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | W       | 2,4,6-Trichlorophenol       | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | W       | 2,4-Dichlorophenol          | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | W       | 2,4-Dimethylphenol          | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | 2,4-Dinitrophenol           | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | W i     | 2,4-Dinitrotoluene          | 8270      |         | UJ              | .1          |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | 2,6-Dinitrotoluene          | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | 2-Chloronaphthalene         | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | 2-Chlorophenol              | 8270      | -       | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | 2-Methylnaphthalene         | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | 2-Methylphenol              | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | 2-Nitroaniline              | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | 2-Nitrophenol               | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | 3,3'-Dichloroobenzidine     | 8270      |         | ÙJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | 3-Nitroaniline              | 8270      |         | UJ              | . 1         |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | 4,6-Dinitro-2-Cresol        | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | 4-Bromophenyl Phenyl Ether  | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | 4-Chloro-3-methyiphenol     | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | 4-Chloroaniline             | 8270      |         | UJ              | 1,4         |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | 4-Chlorophenyl Phenyl Ether | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | 4-Methylphenol              | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | 4-Nitroaniline              | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | 4-Nitrophenol               | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | Acenaphthene                | 8270      |         | UJ 👘            | . 1         |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | Acenaphthylene              | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | Anthracene                  | 8270      | · · · · | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | Benzo(a)anthracene          | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | Benzo(a)pyrene              | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | Benzo(b)fluoranthene        | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | Benzo(g,h,i)perylene        | 8270      |         | UJ              | 1           |
| SB-CDL-03 | SAICRB02  | RNSW      | w       | Benzo(k)fluoranthene        | 8270      |         | UJ              | 1           |
| 00-002-00 | 0/10/10/2 | 111014    | **      | DONZONNOVIAIUIENE           |           |         |                 | i           |

Limited Site Investigation - Final Report

May 2003

| 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - | Wal      | lops Flig | ht Fac   | ility, Wallops Island, Virg  | jinia (Con | tinuec          | <b>)</b>  |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|----------|------------------------------|------------|-----------------|-----------|--------------|
|                                                                                                                                                                                                                                                                                                                                                       | Field    | Sample    |          |                              |            | New             |           | Reason       |
| Site ID                                                                                                                                                                                                                                                                                                                                               | Sample   | Туре      | Matrix   | Test Name                    | Method     | Value           | Qualifier | Code         |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | W        | bis(2-Chloroethoxy)methane   | 8270       | 1.              | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | w        | bis(2-Chloroethyl)Ether      | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | w        | bis(2-Chloroisopropyl) ether | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | w        | bis(2-Ethylhexyl)phthalate   | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | W        | Butylbenzyl Phthalate        | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | W        | Carbazole                    | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | w        | Chrysene                     | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | w        | Di-n-butyl Phthalate         | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | w        | Di-n-octyl Phthalate         | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | W        | Dibenzo(a,h)anthracene       | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | W        | Dibenzofuran                 | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | W        | Diethyl Phthalate            | 8270       |                 | UJ        | . 1          |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | w        | Dimethyl Phthalate           | 8270       |                 | UJ        | ່ 1          |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | W        | Fluoranthene                 | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | w        | Fluorene                     | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | W        | Hexachlorobenzene            | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | w        | Hexachlorobutadiene          | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | w        | Hexachlorocyclopentadiene    | 8270       |                 | UJ        | . 1          |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | w        | Hexachloroethane             | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | <b>W</b> | Indeno(1,2,3-cd)pyrene       | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | w        | isophorone                   | 8270       |                 | IJ        | , <b>1</b> - |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | w        | N-Nitrosodi-n-propylamine    | 8270       |                 | UJ        | 1.           |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | W        | N-Nitrosodiphenylamine       | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | w        | Naphthalene                  | 8270       |                 | IJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | W        | Nitrobenzene                 | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | w        | Pentachlorophenol            | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | w        | Phenanthrene                 | 8270       | 2               | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | W        | Phenol                       | 8270       |                 | UJ        | 1            |
| SB-CDL-03                                                                                                                                                                                                                                                                                                                                             | SAICRB02 | RNSW      | w        | Pyrene                       | 8270       |                 | UJ        | 1            |
| SB-IWL-01                                                                                                                                                                                                                                                                                                                                             | SAIC01   | BORE      | S I      | Antimony                     | 6010       |                 | UJ        | 8,20         |
| SB-IWL-01                                                                                                                                                                                                                                                                                                                                             | SAIC01   | BORE      | S        | Cobalt                       | 6010       | at set for<br>s | J         | 6A           |
| SB-IWL-01                                                                                                                                                                                                                                                                                                                                             | SAIC01   | BORE      | S        | Nickel                       | 6010       |                 | J         | 6A           |
| SB-IWL-01                                                                                                                                                                                                                                                                                                                                             | SAIC01   | BORE      | S        | Sodium                       | 6010       |                 | UJ        | 6,17A        |
| SB-IWL-01                                                                                                                                                                                                                                                                                                                                             | SAIC01   | BORE      | S        | Vanadium                     | 6010       |                 | J.        | 17A          |
| SB-IWL-01                                                                                                                                                                                                                                                                                                                                             | SAIC01   | BORE      | s        | Acetone                      | 8260       | 12              | U         | 7            |
| SB-IWL-01                                                                                                                                                                                                                                                                                                                                             | SAIC01   | BORE      | S        | Methyl Ethyl Ketone          | 8260       |                 | IJ        | 3            |
| SB-IWL-01                                                                                                                                                                                                                                                                                                                                             | SAIC01   | BORE      | S        | Methylene Chloride           | 8260       | 6.2             | U         | 6            |
| SB-IWL-01                                                                                                                                                                                                                                                                                                                                             | SAIC01   | BORE      | S        | Trichloroethene              | 8260       | 6.2             | U         | 6            |
| SB-IWL-01                                                                                                                                                                                                                                                                                                                                             | SAIC02   | BORE      | s        | Antimony                     | 6010       |                 | UJ        | 20,17A       |
| SB-IWL-01                                                                                                                                                                                                                                                                                                                                             | SAIC02   | BORE      | s        | Cobalt                       | 6010       |                 | UJ ,      | 8,6A         |
| SB-IWL-01                                                                                                                                                                                                                                                                                                                                             | SAIC02   | BORE      | S        | Nickel                       | 6010       |                 | J         | 6A           |
| SB-IWL-01                                                                                                                                                                                                                                                                                                                                             | SAIC02   | BORE      | s        | Sodium                       | 6010       |                 | UJ        | 6,17A        |
| SB-IWL-01                                                                                                                                                                                                                                                                                                                                             | SAIC02   | BORE      | S        | Vanadium                     | 6010       |                 | J         | 17A          |

Limited Site Investigation - Final Report

ľ.

2. . .

١.

May 2003

|    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        | inty, wanops island, virg |        |       | •         |        |
|----|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|---------------------------|--------|-------|-----------|--------|
|    |           | Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample |        |                           |        | New   |           | Reason |
|    | Site ID   | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Туре   | Matrix | Test Name                 | Method | Value | Qualifier | Code   |
|    | SB-IWL-01 | SAIC02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BORE   | S      | Acetone                   | 8260   | 12    | U         | 7      |
|    | SB-IWL-01 | SAIC02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BORE   | S      | Methyl Ethyl Ketone       | 8260   |       | UJ        | 4      |
|    | SB-IWL-01 | SAIC02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BORE   | S      | Methylene Chloride        | 8260   | 5.8   | - U       | 6      |
|    | SB-IWL-01 | SAIC02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BORE   | S      | Trichloroethene           | 8260   | 5.8   | U         | 6      |
|    | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | W      | 1,1,1-Trichloroethane     | 8260   |       | UJ        | 9      |
|    | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | W      | 1,1,2,2-Tetrachloroethane | 8260   |       | UJ        | 9      |
|    | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | 1,1,2-Trichloroethane     | 8260   |       | UJ        | . 9    |
|    | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | 1,1-Dichloroethane        | 8260   |       | UJ        | 9      |
|    | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | 1,1-Dichloroethene        | 8260   |       | UJ        | . 9    |
|    | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | 1,2-Dichloroethane        | 8260   |       | UJ        | 9      |
|    | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | W      | 1,2-Dichloropropane       | 8260   |       | UJ        | 9      |
|    | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | W      | 2-Hexanone                | 8260   |       | UJ        | 9      |
| ŀ  | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | Acetone                   | 8260   |       | J         | 4,9    |
|    | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | Benzene                   | 8260   | 1.1   | UJ        | 9      |
| k  | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP.  | w      | Bromodichloromethane      | 8260   |       | UJ        | 9      |
|    | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | Bromoform                 | 8260   |       | UJ        | 9      |
|    | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | Bromomethane              | 8260   |       | UJ        | 9      |
|    | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | Carbon Disulfide          | 8260   | 1     | J         | 9      |
| 5  | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | Carbon Tetrachloride      | 8260   |       | UJ -      | 9      |
|    | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | · w    | Chlorobenzene             | 8260   | ·     | UJ        | 9      |
|    | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | Chloroethane              | 8260   | . [   | UJ        | 9      |
| \$ | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | Chloroform                | 8260   |       | UJ        | 9      |
| 2  | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | Chloromethane             | 8260   |       | UJ        | 9      |
| 5  | B-IWL-01  | SAICTB01.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TRIP   | w      | cis-1,2-Dichloroethene    | 8260   | 1     | UJ        | 9      |
| 5  | SB-IWL-01 | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | cis-1,3-Dichloropropene   | 8260   |       | UJ        | 9 /    |
| 5  | B-IWL-01  | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | Dibromochloromethane      | 8260   |       | UJ        | 9      |
| S  | B-IWL-01  | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | Ethylbenzene              | 8260   |       | UJ        | 9      |
| S  | B-IWL-01  | SAICTB01TRIPWm-and/or p-Xylene8260UJ9SAICTB01TRIPWMethyl Ethyl Ketone8260UJ9SAICTB01TRIPWMethyl Isobutyl Ketone8260UJ9SAICTB01TRIPWMethyl Isobutyl Ketone8260UJ9SAICTB01TRIPWMethylene Chloride8260UJ6,9SAICTB01TRIPWo-xylene8260UJ9SAICTB01TRIPWo-xylene8260UJ9SAICTB01TRIPWStyrene8260UJ9SAICTB01TRIPWTetrachloroethene8260UJ9SAICTB01TRIPWToluene8260UJ9SAICTB01TRIPWtrans-1,2-Dichloroethene8260UJ9SAICTB01TRIPWtrans-1,3-Dichloropropene8260UJ9SAICTB01TRIPWTrichloroethene8260UJ9SAICTB01TRIPWTrichloroethene8260UJ9SAICTB01TRIPWVinyl Chloride8260UJ9SAIC01BORESAntimony6010J6ASAIC01BORESNickel6010J6A |        |        | 9                         |        |       |           |        |
| S  | B-IWL-01  | SAICTB01TRIPWm-and/or p-Xylene8260UJ9SAICTB01TRIPWMethyl Ethyl Ketone8260UJ9SAICTB01TRIPWMethyl Isobutyl Ketone8260UJ9SAICTB01TRIPWMethyl Isobutyl Ketone8260UJ6,9SAICTB01TRIPWMethylene Chloride8260UJ6,9SAICTB01TRIPWo-xylene8260UJ9SAICTB01TRIPWStyrene8260UJ9SAICTB01TRIPWTetrachloroethene8260UJ9SAICTB01TRIPWToluene8260UJ9SAICTB01TRIPWtrans-1,2-Dichloroethene8260UJ9SAICTB01TRIPWtrans-1,3-Dichloropropene8260UJ9SAICTB01TRIPWTrichloroethene8260UJ9SAICTB01TRIPWVinyl Chloride8260UJ9                                                                                                                |        | 9      |                           |        |       |           |        |
| S  | B-IWL-01  | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | W      | Methyl Isobutyl Ketone    | 8260   |       | UJ        | 9      |
| S  | B-IWL-01  | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | Methylene Chloride        | 8260   |       | UJ J      | 6,9    |
| S  | B-IWL-01  | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | W      | o-xylene                  | 8260   |       | UJ        | 9      |
| s  | B-IWL-01  | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w .    | Styrene                   | 8260   |       | IJ        | 9      |
| s  | B-IWL-01  | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | Tetrachloroethene         | 8260   |       | UJ        | 9      |
| s  | B-IWL-01  | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | Toluene                   | 8260   |       | UĴ        | 9      |
| s  | B-IWL-01  | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | trans-1,2-Dichloroethene  | 8260   |       | UJ        | 9      |
| s  | B-IWL-01  | SAICTB01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TRIP   | w      | trans-1,3-Dichloropropene | 8260   |       | UJ        | 9      |
| s  | B-IWL-01  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I      | w      |                           |        |       | UJ        | 9      |
|    | B-IWL-01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |                           |        |       | UJ        | 9      |
| s  | B-IWL-02  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | · 4    | ·                         |        | 1     | UJ        | 20,17A |
|    | B-IWL-02  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |                           |        |       | J         | 6A     |
| s  | B-IWL-02  | · •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 1      |                           | 6010   |       | J .       | 6A     |
| s  | B-IWL-02  | SAIC01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BORE   | s      | Sodium                    | 6010   |       | UJ        | 6,17A  |

Limited Site Investigation - Final Report

May 2003

ĺ

i

|           | wai               | iops riig | ni Faci | lity, wallops Island, virg |        | mueu         | <b>)</b>  |                |
|-----------|-------------------|-----------|---------|----------------------------|--------|--------------|-----------|----------------|
| Site ID   | Field -<br>Sample | Sample-   | Matrix  | Test Name                  | Method | New<br>Value | Qualifier | Reason<br>Code |
| SB-IWL-02 | SAIC01            | BORE      | S       | Vanadium                   | 6010   |              | J         | 17A            |
| SB-IWL-02 | SAIC01            | BORE      | S       | Acetone                    | 8260   |              | υ         | 7              |
| SB-IWL-02 | SAIC01            | BORE      | s       | Methyl Ethyl Ketone        | 8260   |              | UJ        | 3              |
| SB-IWL-02 | SAIC01            | BORE      | s       | Methylene Chloride         | 8260   | 6.4          | U         | 6              |
| SB-IWL-02 | SAIC01            | BORE      | S       | Trichloroethene            | 8260   | 6.4          | U         | 6              |
| SB-IWL-02 | SAIC02            | BORE      | S       | Antimony                   | 6010   |              | UJ        | 20,17A         |
| SB-IWL-02 | SAIC02            | BORE      | s       | Cobalt                     | 6010   |              | J         | 6A             |
| SB-IWL-02 | SAIC02            | BORE      | S       | Nickel                     | 6010   |              | J         | 6A             |
| SB-IWL-02 | SAIC02            | BORE      | S       | Sodium                     | 6010   |              | UJ        | 6,17A          |
| SB-IWL-02 | SAIC02            | BORE      | S       | Vanadium                   | 6010   |              | J         | 17A            |
| SB-IWL-02 | SAIC02            | BORE      | S       | Acetone                    | 8260   | 10           | U         | 7              |
| SB-IWL-02 | SAIC02            | BORE      | s       | Methyl Ethyl Ketone        | 8260   |              | UJ        | 3              |
| SB-IWL-02 | SAIC02            | BORE      | s       | Methylene Chloride         | 8260   | 5.1          | - U       | 6              |
| SB-IWL-02 | SAIC02            | BORE      | s       | Trichloroethene            | 8260   | 5.1          | U         | 6              |
| SB-IWL-03 | SAIC01            | BORE      | S       | Antimony                   | 6010   |              | UJ        | 20,17A         |
| SB-IWL-03 | SAIC01            | BORE      | s       | Cobalt                     | 6010   |              | J         | 6              |
| SB-IWL-03 | SAIC01            | BORE      | s       | Nickel                     | 6010   |              | J         | 6A             |
| SB-IWL-03 | SAIC01            | BORE      | s       | Sodium                     | 6010   |              | UJ        | 6,17A          |
| SB-IWL-03 | SAIC01            | BORE      | S       | Vanadium                   | 6010   |              | J         | 17A            |
| SB-IWL-03 | SAIC01            | BORE      | S       | Acetone                    | 8260   |              | U         | 7              |
| SB-IWL-03 | SAIC01            | BORE      | s       | Methyl Ethyl Ketone        | 8260   |              | UJ        | 3              |
| SB-IWL-03 | SAIC01            | BORE      | s       | Methylene Chloride         | 8260   | 6.8          | U         | 6              |
| SB-IWL-03 | SAIC01            | BORE      | S       | Trichloroethene            | 8260   | 6.8          | U         | 6              |
| SB-IWL-03 | SAIC02            | BORE      | s       | Antimony                   | 6010   |              | UJ        | 20,17A         |
| SB-IWL-03 | SAIC02            | BORE      | S       | Chromium                   | 6010   |              | U         | 8              |
| SB-IWL-03 | SAIC02            | BORE      | S       | Cobalt                     | 6010   |              | UJ        | 8,6A           |
| SB-IWL-03 | SAIC02            | BORE      | s       | Nickel                     | 6010   |              | J         | 6A             |
| SB-IWL-03 | SAIC02            | BORE      | S       | Potassium                  | 6010   |              | U         | 8              |
| SB-IWL-03 | SAIC02            | BORE      | S       | Sodium                     | 6010   |              | UJ        | 6,17A          |
| SB-IWL-03 | SAIC02            | BORE      | s       | Vanadium                   | 6010   |              | J         | 17A            |
| SB-IWL-03 | SAIC02            | BORE      | s       | Acetone                    | 8260   | 12           | U         | 7              |
| SB-IWL-03 | SAIC02            | BORE      | s       | Methyl Ethyl Ketone        | 8260   |              | UJ        | 3              |
| SB-IWL-03 | SAIC02            | BORE      | s       | Methylene Chloride         | 8260   | 6            | U         | 6              |
| SB-IWL-03 | SAIC02            | BORE      | S       | Trichloroethene            | 8260   | 6            | U         | 6              |
| SB-IWL-04 | SAIC01            | BORE      | S       | Antimony                   | 6010   |              | UJ        | 20             |
| SB-IWL-04 | SAIC01            | BORE      | S       | Nickel                     | 6010   |              | J         | 6A             |
| SB-IWL-04 | SAIC01            | BORE      | s       | Sodium                     | 6010   |              | UJ        | 6,17A          |
| SB-IWL-04 | SAIC01            | BORE      | s       | Acetone                    | 8260   |              | U         | 6              |
| SB-IWL-04 | SAIC01            | BORE      | s       | Methyl Ethyl Ketone        | 8260   |              | J         | 3              |
| SB-IWL-04 | SAIC01            | BORE      | S       | Methylene Chloride         | 8260   | 5            | U         | 6              |
| SB-IWL-04 | SAIC01            | BORE      | s       | Trichloroethene            | 8260   | 5            | U         | 6              |
| SB-IWL-04 | SAIC02            | BORE      | s       | Antimony                   | 6010   |              | UJ        | 20             |
| SB-IWL-04 | SAIC02            | BORE      | S       | Cobalt                     | 6010   |              | U         | 8              |

Limited Site Investigation - Final Report

Į.

| · .       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1      |                           |        | 1            |           |                |
|-----------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------|--------|--------------|-----------|----------------|
| Site ID   | Field<br>Sample | Sample<br>Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Matrix | Test Name                 | Method | New<br>Value | Qualifier | Reason<br>Code |
| SB-IWL-04 | SAIC02          | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S      | Copper                    | 6010   |              | U         | 6              |
| SB-IWL-04 | SAIC02          | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S      | Nickel                    | 6010   |              | ·J        | 6A             |
| SB-IWL-04 | SAIC02          | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S      | Potassium                 | 6010   |              | U         | 8              |
| SB-IWL-04 | SAIC02          | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s      | Sodium                    | 6010   |              | IJ        | 6,17A          |
| SB-IWL-04 | SAIC02          | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s      | Acetone                   | 8260   |              | U         | 6              |
| SB-IWL-04 | SAIC02          | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S      | Methyl Ethyl Ketone       | 8260   |              | IJ        | 3              |
| SB-IWL-04 | SAIC02          | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s      | Methylene Chloride        | 8260   | 5.2          | U         | 6              |
| SB-IWL-04 | SAIC02          | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s      | Trichloroethene           | 8260   | 5.2          | U.        | 6              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | 1,1,1-Trichloroethane     | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | 1,1,2,2-Tetrachloroethane | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | 1,1,2-Trichloroethane     | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | 1,1-Dichloroethane        | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | 1,1-Dichloroethene        | 8260   |              | IJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | 1,2-Dichloroethane        | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | 1,2-Dichloropropane       | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | 2-Hexanone                | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | Acetone                   | 8260   |              | UJ -      | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | Benzene                   | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | Bromodichloromethane      | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | Bromoform                 | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | Bromomethane              | 8260   |              | UJ        | 4,9            |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | Carbon Disulfide          | 8260   |              | J         | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | Carbon Tetrachloride      | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | Chlorobenzene             | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W      | Chloroethane              | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | Chloroform                | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | Chloromethane             | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | cis-1,2-Dichloroethene    | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | AICTB02TRIPWChloromethane8260UJ9AICTB02TRIPWcis-1,2-Dichloroethene8260UJ9AICTB02TRIPWcis-1,3-Dichloropropene8260UJ4,9AICTB02TRIPWDibromochloromethane8260UJ9AICTB02TRIPWEthylbenzene8260UJ9AICTB02TRIPWMethyl Ethyl Ketone8260UJ9AICTB02TRIPWMethyl Ethyl Ketone8260UJ9AICTB02TRIPWMethyl Isobutyl Ketone8260UJ4,9AICTB02TRIPWMethyl Isobutyl Ketone8260UJ4,6AICTB02TRIPWO-xylene8260UJ9AICTB02TRIPWStyrene8260UJ9AICTB02TRIPWTetrachloroethene8260UJ9AICTB02TRIPWTetrachloroethene8260UJ9AICTB02TRIPWToluene8260UJ9 |        | 4,9                       |        |              |           |                |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | Dibromochloromethane      | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | Ethylbenzene              | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | m-and/or p-Xylene         | 8260   |              | 1         | 9              |
| SB-IWL-04 | SAICTB02        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | Methyl Ethyl Ketone       |        |              | 1         | - 1            |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | Methyl Isobutyl Ketone    | 8260   |              |           |                |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (      | Methylene Chloride        |        |              |           | 4,6            |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W      | 2                         |        |              | 1         | 9              |
| SB-IWL-04 | SAICTB02        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                           | 1      |              | 1         |                |
| SB-IWL-04 | SAICTB02        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1    |                           | ·      |              | 1         |                |
| SB-IWL-04 | SAICTB02        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1      |                           | 1      |              |           |                |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | trans-1,2-Dichloroethene  | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W      | trans-1,3-Dichloropropene | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W      | Trichloroethene           | 8260   |              | UJ        | 9              |
| SB-IWL-04 | SAICTB02        | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w      | Vinyl Chloride            | 8260   | L            | UJ        | 9              |

Limited Site Investigation - Final Report

May 2003

l.

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                                         |        | 1     | 1    |          |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------|--------|-------|------|----------|
| 0.4 - 10  | Field_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                         |        | New   |      | Reaso    |
| Site ID   | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Matrix          |                                         | Method | Value |      | Code     |
| SB-WWP-01 | SAIC01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S               | Antimony                                | 6010   |       | UJ   | 20       |
| SB-WWP-01 | SAIC01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S               | Nickel                                  | 6010   |       | J    | 6A       |
| SB-WWP-01 | SAIC01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S               | Sodium                                  | 6010   |       | UJ   | 6,17A    |
| SB-WWP-01 | SAIC01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S               | 4-Chloroaniline                         | 8270   |       | UJ   | 4        |
| SB-WWP-01 | SAIC01R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S               | 1,1,2,2-Tetrachloroethane               | 8260   |       | IJ   | 4        |
| SB-WWP-01 | SAIC01R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S               | Acetone                                 | 8260   |       | UJ   | 3,6      |
| SB-WWP-01 | SAIC01R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S               | Bromomethane                            | 8260   |       | ·UJ  | 4        |
| SB-WWP-01 | SAIC01R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S               | Methylene Chloride                      | 8260   | 5.3   | U    | 6        |
| SB-WWP-01 | SAIC02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S               | Antimony                                | 6010   |       | UJ   | 20       |
| SB-WWP-01 | SAIC02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S               | Nickel                                  | 6010   |       | J    | 6A       |
| SB-WWP-01 | SAIC02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S               | Sodium                                  | 6010   |       | UJ   | 6,17A    |
| SB-WWP-01 | SAIC02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S               | 4-Chloroaniline                         | 8270   |       | UJ   | <b>4</b> |
| SB-WWP-01 | SAIC02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S               | 4-Nitrophenol                           | 8270   |       | UJ   | . 4      |
| SB-WWP-01 | SAIC02R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S               | 1,1,2,2-Tetrachloroethane               | 8260   |       | UJ   | 4        |
| SB-WWP-01 | SAIC02R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S               | Acetone                                 | 8260   |       | UJ 🗸 | 3,6      |
| SB-WWP-01 | SAIC02R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S.              | Bromomethane                            | 8260   | -     | UJ   | 4        |
| SB-WWP-01 | SAIC02R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S               | Methylene Chloride                      | 8260   | 5.2   | U    | 6        |
| SB-WWP-01 | SAIC02R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S               | Toluene                                 | 8260   | 5.2   | U    | 8        |
| SB-WWP-01 | SAICTB03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | w               | 1,1,1-Trichloroethane                   | 8260   |       | UJ   | 9        |
| SB-WWP-01 | SAICTB03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | w               | 1,1,2,2-Tetrachloroethane               | 8260   |       | IJ   | 9        |
| SB-WWP-01 | SAICTB03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | w               | 1,1,2-Trichloroethane                   | 8260   |       | UJ   | 9        |
| SB-WWP-01 | SAICTB03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | w               | 1,1-Dichloroethane                      | 8260   |       | UJ   | 9        |
| SB-WWP-01 | SAICTB03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - W 1           | 1,1-Dichloroethene                      | 8260   |       | UJ   | 9        |
| SB-WWP-01 | SAICTB03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | w               | 1,2-Dichloroethane                      | 8260   |       | UJ   | 9        |
| SB-WWP-01 | SAICTB03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | W .             | 1,2-Dichloropropane                     | 8260   |       | UJ   | 9        |
| SB-WWP-01 | SAICTB03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | w <sup>-1</sup> | 2-Hexanone                              | 8260   |       | UJ   | 9        |
| SB-WWP-01 | SAICTB03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | w               | Acetone                                 | 8260   |       | J .  | 9        |
| SB-WWP-01 | SAICTB03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | w               | Benzene                                 | 8260   |       | UJ . | 9        |
| SB-WWP-01 | SAICTB03TRIPWBenzene8260UJ9SAICTB03TRIPWBromodichloromethane8260UJ9SAICTB03TRIPWBromoform8260UJ9SAICTB03TRIPWBromomethane8260UJ9SAICTB03TRIPWBromomethane8260UJ4,9SAICTB03TRIPWCarbon Disulfide8260J9SAICTB03TRIPWCarbon Tetrachloride8260UJ9SAICTB03TRIPWChlorobenzene8260UJ9SAICTB03TRIPWChloroethane8260UJ9SAICTB03TRIPWChloroform8260UJ9SAICTB03TRIPWChloromethane8260UJ9SAICTB03TRIPWChloromethane8260UJ9SAICTB03TRIPWcis-1,2-Dichloroethene8260UJ9SAICTB03TRIPWcis-1,3-Dichloropropene8260UJ9SAICTB03TRIPWcis-1,3-Dichloropropene8260UJ9SAICTB03TRIPWDibromochloromethane8260UJ9SAICTB03TRIPWEthylbenzene8260UJ9                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9               |                                         |        |       |      |          |
| SB-WWP-01 | SAICTB03TRIPWBenzene8260UJ9SAICTB03TRIPWBromodichloromethane8260UJ9SAICTB03TRIPWBromoform8260UJ9SAICTB03TRIPWBromomethane8260UJ4,9SAICTB03TRIPWCarbon Disulfide8260J9SAICTB03TRIPWCarbon Tetrachloride8260UJ9SAICTB03TRIPWCarbon Tetrachloride8260UJ9SAICTB03TRIPWChlorobenzene8260UJ9SAICTB03TRIPWChloroethane8260UJ9SAICTB03TRIPWChloroform8260UJ9SAICTB03TRIPWChloromethane8260UJ9SAICTB03TRIPWChloromethane8260UJ9SAICTB03TRIPWcis-1,2-Dichloroptopene8260UJ9SAICTB03TRIPWcis-1,3-Dichloroptopene8260UJ4,9SAICTB03TRIPWDibromochloromethane8260UJ4,9SAICTB03TRIPWDibromochloromethane8260UJ4,9                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                                         |        |       |      |          |
| SB-WWP-01 | SAICTB03TRIPWBenzene8260UJ9SAICTB03TRIPWBromodichloromethane8260UJ9SAICTB03TRIPWBromoform8260UJ9SAICTB03TRIPWBromomethane8260UJ4,9SAICTB03TRIPWCarbon Disulfide8260J9SAICTB03TRIPWCarbon Tetrachloride8260UJ9SAICTB03TRIPWCarbon Tetrachloride8260UJ9SAICTB03TRIPWChlorobenzene8260UJ9SAICTB03TRIPWChloroform8260UJ9SAICTB03TRIPWChloroform8260UJ9SAICTB03TRIPWChloromethane8260UJ9SAICTB03TRIPWChloromethane8260UJ9SAICTB03TRIPWcis-1,2-Dichloropropene8260UJ9SAICTB03TRIPWcis-1,3-Dichloropropene8260UJ4,9SAICTB03TRIPWDibromochloromethane8260UJ9SAICTB03TRIPWEthylbenzene8260UJ9SAICTB03TRIPWDibromochloromethane8260UJ9SAICTB03TRIPWMM99SAICTB03TRIPWMM99SAICTB03TRIP <td>4.9</td> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.9             |                                         |        |       |      |          |
| SB-WWP-01 | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAICTB03TRIPWBenzene8260UJ9SAICTB03TRIPWBromodichloromethane8260UJ9SAICTB03TRIPWBromoform8260UJ9SAICTB03TRIPWBromomethane8260UJ4,9SAICTB03TRIPWBromomethane8260UJ4,9SAICTB03TRIPWCarbon Disulfide8260UJ9SAICTB03TRIPWCarbon Tetrachloride8260UJ9SAICTB03TRIPWChlorobenzene8260UJ9SAICTB03TRIPWChloroethane8260UJ9SAICTB03TRIPWChloroform8260UJ9SAICTB03TRIPWChloromethane8260UJ9SAICTB03TRIPWChloromethane8260UJ9SAICTB03TRIPWcis-1,3-Dichloropropene8260UJ9SAICTB03TRIPWcis-1,3-Dichloropropene8260UJ9SAICTB03TRIPWDibromochloromethane8260UJ9SAICTB03TRIPWEthylbenzene8260UJ9SAICTB03TRIPWMeand/or p-Xylene8260UJ9SAICTB03TRIPWMeand/or p-Xylene8260UJ9 |                 |                                         |        |       |      |          |
| SB-WWP-01 | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                                         | 1      |       | 1    |          |
| SB-WWP-01 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | 1 A A A A A A A A A A A A A A A A A A A |        |       |      |          |
| B-WWP-01  | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                                         |        |       |      |          |
| SB-WWP-01 | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                                         | 1      |       | 1    |          |
| SB-WWP-01 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                                         | 1      |       |      |          |
| B-WWP-01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                                         | 1      |       |      |          |
| B-WWP-01  | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1               |                                         |        |       |      |          |
| B-WWP-01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                                         |        |       | 1    |          |
| SB-WWP-01 | F I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                                         | 1      |       |      |          |
| SB-WWP-01 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | -                                       |        |       |      |          |
| B-WWP-01  | SAICTB03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | w               | Methyl Ethyl Ketone                     | 8260   |       | UJ   | 9        |

Limited Site Investigation - Final Report

|           |          |        |        | iity, wanops island, virg |        |       |           |        |
|-----------|----------|--------|--------|---------------------------|--------|-------|-----------|--------|
|           | Field    | Sample |        |                           |        | New   |           | Reason |
| Site ID   | Sample   | Туре   | Matrix | Test Name                 | Method | Value | Qualifier | Code   |
| SB-WWP-01 | SAICTB03 | TRIP   | W      | Methyl isobutyl Ketone    | 8260   |       | UJ        | 9      |
| SB-WWP-01 | SAICTB03 | TRIP   | W      | Methylene Chloride        | 8260   |       | UJ        | 4,6    |
| SB-WWP-01 | SAICTB03 | TRIP   | w      | o-xylene                  | 8260   |       | UJ        | 9      |
| SB-WWP-01 | SAICTB03 | TRIP   | w      | Styrene                   | 8260   |       | UJ        | 9      |
| SB-WWP-01 | SAICTB03 | TRIP   | w      | Tetrachloroethene         | 8260   | 1.1.1 | UJ -      | 9      |
| SB-WWP-01 | SAICTB03 | TRIP   | W      | Toluene                   | 8260   |       | UJ        | 9      |
| SB-WWP-01 | SAICTB03 | TRIP   | w      | trans-1,2-Dichloroethene  | 8260   |       | IJ        | 9      |
| SB-WWP-01 | SAICTB03 | TRIP   | w      | trans-1,3-Dichloropropene | 8260   |       | UJ        | 9      |
| SB-WWP-01 | SAICTB03 | TRIP   | w      | Trichloroethene           | 8260   | 1.1   | UJ        | 9      |
| SB-WWP-01 | SAICTB03 | TRIP   | w      | Vinyl Chloride            | 8260   |       | UJ        | 9      |
| SB-WWP-01 | SAICTB04 | TRIP   | w      | Acetone                   | 8260   |       | J         | 2      |
| SB-WWP-01 | SAICTB04 | TRIP   | w      | Methyl Ethyl Ketone       | 8260   |       | UJ        | 4      |
| SB-WWP-01 | SAICTB04 | TRIP   | W      | Methylene Chloride        | 8260   |       | U         | 6      |
| SB-WWP-02 | SAIC01   | BORE   | S      | Antimony                  | 6010   |       | UJ        | 20     |
| SB-WWP-02 | SAIC01   | BORE   | s      | Cobalt                    | 6010   |       | U         | 8      |
| SB-WWP-02 | SAIC01   | BORE   | S      | Nickel                    | 6010   |       | J         | 6A     |
| SB-WWP-02 | SAIC01   | BORE   | S      | Potassium                 | 6010   |       | U         | 8      |
| SB-WWP-02 | SAIC01   | BORE   | S      | Sodium                    | 6010   |       | UJ        | 6,17A  |
| SB-WWP-02 | SAIC01   | BORE   | S      | 4-Chloroaniline           | 8270   |       | UJ        | 4      |
| SB-WWP-02 | SAIC01   | BORE   | S      | 4-Nitrophenol             | 8270   |       | UJ        | 4      |
| SB-WWP-02 | SAIC01   | BORE   | S      | Di-n-butyl Phthalate      | 8270   | 350   | U         | 8      |
| SB-WWP-02 | SAIC01D  | BORE   | s      | Antimony                  | 6010   |       | UJ        | 20     |
| SB-WWP-02 | SAIC01D  | BORE   | s      | Cobalt                    | 6010   |       | U         | 8      |
| SB-WWP-02 | SAIC01D  | BORE   | S      | Nickel                    | 6010   |       | J         | 6A     |
| SB-WWP-02 | SAIC01D  | BORE   | S      | Potassium                 | 6010   |       | U .       | 8      |
| SB-WWP-02 | SAIC01D  | BORE   | S      | Sodium                    | 6010   |       | UJ        | 6A,17A |
| SB-WWP-02 | SAIC01D  | BORE   | S      | 4-Chloroaniline           | 8270   | l l   | UJ        | 4      |
| SB-WWP-02 | SAIC01D  | BORE   | s      | 4-Nitrophenol             | 8270   |       | UJ        | 4      |
| SB-WWP-02 | SAIC01DR | BORE   | s      | 1,1,2,2-Tetrachloroethane | 8260   |       | IJ        | 4      |
| SB-WWP-02 | SAIC01DR | BORE   | S      | Acetone                   | 8260   | ·     | UJ        | 3,6    |
| SB-WWP-02 | SAIC01DR | BORE   | S      | Bromomethane              | 8260   | ·     | UJ        | 4      |
| SB-WWP-02 | SAIC01DR | BORE   | S      | Methylene Chloride        | 8260   | 7.4   | U - [     | 6      |
| SB-WWP-02 | SAIC01DR | BORE   | S      | Toluene                   | 8260   | 7.4   | U         | 8      |
| SB-WWP-02 | SAIC01R  | BORE   | S      | 1,1,2,2-Tetrachloroethane | 8260   |       | IJ        | 4      |
| SB-WWP-02 | SAIC01R  | BORE   | S      | Acetone                   | 8260   |       | UJ        | 3,6    |
| SB-WWP-02 | SAIC01R  | BORE   | s      | Bromomethane              | 8260   |       | UJ        | 4      |
| SB-WWP-02 | SAIC01R  | BORE   | s      | Methylene Chloride        | 8260   | 5.9   | U         | 6      |
| SB-WWP-02 | SAIC02   | BORE   | s      | Antimony                  | 6010   |       | UJ        | 20     |
| SB-WWP-02 | SAIC02   | BORE   | S      | Nickel                    | 6010   |       | J         | 6A     |
| SB-WWP-02 | SAIC02   | BORE   | s      | Sodium                    | 6010   |       | UJ        | 6A,17A |
| SB-WWP-02 | SAIC02   | BORE   | S      | 4-Chloroaniline           | 8270   |       | UJ        | 4      |
| SB-WWP-02 | SAIC02   | BORE   | S      | 4-Nitrophenol             | 8270   |       | UJ        | 4      |
| SB-WWP-02 | SAIC02R  | BORE   | S      | 1,1,2,2-Tetrachloroethane | 8260   | L     | UJ        | 4      |

Limited Site Investigation - Final Report

May 2003

:

- Andrews

|   |           |          | ope i ng |        | lity, wallops Island, virg |        | inded |           |        |
|---|-----------|----------|----------|--------|----------------------------|--------|-------|-----------|--------|
|   |           | Field    | Sample   |        | ·                          |        | New   |           | Reason |
|   | Site ID   | Sample   | Туре     | Matrix | Test Name                  | Method | Value | Qualifier | Code   |
|   | SB-WWP-02 | SAIC02R  | BORE     | S      | Acetone                    | 8260   |       | UJ        | 3,6    |
|   | SB-WWP-02 | SAIC02R  | BORE     | S      | Bromomethane               | 8260   |       | UJ        | 4      |
|   | SB-WWP-02 | SAIC02R  | BORE     | S      | Methylene Chloride         | 8260   | 6.1   | U         | 6      |
|   | SB-WWP-03 | SAIC01   | BORE     | S      | Antimony                   | 6010   |       | UJ        | 8,20   |
|   | SB-WWP-03 | SAIC01   | BORE     | S      | Nickel                     | 6010   |       | J         | 6A     |
| - | SB-WWP-03 | SAIC01   | BORE     | S      | Sodium                     | 6010   | 1     | - UJ      | 17A    |
|   | SB-WWP-03 | SAIC01   | BORE     | S      | 4-Chloroaniline            | 8270   |       | UJ        | 4      |
|   | SB-WWP-03 | SAIC01   | BORE     | S      | 4-Nitrophenol              | 8270   |       | UJ        | 4      |
| ļ | SB-WWP-03 | SAIC01   | BORE     | S      | Di-n-butyl Phthalate       | 8270   | 430   | U         | 8      |
|   | SB-WWP-03 | SAIC01R  | BORE     | S      | 1,1,2,2-Tetrachloroethane  | 8260   |       | UJ        | 4      |
|   | SB-WWP-03 | SAIC01R  | BORE     | S      | Acetone                    | 8260   |       | UJ        | 3,6    |
| Ś | SB-WWP-03 | SAIC01R  | BORE     | S      | Bromomethane               | 8260   | к     | UJ        | 4      |
|   | SB-WWP-03 | SAIC01R  | BORE     | S      | Methylene Chloride         | 8260   | 6.6   | U .       | 6      |
|   | SB-WWP-03 | SAIC02   | BORE     | S      | Antimony                   | 6010   |       | J         | 20     |
|   | SB-WWP-03 | SAIC02   | BORE     | S      | Nickel                     | 6010   |       | J         | 6A     |
|   | SB-WWP-03 | SAIC02   | BORE     | S      | Sodium                     | 6010   |       | UJ        | 6,17A  |
| Ś | SB-WWP-03 | SAIC02   | BORE     | s      | 4-Chloroaniline            | 8270   |       | UJ        | 4      |
| Ś | SB-WWP-03 | SAIC02   | BORE     | s      | 4-Nitrophenol              | 8270   |       | UJ        | 4      |
| S | SB-WWP-03 | SAIC02   | BORE     | s      | Di-n-butyl Phthalate       | 8270   | 400   | U         | 8      |
| 5 | SB-WWP-03 | SAIC02R  | BORE     | s      | 1,1,2,2-Tetrachloroethane  | 8260   |       | UJ        | 4      |
| 5 | SB-WWP-03 | SAIC02R  | BORE     | s      | Acetone                    | 8260   |       | UJ        | 3,7    |
| e | SB-WWP-03 | SAIC02R  | BORE     | s      | Bromomethane               | 8260   |       | UJ        | 4      |
| S | SB-WWP-03 | SAIC02R  | BORE     | s      | Methylene Chloride         | 8260   | 6.1   | U         | 6      |
| S | SB-WWP-03 | SAIC02R  | BORE     | s      | Toluene                    | 8260   | 6.1   | U         | 8      |
| S | SB-WWP-03 | SAICRB01 | RNSW     | w      | Aluminum                   | 6010   |       | UJ        | 17A    |
| s | B-WWP-03  | SAICRB01 | RNSW     | w      | Antimony                   | 6010   |       | J         | 17A    |
| s | B-WWP-03  | SAICRB01 | RNSW     | w      | Arsenic                    | 6010   |       | U         | 17     |
| s | B-WWP-03  | SAICRB01 | RNSW     | w      | Calcium                    | 6010   |       | U         | 6      |
| s | 8B-WWP-03 | SAICRB01 | RNSW     | w      | Cobalt                     | 6010   | .     | J         | 6A     |
| S | B-WWP-03  | SAICRB01 | RNSW     | w      | Copper                     | 6010   |       | U         | 6      |
| s | B-WWP-03  | SAICRB01 | RNSW     | w      | Magnesium                  | 6010   |       | U         | 6      |
| s | B-WWP-03  | SAICRB01 | RNSW     | Ŵ      | Sodium                     | 6010   |       | U         | 6      |
| S | B-WWP-03  | SAICRB01 | RNSW     | w      | Vanadium                   | 6010   |       | U         | 17     |
| S | B-WWP-03  | SAICRB01 | RNSW     | w      | Zinc                       | 6010   |       | U         | 6      |
| s | B-WWP-03  | SAICRB01 | RNSW     | w      | 1,1,1-Trichloroethane      | 8260   |       | UJ        | 9      |
| s | B-WWP-03  | SAICRB01 | RNSW     | w      | 1,1,2,2-Tetrachloroethane  | 8260   |       | UJ        | 9      |
| s | B-WWP-03  | SAICRB01 | RNSW     | w      | 1,1,2-Trichloroethane      | 8260   |       | UJ        | 9      |
| s | B-WWP-03  | SAICRB01 | RNSW     | w      | 1,1-Dichloroethane         | 8260   |       | UJ        | 9      |
| s | B-WWP-03  | SAICRB01 | RNSW     | w      | 1,1-Dichloroethene         | 8260   |       | UJ        | 9      |
| s | B-WWP-03  | SAICRB01 | RNSW     | w      | 1,2-Dichloroethane         | 8260   |       | UJ        | 9      |
| s | B-WWP-03  | SAICRB01 | RNSW     | w      | 1,2-Dichloropropane        | 8260   |       | UJ        | 9      |
|   | B-WWP-03  | SAICRB01 | RNSW     | w      | 2-Hexanone                 | 8260   |       | UJ        | 9      |
| s | B-WWP-03  | SAICRB01 | RNSW     | w      | Acetone                    | 8260   |       | J         | 9      |

Limited Site Investigation - Final Report

Ţ

5

Ì

-----

|           | vvali    |        | ni raci | lity, wallops island, virg |        | unueu |           |        |
|-----------|----------|--------|---------|----------------------------|--------|-------|-----------|--------|
|           | Field    | Sample |         |                            |        | New   |           | Reason |
| Site ID   | Sample   | Type   | Matrix  | Test Name                  | Method | Value | Qualifier | Code   |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Benzene                    | 8260   |       | UJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Bromodichloromethane       | 8260   |       | UJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Bromoform                  | 8260   |       | UJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Bromomethane               | 8260   |       | UJ        | 4,9    |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Carbon Disulfide           | 8260   | ÷ .   | J         | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Carbon Tetrachloride       | 8260   |       | UJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Chlorobenzene              | 8260   |       | UJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Chloroethane               | 8260   |       | UJ_       | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Chloroform                 | 8260   |       | UJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Chloromethane              | 8260   |       | UJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | Ŵ       | cis-1,2-Dichloroethene     | 8260   |       | UJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | cis-1,3-Dichloropropene    | 8260   |       | UJ        | 4,9    |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Dibromochloromethane       | 8260   |       | UJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Ethylbenzene               | 8260   |       | UJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | m-and/or p-Xylene          | 8260   | - A.  | UJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Methyl Ethyl Ketone        | 8260   |       | UJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Methyl Isobutyl Ketone     | 8260   |       | UJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Methylene Chloride         | 8260   |       | UJ        | 4,6    |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | o-xylene                   | 8260   |       | UJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Styrene                    | 8260   |       | UJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Tetrachloroethene          | 8260   |       | UJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Toluene                    | 8260   |       | J         | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | trans-1,2-Dichloroethene   | 8260   |       | IJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | trans-1,3-Dichloropropene  | 8260   |       | UJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Trichloroethene            | 8260   |       | UJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | w       | Vinyl Chloride             | 8260   |       | UJ        | 9      |
| SB-WWP-03 | SAICRB01 | RNSW   | W       | 4-Chloroaniline            | 8270   |       | UJ        | 4      |
| WA-UST-01 | SAIC01   | SWTR   | w       | Aluminum                   | 6010   |       | UJ        | 17A    |
| WA-UST-01 | SAIC01   | SWTR   | w       | Antimony                   | 6010   |       | UJ        | 17A    |
| WA-UST-01 | SAIC01   | SWTR   | w       | Arsenic                    | 6010   |       | U         | 17     |
| WA-UST-01 | SAIC01   | SWTR   | w       | Cobalt                     | 6010   |       | UJ .      | 6A     |
| WA-UST-01 | SAIC01   | SWTR   | w       | Copper                     | 6010   |       | U         | 6      |
| WA-UST-01 | SAIC01   | SWTR   | . w     | Zinc                       | 6010   |       | U         | 6      |
| WA-UST-01 | SAIC01   | SWTR   | w       | Methyl Ethyl Ketone        | 8260   |       | UJ        | 4      |
| WA-UST-01 | SAIC01   | SWTR   | w       | Methylene Chloride         | 8260   |       | U         | 6      |
| WA-UST-01 | SAIC01   | SWTR   | w       | 4-Chloroaniline            | 8270   |       | UJ        | 4      |
| WA-UST-01 | SAIC01   | SWTR   | w       | 4-Nitrophenol              | 8270   |       | UJ        | 4      |
| WA-UST-02 | SAIC01   | SWTR   | w       | Aluminum                   | 6010   |       | UJ        | 17A    |
| WA-UST-02 | SAIC01   | SWTR   | w       | Antimony                   | 6010   |       | UJ        | 17A    |
| WA-UST-02 | SAIC01   | SWTR   | w       | Cobalt                     | 6010   |       | UJ        | 6A     |
| WA-UST-02 | SAIC01   | SWTR   | w       | Copper                     | 6010   |       | U         | 8      |
| WA-UST-02 | SAIC01   | SWTR   | w       | Thallium                   | 6010   |       | U         | 17     |
| WA-UST-02 | SAIC01   | SWTR   | w       | Zinc                       | 6010   |       | <u> </u>  | 6      |

Limited Site Investigation - Final Report

May 2003

**---**

|              | Field  | Sample |            |                           |        | New    |           | Reason |
|--------------|--------|--------|------------|---------------------------|--------|--------|-----------|--------|
| Site ID      | Sample | Туре   | Matrix     | Test Name                 | Method | Value  | Qualifier | Code   |
| WA-UST-02    | SAIC01 | SWTR   | w          | Methyl Ethyl Ketone       | 8260   |        | UJ        | 4      |
| WA-UST-02    | SAIC01 | SWTR   | w          | Methylene Chloride        | 8260   |        | U         | 6      |
| WA-UST-02    | SAIC01 | SWTR   | w          | 4-Chloroaniline           | 8270   |        | UJ        | 4      |
| WA-UST-02    | SAIC01 | SWTR   | w          | 4-Nitrophenol             | 8270   |        | UJ        | 4      |
| WA-UST-03    | SAIC01 | SWTR   | <b>w</b> . | Aluminum                  | 6010   |        | UJ        | 17A    |
| WA-UST-03    | SAIC01 | SWTR   | W          | Antimony                  | 6010   |        | UJ        | 17A    |
| WA-UST-03    | SAIC01 | SWTR   | w          | Cobalt                    | 6010   | 100 A. | UJ        | 6A     |
| ∼ (WA-UST-03 | SAIC01 | SWTR   | w          | Copper                    | 6010   |        | U         | 8      |
| WA-UST-03    | SAIC01 | SWTR   | W          | Vanadium                  | 6010   |        | U         | 17     |
| WA-UST-03    | SAIC01 | SWTR   | W          | Carbon Disulfide          | 8260   | 1      | U         | 7      |
| WA-UST-03    | SAIC01 | SWTR   | w          | Methyl Ethyl Ketone       | 8260   |        | UJ        | 4      |
| WA-UST-03    | SAIC01 | SWTR   | ί W        | Methylene Chloride        | 8260   |        | U         | 6      |
| WA-UST-03    | SAIC01 | SWTR   | w          | 4-Chloroaniline           | 8270   |        | UJ        | 4      |
| WA-UST-03    | SAIC01 | SWTR   | ٠W         | 4-Nitrophenol             | 8270   |        | U         | 4      |
| WA-UST-04    | SAIC01 | SWTR   | w          | Aluminum                  | 6010   |        | UJ        | 17A    |
| WA-UST-04    | SAIC01 | SWTR   | w          | Antimony                  | 6010   |        | UJ        | 17A    |
| WA-UST-04    | SAIC01 | SWTR   | W          | Arsenic                   | 6010   |        | U         | 17     |
| WA-UST-04    | SAIC01 | SWTR   | W          | Cobalt                    | 6010   |        | J         | 6A     |
| WA-UST-04    | SAIC01 | SWTR   | W          | Copper                    | 6010   |        | U         | 8      |
| WA-UST-04    | SAIC01 | SWTR   | W          | Thallium                  | 6010   |        | U         | 17     |
| WA-UST-04    | SAIC01 | SWTR   | W          | Zinc                      | 6010   |        | U         | 6      |
| WA-UST-04    | SAIC01 | SWTR   | w          | 1,1,1-Trichloroethane     | 8260   |        | UJ        | 9      |
| WA-UST-04    | SAIC01 | SWTR   | w          | 1,1,2,2-Tetrachloroethane | 8260   |        | UJ        | 9      |
| WA-UST-04    | SAIC01 | SWTR   | w          | 1,1,2-Trichloroethane     | 8260   |        | UJ        | 9      |
| WA-UST-04    | SAIC01 | SWTR   | w          | 1,1-Dichloroethane        | 8260   |        | UJ        | 9      |
| WA-UST-04    | SAIC01 | SWTR   | w          | 1,1-Dichloroethene        | 8260   |        | UJ        | 9      |
| WA-UST-04    | SAIC01 | SWTR   | w          | 1,2-Dichloroethane        | 8260   |        | UJ        | 9      |
| WA-UST-04    | SAIC01 | SWTR   | w          | 1,2-Dichloropropane       | 8260   |        | UJ        | 9      |
| WA-UST-04    | SAIC01 | SWTR   | w          | 2-Hexanone                | 8260   |        | UJ        | 9      |
| WA-UST-04    | SAIC01 | SWTR   | w          | Acetone                   | 8260   |        | UJ        | 7,9    |
| WA-UST-04    | SAIC01 | SWTR   | w          | Benzene                   | 8260   |        | UJ        | 9      |
| WA-UST-04    | SAIC01 | SWTR   | w          | Bromodichloromethane      | 8260   |        | UJ        | 9      |
| WA-UST-04    | SAIC01 | SWTR   | W          | Bromoform                 | 8260   |        | UJ        | 9      |
| WA-UST-04    | SAIC01 | SWTR   | W          | Bromomethane              | 8260   |        | UJ        | 9      |
| WA-UST-04    | SAIC01 | SWTR   | w          | Carbon Disulfide          | 8260   |        | UJ        | 7,9    |
| WA-UST-04    | SAIC01 | SWTR   | w          | Carbon Tetrachloride      | 8260   |        | UJ        | 9      |
| WA-UST-04    | SAIC01 | SWTR   | W          | Chlorobenzene             | 8260   |        | UJ 🔹      | 9      |
| WA-UST-04    | SAIC01 | SWTR   | w          | Chloroethane              | 8260   |        | UJ        | 9      |
| WA-UST-04    | SAIC01 | SWTR   | W          | Chloroform                | 8260   |        | UJ        | 9      |
| WA-UST-04    | SAIC01 | SWTR   | w          | Chloromethane             | 8260   |        | UJ        | 9      |
| WA-UST-04    | SAIC01 | SWTR   | w          | cis-1,2-Dichloroethene    | 8260   |        | IJ        | 9      |
| WA-UST-04    | SAIC01 | SWTR   | w          | cis-1,3-Dichloropropene   | 8260   |        | UJ        | 9      |
| WA-UST-04    | SAIC01 | SWTR   | W          | Dibromochloromethane      | 8260   |        | UJ        | 9      |

Limited Site Investigation - Final Report

Û

May 2003

|           |        | 3      |        |                           | •      |       |           |        |
|-----------|--------|--------|--------|---------------------------|--------|-------|-----------|--------|
|           | Field  | Sample |        |                           |        | New   |           | Reason |
| Site ID   | Sample | Туре   | Matrix | Test Name                 | Method | Value | Qualifier | Code   |
| WA-UST-04 | SAIC01 | SWTR   | W      | Ethylbenzene              | 8260   |       | . J       | 9      |
| WA-UST-04 | SAIC01 | SWTR   | w      | m-and/or p-Xylene         | 8260   |       | J         | 9      |
| WA-UST-04 | SAIC01 | SWTR   | W.     | Methyl Ethyl Ketone       | . 8260 |       | UJ        | 9      |
| WA-UST-04 | SAIC01 | SWTR   | w      | Methyl Isobutyl Ketone    | 8260   |       | UJ        | 9      |
| WA-UST-04 | SAIC01 | SWTR   | w      | Methylene Chloride        | 8260   | -     | UJ        | 6,9    |
| WA-UST-04 | SAIC01 | SWTR   | W      | o-xylene                  | 8260   | · .   | UJ        | 9      |
| WA-UST-04 | SAIC01 | SWTR   | · W    | Styrene                   | 8260   |       | IJĴ       | 9      |
| WA-UST-04 | SAIC01 | SWTR   | w      | Tetrachloroethene         | 8260   |       | UJ        | 9      |
| WA-UST-04 | SAIC01 | SWTR   | w      | Toluene                   | 8260   |       | IJ        | 9      |
| WA-UST-04 | SAIC01 | SWTR   | w      | trans-1,2-Dichloroethene  | 8260   |       | UJ        | 9      |
| WA-UST-04 | SAIC01 | SWTR   | w      | trans-1,3-Dichloropropene | 8260   |       | UJ        | 9      |
| WA-UST-04 | SAIC01 | SWTR   | w      | Trichloroethene           | 8260   |       | UJ        | 9      |
| WA-UST-04 | SAIC01 | SWTR   | w      | Vinyl Chloride            | 8260   |       | UJ        | 9      |
| WA-UST-04 | SAIC01 | SWTR   | w      | 4-Chloroaniline           | 8270   |       | UJ U      | 4      |
| WA-UST-04 | SAIC01 | SWTR   | w      | 4-Nitrophenol             | 8270   |       | UJ        | 4      |

Ì

| CODE                                                             | DEFINITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                | Holding times exceeded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2                                                                | Initial calibration percent relative standard deviation (% RSD) outside QC limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3                                                                | Initial calibration RRF result outside QC limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ЗA                                                               | Compound/element exceeds the calibration range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4                                                                | Continuing calibration percent (%) difference outside QC limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5                                                                | Continuing calibration RRF result outside QC limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                  | Laboratory method blank (reagent blank) contamination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7                                                                | Volatile trip blank contamination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8                                                                | Equipment rinsate blank contamination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                  | Surrogate recovery results outside QC limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                  | Laboratory MS/MSD results outside QC limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                  | LCS results outside QC limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                  | Internal standards (ISs) outside QC limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13                                                               | Tentatively identified compounds (TICs) (common laboratory contaminant or artifact not foun<br>in the associated method blank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 14                                                               | System performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                  | Greater than 25 percent difference for detected concentrations of single response pesticide between the two GC columns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16                                                               | Initial calibration verification (ICV) and/or continuing calibration verification (CCV) percent recovery outside QC limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                  | ICB and/or CCB contamination outside QC limits or negative ICB/CCB results greater than th<br>instrument detection limit (IDL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18                                                               | Ion chromatography plasma (ICP) interference check sample results outside QC limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 19                                                               | Laboratory duplicate RPD outside QC limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20                                                               | Laboratory duplicate RPD outside QC limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20<br>21                                                         | Laboratory duplicate RPD outside QC limits<br>Laboratory matrix spike results outside QC limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20<br>21<br>22                                                   | Laboratory duplicate RPD outside QC limits<br>Laboratory matrix spike results outside QC limits<br>Graphite furnace atomic adsorption (GFAA) duplicate injection outside QC limits                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 20<br>21<br>22<br>23                                             | Laboratory duplicate RPD outside QC limits<br>Laboratory matrix spike results outside QC limits<br>Graphite furnace atomic adsorption (GFAA) duplicate injection outside QC limits<br>GFAA analytical spike recovery (post-digestion spike) outside QC limits                                                                                                                                                                                                                                                                                                                                             |
| 20<br>21<br>22<br>23<br>24                                       | Laboratory duplicate RPD outside QC limits<br>Laboratory matrix spike results outside QC limits<br>Graphite furnace atomic adsorption (GFAA) duplicate injection outside QC limits<br>GFAA analytical spike recovery (post-digestion spike) outside QC limits<br>GFAA correlation coefficient outside QC limits                                                                                                                                                                                                                                                                                           |
| 20<br>21<br>22<br>23<br>24<br>25                                 | Laboratory duplicate RPD outside QC limits<br>Laboratory matrix spike results outside QC limits<br>Graphite furnace atomic adsorption (GFAA) duplicate injection outside QC limits<br>GFAA analytical spike recovery (post-digestion spike) outside QC limits<br>GFAA correlation coefficient outside QC limits<br>ICP serial dilution result outside QC limits                                                                                                                                                                                                                                           |
| 20<br>21<br>22<br>23<br>24<br>25<br>26                           | Laboratory duplicate RPD outside QC limits<br>Laboratory matrix spike results outside QC limits<br>Graphite furnace atomic adsorption (GFAA) duplicate injection outside QC limits<br>GFAA analytical spike recovery (post-digestion spike) outside QC limits<br>GFAA correlation coefficient outside QC limits<br>ICP serial dilution result outside QC limits<br>Incorrect IS was used for quantitation                                                                                                                                                                                                 |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27                     | Laboratory duplicate RPD outside QC limits<br>Laboratory matrix spike results outside QC limits<br>Graphite furnace atomic adsorption (GFAA) duplicate injection outside QC limits<br>GFAA analytical spike recovery (post-digestion spike) outside QC limits<br>GFAA correlation coefficient outside QC limits<br>ICP serial dilution result outside QC limits<br>Incorrect IS was used for quantitation<br>Bromofluorobenzene (BFB) over 12-hour tune time                                                                                                                                              |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28               | Laboratory duplicate RPD outside QC limits<br>Laboratory matrix spike results outside QC limits<br>Graphite furnace atomic adsorption (GFAA) duplicate injection outside QC limits<br>GFAA analytical spike recovery (post-digestion spike) outside QC limits<br>GFAA correlation coefficient outside QC limits<br>ICP serial dilution result outside QC limits<br>Incorrect IS was used for quantitation<br>Bromofluorobenzene (BFB) over 12-hour tune time<br>Field blank contamination                                                                                                                 |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29A        | Laboratory duplicate RPD outside QC limits<br>Laboratory matrix spike results outside QC limits<br>Graphite furnace atomic adsorption (GFAA) duplicate injection outside QC limits<br>GFAA analytical spike recovery (post-digestion spike) outside QC limits<br>GFAA correlation coefficient outside QC limits<br>ICP serial dilution result outside QC limits<br>Incorrect IS was used for quantitation<br>Bromofluorobenzene (BFB) over 12-hour tune time<br>Field blank contamination<br>Performance evaluation mixture %-difference                                                                  |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29A<br>29A | Laboratory duplicate RPD outside QC limits<br>Laboratory matrix spike results outside QC limits<br>Graphite furnace atomic adsorption (GFAA) duplicate injection outside QC limits<br>GFAA analytical spike recovery (post-digestion spike) outside QC limits<br>GFAA correlation coefficient outside QC limits<br>ICP serial dilution result outside QC limits<br>Incorrect IS was used for quantitation<br>Bromofluorobenzene (BFB) over 12-hour tune time<br>Field blank contamination<br>Performance evaluation mixture % difference<br>Does not meet the retention time (RT) identification criteria |

| Outilers           | Number<br>of ICC<br>Analysis | Max<br>%RSD | %RSD<br>Control Limit | Number %RSD<br>Within<br>Control Limits | Number %RSD<br>Outside<br>Control Limits | Outlier RRF<br>Range | Min RRF<br>Limit | Number RRF<br>Within<br>Control Limit | Number RRF<br>Outside<br>Control Limit* |
|--------------------|------------------------------|-------------|-----------------------|-----------------------------------------|------------------------------------------|----------------------|------------------|---------------------------------------|-----------------------------------------|
| MEK                | 2                            | No Outliers | 30                    | 2                                       | 0                                        | 0.016-0.021          | 0.05             | 6                                     | 6                                       |
| Acetone            | 2                            | 33.9        | 30                    | 1                                       | 1                                        | No Outliers          | 0.05             | 12                                    | 0                                       |
| Methylene chloride | 2                            | 31.6        | 30                    | 1                                       | 1                                        | No Outliers          | 0.05             | 12                                    | Ū I                                     |

# Table D-3. Volatile Organic Compound Analysis Initial Calibration QC Summary: Soil Wallops Flight Facility, Wallops Island, Virginia

ICC - Initial Calibration Curve \*6 RRF per Initial calibration (1 per standard + average)

) T

T 

| Outliers                             | Number<br>of ICC<br>Analysis | Max<br>%RSD  | %RSD<br>Control Limit | Number %RSD<br>Within<br>Control Limits | Number %RSD<br>Outside Outiler RR<br>Control Limits Range | F Min RRF<br>Limit | Number RRF<br>Within<br>Control Limit | Number RRF<br>Outside<br>Control Limit* |
|--------------------------------------|------------------------------|--------------|-----------------------|-----------------------------------------|-----------------------------------------------------------|--------------------|---------------------------------------|-----------------------------------------|
| Acetone<br>Trans-1,3-dichloropropene | 2                            | 30.8<br>38.4 | 30<br>30              | · 1                                     | 1 0.039-0.04<br>1 No Outlier                              |                    | 10<br>12                              | 2<br>0                                  |

### Table D-4. Volatile Organic Compound Analysis Initial Calibration OC Summary: Water Wallops Flight Facility, Wallops Island, Virginia

ICC - Initial Calibration Curve

\*6 RRF per initial calibration (1 per standard + average)

D-33

## Table D-5. Volatile Organic Compound Analysis Continuing Calibration QC Summary: Soil Wallops Flight Facility, Wallops Island, Virginia

| Outliers                  | Number<br>CCC<br>Analysis | Outlier %D<br>Range | %D<br>Control Limit | Number %D<br>Within<br>Control Limits | Number %D<br>Outside<br>Control Limits | Outlier RRF<br>Range | Min RRF<br>Limit | Number RRF<br>Within<br>Control Limit | Number RRF<br>Outside<br>Control Limi |
|---------------------------|---------------------------|---------------------|---------------------|---------------------------------------|----------------------------------------|----------------------|------------------|---------------------------------------|---------------------------------------|
| Acetone                   | 4                         | -29.7               | 25                  | 3                                     | 1                                      | No Outliers          | 0.05             | 4                                     | 0                                     |
| MEK                       | 4                         | No Outliers         | 25                  | 4                                     | 0                                      | 0.014-0.016          | 0.05             | 2                                     | 2                                     |
| Bromomethane              | 4                         | 26.3                | 25                  | 3                                     | 1                                      | No Outliers          | 0.05             | 4                                     | 0                                     |
| 1,1,2,2-Tetrachloroethane | 4                         | 27.4                | 25                  | 3                                     | 1                                      | No Outliers          | 0.05             | 4                                     | 0                                     |

CCC - Continuing Calibration Chec

| Outilers                | Number<br>CCC<br>Analysis | Outlier %D<br>Range | %D<br>Còntroi Limit | Number %D<br>Within<br>Control Limits | Number %D<br>Outside<br>Control Limits | Outlier RRF<br>Range | Min RRF<br>Limit | Number RRF<br>Within<br>Control Limit | Number RRF<br>Outside<br>Control Limit |
|-------------------------|---------------------------|---------------------|---------------------|---------------------------------------|----------------------------------------|----------------------|------------------|---------------------------------------|----------------------------------------|
| Acetone                 | 5                         | (-29.4)-(-35.8)     | 25                  | 2                                     | 3                                      | No Outliers          | 0.05             | 5                                     | 0                                      |
| Cis-1,3-dichloropropene | 5                         | -28                 | 25                  | 4                                     | 1                                      | No Outliers          | 0.05             | 5                                     | 0                                      |
| MEK                     | 5                         | (-30.1)-(-34.7)     | 25                  | 3                                     | 2                                      | No Outliers          | 0.05             | 5                                     | 0                                      |
| Bromomethane            | 5                         | -25.8               | 25                  | 4                                     | 1 5                                    | No Outliers          | 0.05             | 5                                     | 0                                      |
| Methvlene Chloride      | 5                         | -27.1               | 25                  | 4                                     | . 1                                    | No Outliers          | 0.05             | 5                                     | 0                                      |
| MIBK                    | 5                         | -27.3               | 25                  | 4                                     | 1                                      | No Outliers          | 0.05             | 5                                     | 0                                      |
| MNBK                    | 5                         | -41.7               | 25                  | 4                                     | 1                                      | No Outliers          | 0.05             | 5                                     | 0                                      |
| Chioromethane           | 5                         | -27.5               | 25                  | 4                                     | 1                                      | No Outliers          | 0.05             | 5                                     | 0                                      |

 Table D-6. Volatile Organic Compound Analysis Continuing Calibration QC Summary: Water

 Wallops Flight Facility, Wallops Island, Virginia

CCC - Continuing Calibration Chec

### Table D-7. Semivolatile Organic Compound Analysis Initial and Continuing Calibration QC Summary: Water and Soil Wallops Flight Facility, Wallops Island, Virginia

| Outliers                    | Number<br>of ICC<br>Analysis | Max<br>%RSD | %RSD<br>Control Limit | Number<br>Within<br>Control Limits | Number<br>Outside<br>Control Limits | Number<br>of CCC<br>Analysis | %D Outiler<br>Range | %D<br>Limit | Number<br>Within<br>Control Limit | Number<br>Outside<br>Control Limit |
|-----------------------------|------------------------------|-------------|-----------------------|------------------------------------|-------------------------------------|------------------------------|---------------------|-------------|-----------------------------------|------------------------------------|
| 4-Chloroaniline             | 2                            | No Outlier  | 30                    | 2                                  | 0                                   | 7                            | 27.7-36.9           | ±25         | 5                                 | 2                                  |
| Pyrene                      | 2                            | No Outlier  | 30                    | 2                                  | 0                                   | 7                            | -25.8               | ±25         | 6                                 | 1                                  |
| 4-Nitrophenol               | 2                            | No Outlier  | 30                    | 2                                  | 0                                   | 7                            | 32.6                | ±25         | 6                                 | 1                                  |
| Terphenyl-d14 (surrogate)   | 2                            | No Outlier  | 30                    | 2                                  | 0                                   | 7                            | -30.6               | ±25         | 6                                 | 1                                  |
| Nitrobenzene-d5 (surrogate) | 2                            | No Outlier  | 30                    | 2                                  | 0                                   | 7                            | 30.2-31.3           | ±25         | 5                                 | 2                                  |

ICC - Initial Calibration Curve CCC - Continuing Calibration Check

| Table D-8. | Volatile Organic Compounds Analysis Blank Summary: Soil |
|------------|---------------------------------------------------------|
|            | Wallops Flight Facility, Wallops Island, Virginia       |

| Lot    | Blank ID | Blank ID Contaminant |     | Action<br>Level | Number of<br>Samples Qualifie |  |
|--------|----------|----------------------|-----|-----------------|-------------------------------|--|
| 208040 | BLK56135 | Methylene Chloride   | 14  | 140             | 6                             |  |
| 208040 | BLK56135 | Trichloroethene      | 1.5 | 7.5             | 6                             |  |
| 208057 | BLK56331 | Methylene Chloride   | 8.2 | 82              | 8                             |  |
| 208057 | BLK56331 | Trichloroethene      | 1.6 | 8               | 8                             |  |
| 208057 | BLK56331 | Acetone              | 5.2 | 52              | 8                             |  |
| 208057 | BLK56332 | Methylene Chloride   | 7   | 70              | · 1                           |  |
| 208057 | BLK56332 | Trichloroethene      | 1.8 | 9               | . <b>1</b>                    |  |
| 208126 | BLK56362 | Methylene Chloride   | 4.2 | 42              | 7                             |  |
| 208126 | BLK56362 | Acetone              | 6.8 | 68              | 6                             |  |

| Table D-9. | Volatile Organic Compounds Analysis Blank Summary: Water |  |
|------------|----------------------------------------------------------|--|
|            | Wallops Flight Facility, Wallops Island, Virginia        |  |

| Lot    | Blank ID | Blank ID Contaminant |      | Action<br>Level | Number of Samples Qualified |  |
|--------|----------|----------------------|------|-----------------|-----------------------------|--|
| 208040 | BLK56346 | Methylene Chloride   | 0.91 | 9.1             | 7                           |  |
| 208040 | BLK56405 | Methylene Chloride   | 1.2  | 12              | 7                           |  |
| 208057 | BLK56349 | Methylene Chloride   | 1    | 10              | 4                           |  |
| 208057 | BLK56537 | Methylene Chloride   | 2.1  | 21              | 4                           |  |
| 208057 | BLK56346 | Methylene Chloride   | 0.91 | 9.1             | 0                           |  |
| 208082 | BLK56563 | Methylene Chloride   | 1.7  | 17              | 7                           |  |
| 208082 | BLK56349 | Methylene Chloride   | 1    | 10              | 7                           |  |
| 208126 | BLK56537 | Methylene Chloride   | 2.1  | 21              | 1                           |  |

- J

F

1

1

5 F

D-38

Table D-10. Metals Analysis Blank Summary: Soil Wallops Flight Facility, Wallops Island, Virginia

| Lot    | Blank ID | Contaminant | Concentration | Action<br>Level | Number of<br>Samples Qualified |
|--------|----------|-------------|---------------|-----------------|--------------------------------|
| 208040 | BLK56111 | Sodium      | 67.7          | 338.5           | 6                              |
| 208082 | BLK56213 | Sodium      | 77.1          | 385.5           | 6                              |
| 208057 | BLK56213 | Copper      | 0.27          | 1.35            | 2                              |
| 208057 | BLK56213 | Zinc        | 77.1          | 385.5           | 9                              |

| Lot    | Blank ID | Contaminant | Concentration | Action<br>Level | Number of<br>Samples Qualified |
|--------|----------|-------------|---------------|-----------------|--------------------------------|
| 208040 | BLK56389 | Copper      | 1.3           | 6.5             | 2                              |
| 208040 | BLK56389 | Iron        | 28            | 140             | <b>1</b>                       |
| 208040 | BLK56389 | Manganese   | 0.87          | 4.35            | 1                              |
| 208040 | BLK56389 | Zinc        | 7.4           | 37              | 4                              |
| 208040 | CCB4     | Magnesium   | 59.1          | <b>29</b> 5.5   | 1                              |
| 208082 | BLK56248 | Calcium     | 298           | 1490            | 2                              |
| 208082 | BLK56248 | Magnesium   | 13.6          | 68              | 2                              |
| 208082 | BLK56248 | Sodium      | 701           | 3505            | - 2                            |
| 208082 | BLK56248 | Zinc        | 6.5           | 32.5            | 4                              |
| 208082 | CCB5     | Arsenic     | 3.5           | 17.5            | 3                              |
| 208082 | CCB3     | Thallium    | 6             | 30              | 3                              |
| 208082 | CCB3     | Vanadium    | 0.8           | 4               | 1                              |
| 208057 | BLK56248 | Zinc        | 6.5           | 32.5            | 3                              |
| 208057 | CCB5     | Arsenic     | 3.5           | 17.5            | 1                              |

### Table D-11. Metals Analysis Blank Summary: Water Wallops Flight Facility, Wallops Island, Virginia

| Surrogates             | Total<br>Number<br>Analyses* | Percent<br>Recovery<br>Range | Control Limit <del>s</del> | Number<br>Within<br>Control Limits | Number<br>Outside<br>Control Limits |
|------------------------|------------------------------|------------------------------|----------------------------|------------------------------------|-------------------------------------|
| Toluene-d8             | 34                           | 85-105                       | 84-138                     | 33                                 | 1                                   |
| Bromofluorobenzene     | 34                           | 86-118                       | 59-113                     | 34                                 | 0                                   |
| 1,2-Dichloroethane-d4  | 34                           | 84-127                       | 70-121                     | 33                                 | 1                                   |
| 1,2-Dichlorobenzene-d4 | 34                           | 82-106                       | 68-138                     | 34                                 | 0                                   |

## Table D-12. Volatile Organic Compound Analysis Surrogate Recovery QC Summary: Soll Wallops Flight Facility, Wallops Island, Virginia

Deécererererenter.

\* Soil/Sediment Environmental Samples, MS/MSD Samples, and Method Blanks

| Surrogate              | Total<br>Number<br>Analyses* | Percent<br>Recovery<br>Range | Control Limits | Number<br>Within<br>Control Limits | Number<br>Outside<br>Control Limits |
|------------------------|------------------------------|------------------------------|----------------|------------------------------------|-------------------------------------|
| Toluene-d8             | 50                           | 68-115                       | 88-110         | 34                                 | 27                                  |
| Bromofluorobenzene     | 50                           | 81-109                       | 86-115         | 45                                 | 5                                   |
| 1,2-Dichloroethane-d4  | 50                           | 81-118                       | 76-114         | 48                                 | 2                                   |
| 1,2-Dichlorobenzene-d4 | 50                           | 76-103                       | 76-134         | 50                                 | 0                                   |

## Table D-13. Volatile Organic Compound Analysis Surrogate Recovery QC Summary: Water Wallops Flight Facility, Wallops Island, Virginia

\* Water Environmental Samples, LCSs, Method Blanks, Field Blanks, Equipment Rinsate Blanks, and Trip Blanks

| Surrogates           | Total<br>Number<br>Analyses* | Percent<br>Recovery<br>Range | Control Limits | Number<br>Within<br>Control Limits | Number<br>Outside<br>Control Limits |
|----------------------|------------------------------|------------------------------|----------------|------------------------------------|-------------------------------------|
| litrobenzene-d5      | 30                           | 58-100                       | 23-120         | 30                                 | 0                                   |
| -Fluorobiphenyl      | 30                           | 54-103                       | 30-115         | 30                                 | 0                                   |
| erphenyl-d14         | 30                           | 56-122                       | 18-137         | 30                                 | 0                                   |
| Phenol-d5            | 30                           | 54-89                        | 24-113         | 30                                 | 0                                   |
| -Fluorophenoi        | 30                           | 46-76                        | 25-121         | 30                                 | 0                                   |
| 2,4,6-Tribromophenol | 30                           | 55-115                       | 19-122         | 30                                 | 0                                   |

 Table D-14. Semivolatile Organic Compound Analysis Surrogate Recovery QC Summary: Soil

 Wallops Flight Facility, Wallops Island, Virginia

Soil/Sediment Environmental Samples, Method Blanks, and MS/MSD Samples

| Surrogates           | Total<br>Number<br>Analyses* | Percent<br>Recovery<br>Range | Control Limits | Number<br>Within<br>Control Limits | Number<br>Outside<br>Control Limits |
|----------------------|------------------------------|------------------------------|----------------|------------------------------------|-------------------------------------|
| Nitrobenzene-d5      | 22                           | 87-168                       | 34-114         | 20                                 | 2                                   |
| 2-Fluorobiphenyl     | 22                           | 77-132                       | 43-116         | 20                                 | 2                                   |
| Terphenyl-d14        | 22                           | 82-165                       | 33-141         | 21                                 | 1                                   |
| Phenol-d5            | 22                           | 51-98                        | 10-110         | 22                                 | 0                                   |
| 2-Fluorophenol       | 22                           | 19-85                        | 21-110         | 21                                 | 1                                   |
| 2,4,6-Tribromophenol | 22                           | 81-141                       | 10-123         | 21                                 | 1                                   |

## Table D-15. Semivolatile Organic Compound Analysis Surrogate Recovery QC Summary: Water Wallops Flight Facility, Wallops Island, Virginia

\*Water Environmental Samples (including dilution), LCSs, Method Blanks, Field Blanks, and Equipment Rinsate Blanks

|                     | ACCURACY                           |                              |                                       |                                    |                                     |                             | PRECISION  |              |                                    |                                     |  |
|---------------------|------------------------------------|------------------------------|---------------------------------------|------------------------------------|-------------------------------------|-----------------------------|------------|--------------|------------------------------------|-------------------------------------|--|
| MS/MSD<br>Compounds | MS/MSD<br>Calculated<br>Recoveries | Percent<br>Recovery<br>Range | Percent<br>Recovery<br>Control Limits | Number<br>Within<br>Control Limits | Number<br>Outside<br>Control Limits | MS/MSD<br>Calculated<br>RPD | MAX<br>RPD | RPD<br>Limit | Number<br>Within<br>Control Limits | Number<br>Outside<br>Control Limits |  |
| 1,1-Dichloroethene  | 6                                  | 72-107                       | 59-172                                | 6                                  | 0                                   | 3                           | 12         | 22           | 3                                  | 0                                   |  |
| Trichloroethene     | 6                                  | 85-107                       | 62-137                                | 6                                  | 0                                   | 3                           | 14         | 24           | 3                                  | 0                                   |  |
| Benzene             | 6                                  | 88-108                       | 66-142                                | 6                                  | 0                                   | 3                           | 14         | 21           | 3                                  | 0                                   |  |
| Toluene             | 6                                  | 94-102                       | 59-139                                | 6                                  | 0                                   | 3                           | 15         | 21           | 3                                  | 0                                   |  |
| Chlorobenzene       | 6                                  | 82-113                       | 60-133                                | 6                                  | 0                                   | 3                           | 10         | 21           | 3                                  | 0                                   |  |

## Table D-16. Volatile Organic Compound LCS/LCSD QC Summary: Soll Wallops Flight Facility, Wallops Island, Virginia

## Table D-17. Volatile Organic Compound MS/MSD QC Summary: Water Wallops Filght Facility, Wallops Island, Virginia

| ACCURACY            |                                    |                              |                                       |                                    |                                     | PRECISION                   |            |              |                                    |                                     |
|---------------------|------------------------------------|------------------------------|---------------------------------------|------------------------------------|-------------------------------------|-----------------------------|------------|--------------|------------------------------------|-------------------------------------|
| MS/MSD<br>Compounds | MS/MSD<br>Calculated<br>Recoveries | Percent<br>Recovery<br>Range | Percent<br>Recovery<br>Control Limits | Number<br>Within<br>Control Limits | Number<br>Outside<br>Control Limits | MS/MSD<br>Calculated<br>RPD | MAX<br>RPD | RPD<br>Limit | Number<br>Within<br>Control Limits | Number<br>Outside<br>Control Limits |
| 1,1-Dichloroethene  | 2                                  | 85-88                        | 61-145                                | 2                                  | 0                                   | 1                           | 3          | 14           | 1                                  | 0                                   |
| richloroethene      | 2                                  | 85-87                        | 71-120                                | 2                                  | 0                                   | 1                           | 2          | 14           | 1                                  | 0                                   |
| Benzene             | 2                                  | 85-86                        | 76-127                                | 2                                  | 0                                   | 1                           | 1          | 11           | 1                                  | 0                                   |
| Foluene             | 2                                  | 81-82                        | 76-125                                | 2                                  | 0                                   | 1 _                         | 1          | 13           | 1                                  | 0                                   |
| Chlorobenzene       | 2                                  | 100                          | 75-130                                | 2                                  | 0                                   | 1                           | 0          | 13           | 1                                  | 0                                   |

 Table D-18. Semivolatile Organic Compound MS/MSD QC Summary: Soli

 Wallops Flight Facility, Wallops Island, Virginia

|                            |                                    | ACC                          | URACY                                 |                                    | <br>                                |                             |            |              |                                    |                                     |
|----------------------------|------------------------------------|------------------------------|---------------------------------------|------------------------------------|-------------------------------------|-----------------------------|------------|--------------|------------------------------------|-------------------------------------|
| MS/MSD<br>Compounds        | MS/MSD<br>Calculated<br>Recoveries | Percent<br>Recovery<br>Range | Percent<br>Recovery<br>Control Limits | Number<br>Within<br>Control Limits | Number<br>Outside<br>Control Limits | MS/MSD<br>Calculated<br>RPD | Max<br>RPD | RPD<br>Limit | Number<br>Within<br>Control Limits | Number<br>Outside<br>Control Limits |
| henol                      | 4                                  | 57-94                        | 26-90                                 | 2                                  | 2                                   | 2                           | 10         | 35           | . 2                                | 0                                   |
| 2-Chlorophenol             | 4                                  | 30-94                        | 25-102                                | 4                                  | .0                                  | 2                           | 15         | 50           | 2                                  | 0                                   |
| n-Nitroso-di-n-propylamine | 4                                  | 69-89                        | 41-126                                | 4                                  | 0                                   | 2                           | 3          | 38           | 2                                  | 0                                   |
| I-Chloro-3-methylphenol    | 4                                  | 80-91                        | 26-103                                | 4                                  | 0                                   | 2                           | 5          | 33           | 2                                  | 0                                   |
| Acenaphthene               | Å                                  | 69-109                       | 31-137                                | 4                                  | 0                                   | 2                           | 0          | 19           | 2                                  | 0                                   |
| I-Nitrophenol              | 4                                  | 74-89                        | 11-114                                | 4                                  | Ô -                                 | 2                           | 4          | 50           | 2                                  | 0                                   |
| 4-Dinitrotoluene           | 4                                  | 77-129                       | 28-89                                 | 2                                  | 2                                   | 2                           | 2          | 47           | 2                                  | · 0                                 |
| entachlorophenol           | 4                                  | 66-114                       | 17-109                                | 2                                  | 2                                   | 2                           | 3          | 47           | 2                                  | 0                                   |
| Pyrene                     | 4                                  | 89-109                       | 35-142                                | 4                                  | 0                                   | 2                           | 3          | 36           | 2                                  | 0                                   |

#### Wallops Flight Facility, Wallops Island, Virginia

|                 |                                 | ACC                          | URACY                                 |                                    |                                          |     |                         | PR                        | ECISION                            |                                     |
|-----------------|---------------------------------|------------------------------|---------------------------------------|------------------------------------|------------------------------------------|-----|-------------------------|---------------------------|------------------------------------|-------------------------------------|
| MS<br>Compounds | MS*<br>Calculated<br>Recoveries | Percent<br>Recovery<br>Range | Percent<br>Recovery<br>Control Limits | Number<br>Within<br>Control Limits | i<br>Number<br>Outside<br>Control Limits | RPD | Max<br>RPD <sup>b</sup> | RPD<br>Limit <sup>e</sup> | Number<br>Within<br>Control Limits | Number<br>Outside<br>Control Limits |
| CP Metals       |                                 |                              |                                       |                                    |                                          |     |                         |                           |                                    |                                     |
| Aluminum        | 2                               | NC                           | 75-125                                | 2                                  | 0                                        | 2   | 1.5                     | 20                        | 2                                  | 0                                   |
| Antimony        | 2                               | 45.7-72.4                    | 75-125                                | ō                                  | 2                                        | 2   | 200                     | 20                        | 2                                  | 0                                   |
| Arsenic         | 2                               | 96.4-99.1                    | 75-125                                | 2                                  | 0                                        | 2   | 8                       | 20                        | 2                                  | 0                                   |
| Barium          | 2                               | 103.7-111.6                  | 75-125                                | 2                                  | Ō                                        | 2   | 4.9                     | 20                        | 2                                  | Ō                                   |
| Beryllium       | 2                               | 97.9-99.4                    | 75-125                                | 2                                  | 0                                        | 2   | 3                       | 20                        | 2                                  | Ō                                   |
| Cadmium         | 2                               | 97.2-97.9                    | 75-125                                | 2                                  | 0                                        | 2   | 13.2                    | 20                        | 2                                  | 0                                   |
| Calcium         | 2                               | 104.3                        | 75-125                                | 2                                  | 0                                        | 2   | 7.8                     | 20                        | 2                                  | 0                                   |
| Chromium        | 2                               | 103.3-104.9                  | 75-125                                | 2                                  | 0                                        | 2   | 1                       | 20                        | 2                                  | 0                                   |
| Cobalt          | 2                               | 96.7-97.7                    | 75-125                                | 2                                  | 0                                        | 2   | 6.3                     | 20                        | 2                                  | 0                                   |
| Copper          | 2                               | 100-102.1                    | 75-125                                | 2                                  | 0                                        | 2   | 0.7                     | 20                        | 2                                  | 0                                   |
| ron             | 2                               | NC                           | 75-125                                | 2                                  | .0                                       | 2   | 1.4                     | 20                        | 2                                  | 0                                   |
| ead             | 2                               | 95.6-96                      | 75-125                                | 2                                  | 0                                        | 2   | 9                       | 20                        | 2                                  | 0                                   |
| Agnesium        | 2                               | 112.5                        | 75-125                                | 2                                  | 0                                        | 2   | 3.9                     | 20                        | 2                                  | • 0                                 |
| Manganese       | 2,                              | 97.5                         | 75-125                                | 2                                  | 0                                        | 2   | 3.6                     | 20                        | 2                                  | 0                                   |
| lickel          | 2                               | 97.2-98.1                    | 75-125                                | 2                                  | 0                                        | 2   | 0.8                     | 20                        | 2                                  | 0                                   |
| otassium        | 2                               | 122.4-124.3                  | 75-125                                | 2                                  | 0                                        | 2   | 2.1                     | 20                        | 2                                  | 0                                   |
| Selenium        | 2                               | 88.7-89.5                    | 75-125                                | 2                                  | 0                                        | 2   |                         | 20                        | 2                                  | 0                                   |
| Bilver          | 2                               | 97.3-99.4                    | 75-125                                | 2                                  | 0                                        | 2   |                         | 20                        | 2                                  | 0                                   |
| Sodium          | 2                               | 97.4-103.6                   | 75-125                                | 2                                  | 0                                        | 2   | 15.2                    | 20                        | 2                                  | 0                                   |
| hallium         | 2                               | 91.8-92.2                    | 75-125                                | 2                                  | 0                                        | 2   |                         | 20                        | 2                                  | 0                                   |
| /anadium        | 2                               | 108.9-112.6                  | 75-125                                | 2                                  | 0                                        | 2   | 1.8                     | 20                        | 2                                  | 0                                   |
| Zinc            | 2                               | 94.4-97.4                    | 75-125                                | 2                                  | 0                                        | 2   | 2.3                     | 20                        | 2                                  | 0                                   |
| AA Metals       |                                 |                              |                                       |                                    |                                          |     |                         |                           |                                    |                                     |
| Mercury         | 2                               | 96.3                         | 75-125                                | 2                                  | 0                                        | 2   | 4                       | 20                        | 2                                  | 0                                   |

#### NC=Not Calculated

D-48

\*If the sample concentration exceeded the spike concentration by a factor of 4 or more, and the recovery was outside the limits, the results were not included in this summary.

. .

<sup>b</sup>If the sample concentration is greater than 5X the CRDL, the control limit is 35 percent. However, if the sample concentration is less than 5X the CRDL, the control limit is 2X the CRDL.

<sup>6</sup>'If either the sample or duplicate is a nondetect and the other is detected, the RPD is always calculated as 200. The data are only considered outside the limits If the difference between the nondetected result

and the detected result is greater than 2X the CRDL.

#### Table D-20. Metals MS/Duplicate QC Summary: Water Wallops Flight Facility, Wallops Island, Virginia

|                     |                                 | ACC                          | URACY                                 |                                       |                                     |                   |                         | PR                        | ECISION                            |                                     |
|---------------------|---------------------------------|------------------------------|---------------------------------------|---------------------------------------|-------------------------------------|-------------------|-------------------------|---------------------------|------------------------------------|-------------------------------------|
| MS<br>Compounds     | MS*<br>Calculated<br>Recoveries | Percent<br>Recovery<br>Range | Percent<br>Recovery<br>Control Limits | Number<br>Within<br>Control Limits    | Number<br>Outside<br>Control Limits | Calculated<br>RPD | Max<br>RPD <sup>b</sup> | RPD<br>Limit <sup>e</sup> | Number<br>Within<br>Control Limits | Number<br>Outside<br>Control Limite |
| CP Metais           |                                 | · · ·                        |                                       | · · · · · · · · · · · · · · · · · · · |                                     |                   |                         |                           |                                    | -<br>                               |
|                     | <b>_</b>                        | 98.4-234.3ª                  | 75-125                                |                                       |                                     | 2                 | 4.5                     | 20                        | 2                                  | · 0                                 |
| Numinum             | 2                               |                              |                                       |                                       | 1                                   | 2                 | NC                      | 20                        | 2                                  | ŏ                                   |
| Antimony            | 2                               | 93.2-94.5                    | 75-125                                | 2                                     | U<br>O                              | 2                 | NC                      | 20                        | 2                                  | 0                                   |
| Irsenic             | 2                               | 92.2-109.2                   | 75-125                                | 2                                     | 0                                   | 2                 | 7.2                     | 20                        | 2                                  | . 0                                 |
| Barium              | 2                               | 91.6-99.4                    | 75-125                                | 2                                     | 0                                   | 2                 | 9.1                     | 20                        | 2                                  | õ                                   |
| Beryllium           | 2                               | 91.3-101.7                   | 75-125                                | 2                                     | 0                                   | 2                 | NC                      | 20                        | 2                                  | 0                                   |
| Sadmium             | 2                               | 93.6-101.3                   | 75-125                                | 2                                     | U                                   |                   |                         |                           | -                                  | -                                   |
| alcium              | 2                               | 140.9 <sup>ª</sup>           | 75-125                                | 1                                     | 1                                   | 2                 | 7.2                     | 20                        | 2                                  | 0                                   |
| hromlum             | 2                               | 90.9-99.7                    | 75-125                                | 2                                     | 0                                   | 2                 | 4<br>34                 | 20<br>20                  | 2                                  | 0                                   |
| Cobalt              | 2                               | 91.1-99.1                    | 75-125                                | 2                                     | 0                                   | 2                 | 34<br>25.2              | 20                        | 2                                  | 0                                   |
| Copper              | 2                               | 92.4-102.9                   | 75-125                                | 2                                     | 0                                   |                   | 25.2<br>4.4             | 20                        | 2                                  | . 0                                 |
| ron                 | 2                               | 98-119.5                     | 75-125                                | 2                                     | 0                                   | 2                 | 4.4                     |                           | 2                                  | 0                                   |
| ead                 | 2                               | 91.1-98.8                    | 75-125                                | 2                                     | 0                                   | 2                 |                         | 20                        | 2                                  | . 0                                 |
| lagnesium           | 2                               | 106.2                        | 75-125                                | 2                                     | . 0                                 | 2                 | 7.6                     | 20                        | 2                                  | . 0.                                |
| Aanganese           | 2                               | 95-103.6                     | 75-125                                | 2                                     | 0                                   | 2                 | 7.6                     | 20                        | 2                                  | 0                                   |
| lickel              | 2                               | 89.9-97.8                    | 75-125                                | 2                                     | 0                                   | 2                 | 4.8<br>4.5              | 20                        | 2                                  | 0                                   |
| otassium            | 2                               | 102.2-103.8                  | 75-125                                | 2                                     | U                                   | 2                 | 4.5<br>NC               | 20                        | 2                                  | 0                                   |
| Selenium            | 2                               | 87.1-92.8                    | 75-125                                | 2                                     | 0                                   | 2                 | NC                      | 20<br>20                  | 2                                  | 0                                   |
| Silver              | 2                               | 98.7-102.9<br>104.3-112.5    | 75-125                                | 2                                     | U                                   | 2                 | 10                      | 20                        | 2                                  | 0                                   |
| Sodium<br>Thallium  | 2                               | 85.4-90.7                    | 75-125<br>75-125                      | . 2                                   | 0                                   | 2                 | 200                     | 20                        | 2                                  | 0                                   |
| nallium<br>/anadium | 2                               | 85.4-90.7<br>94.8-105        | 75-125<br>75-125                      | 2                                     | 0                                   | 2                 | 3.2                     | 20                        | 2                                  | 0                                   |
| Zinc                | 2<br>2                          | 94.8-105                     | 75-125                                | 2                                     | 0                                   | 2                 | 3.2<br>0.9              | 20                        | 2                                  | 0                                   |
| AA Metais           |                                 |                              |                                       |                                       | •                                   |                   |                         |                           |                                    |                                     |
| Viercury            | 2                               | 99.6-112                     | 75-125                                | 2                                     | 0                                   | 2                 | NC                      | 20                        | 2                                  | · 0                                 |

#### NC=Not Calculated

\*If the sample concentration exceeded the spike concentration by a factor of 4 or more, and the recovery was outside the limits, the results were not included in this summary.

<sup>b</sup>It the sample concentration is greater than 5X the CRDL, the control limit is 35 percent. However, if the sample concentration is less than 5X the CRDL, the control limit is 2X the CRDL.

"if either the sample or duplicate is a nondetect and the other is detected, the RPD is always calculated as 200. The data are only considered outside the limits if the difference between the nondetected result

and the detected result is greater than 2X the CRDL.

D-49

. ...

| LCS<br>Compounds   | Total<br>Number<br>Analyses | Percent<br>Recovery<br>Range | Recovery |   | Number<br>Outside<br>Control Limits |
|--------------------|-----------------------------|------------------------------|----------|---|-------------------------------------|
| 1,1-Dichloroethene | 1                           | 96                           | 59-172   | 1 | 0                                   |
| Trichloroethene    | 1                           | 84                           | 62-137   | 1 | 0                                   |
| Benzene            | 1                           | 94                           | 66-142   | 1 | 0                                   |
| Toluene            | 1                           | 88                           | 59-139   | 1 | 0                                   |
| Chlorobenzene      | 1                           | 96                           | 60-133   | 1 | 0                                   |

# Table D-21. Volatile Organic Compound Analysis LCS QC Summary: SoilWallops Flight Facility, Wallops Island, Virginia

| LCS<br>Compounds  | Total<br>Number<br>Analyses | Percent<br>Recovery<br>Range | Control Limits | Number<br>Within<br>Control Limits | Number<br>Outside<br>Control Limits |  |
|-------------------|-----------------------------|------------------------------|----------------|------------------------------------|-------------------------------------|--|
| ,1-Dichloroethene | 5                           | 93-100                       | 61-145         | 5                                  | 0                                   |  |
| richloroethene    | 5                           | 88-110                       | 71-120         | 5                                  | 0                                   |  |
| Benzene           | 5                           | 82-110                       | 76-127         | 5                                  | 0                                   |  |
| oluene            | 5                           | 85-110                       | 76-125         | 5                                  | 0                                   |  |
| Chlorobenzene     | 5                           | 96-100                       | 75-130         | 5                                  | 0                                   |  |

# Table D-22. Volatile Organic Compound Analysis LCS QC Summary: WaterWallops Flight Facility, Wallops Island, Virginia

| LCS<br>Compounds           | Total<br>Number<br>Analyses | Percent<br>Recovery<br>Range | Control Limits | Number<br>Within<br>Control Limits | Number<br>Outside<br>Control Limits |  |
|----------------------------|-----------------------------|------------------------------|----------------|------------------------------------|-------------------------------------|--|
|                            | raidijooo                   |                              |                |                                    |                                     |  |
| Phenol                     | 2                           | 88-100                       | 26-90          | ° <b>1</b>                         | 1                                   |  |
| 2-Chlorophenol             | 2                           | 94-97                        | 25-102         | 2                                  | 0                                   |  |
| n-Nitroso-di-n-propylamine | 2                           | 91-106                       | 41-126         | 2                                  | 0                                   |  |
| 4-Chloro-3-methylphenol    | 2                           | 88-103                       | 26-103         | 2                                  | 0                                   |  |
| Acenaphthene               | 2                           | 91-106                       | 31-137         | 2                                  | 0                                   |  |
| 4-Nitrophenol              | 2                           | 88-97                        | 11-114         | 2                                  | 0                                   |  |
| 2,4-Dinitrotoluene         | 2                           | 97-124                       | <b>28-89</b>   | 0                                  | 2                                   |  |
| Pentachlorophenol          | 2                           | 94-103                       | 17-115         | 2                                  | 0                                   |  |
| Pyrene                     | 2                           | 97-118                       | 35-142         | 2                                  | 0                                   |  |

# Table D-23. Semivolatile Organic Compound Analysis LCS QC Summary: SoilWallops Flight Facility, Wallops Island, Virginia

| LCS<br>Compounds           | Total<br>Number<br>Analyses | Percent<br>Recovery<br>Range Control Limits |         | Number<br>Within<br>Control Limits | Number<br>Outside<br>Control Limits |  |
|----------------------------|-----------------------------|---------------------------------------------|---------|------------------------------------|-------------------------------------|--|
| Phenol                     | 2                           | 88-95                                       | 12-110  | 2                                  | 0                                   |  |
| 2-Chlorophenol             | 2                           | 81-100                                      | 27-133  | 2                                  | 0                                   |  |
| n-Nitroso-di-n-propylamine | 2                           | 73-77                                       | 41-116  | 2                                  | 0                                   |  |
| 4-Chloro-3-methylphenol    | 2                           | 74-110                                      | 23-97   | 1                                  | - 1                                 |  |
| Acenaphthene               | 2                           | 90-94                                       | 46-118  | 2                                  | .0                                  |  |
| 4-Nitrophenol              | 2                           | 72-96                                       | (10-80) | 1                                  | 1                                   |  |
| 2,4-Dinitrotoluene         | 2                           | 97-100                                      | 24-96   | 2                                  | 0                                   |  |
| Pentachlorophenol          | 2                           | 91-110                                      | 9-103   | 1                                  | 1                                   |  |
| Pyrene                     | 2                           | 91-110                                      | 26-127  | 2                                  | 0                                   |  |

# Table D-24. Semivolatile Organic Compound Analysis LCS QC Summary: Water Wallops Flight Facility, Wallops Island, Virginia

| LCS        | Total<br>Number | Percent<br>Recovery | Operatural Line its | Number<br>Within | Number<br>Outside |
|------------|-----------------|---------------------|---------------------|------------------|-------------------|
| Compounds  | Analyses        | Range               | Control Limits      | Control Limits   | Control Limits    |
| ICP Metals |                 |                     |                     |                  |                   |
| Aluminum   | 2               | 94-100.2            | 80-120              | 2                | 0                 |
| Antimony   | 2               | 95.6-97.3           | 80-120              | 2                | 0                 |
| Arsenic    | 2               | 94.9-95.5           | 80-120              | 2                | 0                 |
| Barium     | 2               | 95-99               | 80-120              | 2                | 0                 |
| Beryllium  | 2               | 96.5-99.5           | 80-120              | 2                | 0                 |
| Cadmium    | 2               | 97.3-99.6           | 80-120              | 2                | 0                 |
| Calcium    | 2               | 98.6-102.3          | 80-120              | 2                | 0                 |
| Chromium   | 2               | 97.5-99.1           | 80-120              | 2                | 0                 |
| Cobalt     | 2               | 96.3-98.2           | 80-120              | 2                | 0                 |
| Copper     | 2               | 96-102.3            | 80-120              | 2                | 0                 |
| ron        | 2               | 97.1-99.2           | 80-120              | 2                | 0                 |
| Lead       | 2               | <b>95.8-97.7</b>    | 80-120              | 2                | 0                 |
| Magnesium  | 2               | 93.6-94             | 80-120              | 2                | 0                 |
| Manganese  | 2               | 97.8-100.9          | 80-120              | 2                | 0                 |
| Nickel     | 2               | 96.8-96.8           | 80-120              | 2                | 0                 |
| Potassium  | 2               | 93.3-93.9           | 80-120              | 2                | 0                 |
| Selenium   | 2               | 90-91.5             | 80-120              | 2                | 0                 |
| Silver     | 2               | 95.8-101.5          | 80-120              | 2                | 0                 |
| Sodium     | 2               | 101.6-104           | 80-120              | 2                | 0                 |
| Thailium   | 2               | 89.2-93.3           | 80-120              | 2                | Ŭ I               |
| Vanadium   | 2               | 97.5103.1           | 80-120              | 2                | Ő                 |
| Zinc       | 2               | 97.2-98.2           | 80-120              | 2                | 0                 |
| AA Metais  |                 |                     |                     |                  |                   |
| Mercury    | 2               | 98.3                | 80-120              | 2                | 0                 |

# Table D-25. Metals Analysis LCS QC Summary: SoilWallops Flight Facility, Wallops Island, Virginia

| LCS                  | Total<br>Number | Percent<br>Recovery | Control Limits | Number<br>Within<br>Control Limits | Number<br>Outside<br>Control Limits |
|----------------------|-----------------|---------------------|----------------|------------------------------------|-------------------------------------|
| Compounds            | Analyses        | Range               | Control Limits | Control Limits                     | CONTOI LINNS                        |
| CP Metals            |                 |                     |                |                                    |                                     |
| Aluminum             | 2               | 95.4-102.6          | 80-120         | 2                                  | 0                                   |
| Antimony             | 2               | 82.8-92.2           | 80-120         | 2                                  | 0                                   |
| Arsenic              | 2.              | 95.5-99.3           | 80-120         | 2                                  | 0                                   |
| Barium               | 2               | 88.9-96.3           | 80-120         | 2                                  | 0                                   |
| Beryllium            | 2               | 88.8-99.1           | 80-120         | 2                                  | 0                                   |
| Cadmium              | 2               | 91.9-101.4          | 80-120         | 2                                  | 0                                   |
| Calcium              | 2               | 100.2-109.9         | 80-120         | 2                                  | 0                                   |
| Chromium             | 2               | 89.1-98.5           | 80-120         | 2                                  | 0                                   |
| Cobalt               | 2               | 89.2-98.1           | 80-120         | 2                                  | 0                                   |
| Copper               | 2               | 90.9-101.8          | 80-120         | 2                                  | 0                                   |
| ron                  | 2               | 92.6-100.5          | 80-120         | 2                                  | 0                                   |
| _ead                 | 2               | 89.9-98.7           | 80-120         | 2                                  | 0                                   |
| Magnesium            | 2               | 89.3-99.2           | 80-120         | 2                                  | 0                                   |
| Manganese            | 2               | 90.6-99.7           | 80-120         | 2                                  | 0                                   |
| Nickel               | 2               | 88.3-95.3           | 80-120         | 2                                  | · 0                                 |
| Potassium            | 2               | 101.5-103.7         | 80-120         | 2                                  | 0                                   |
| Selenium             | 2               | 88.5-92.1           | 80-120         | 2                                  | 0                                   |
| Silver               | 2               | 94.1-101.5          | 80-120         | 2                                  | 0                                   |
| Sodium               | 2               | 98.7-115.7          | 80-120         | 2                                  | 0                                   |
| Thallium             | 2               | 87.7-107.3          | 80-120         | 2                                  | 0                                   |
| Vanadium             | 2               | 92.3-102.6          | 80-120         | 2                                  | 0                                   |
| Zinc                 | 2               | 89.6-98.2           | 80-120         | 2                                  | 0                                   |
| AA Metais            | •               |                     |                | •                                  |                                     |
| AA metais<br>Mercury | 2               | 97.3-104            | 80-120         | 2                                  | 0                                   |

### Table D-26. Metals Analysis LCS QC Summary: Water Wallops Flight Facility, Wallops Island, Virginia

### Table D-27. Trip Blank Results – Data Summary Tables Wallops Flight Facility, Wallops Island, Virginia

L

ļ

ļ

| Site ID                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | SB-IWL- | -            | SB-IWL-04<br>SAICTB02 |    | SB-WWP-01<br>SAICTB03 |   | SB-WWP-01<br>SAICTB04 |    |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|--------------|-----------------------|----|-----------------------|---|-----------------------|----|
| Field Sample Number<br>Site Type |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | TR      |              | TRIP                  |    | TRIP                  |   | TRIP                  |    |
| Collection Date                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 08/06/  | 22           | 08/08/02              |    | 08/08/02              |   | 08/16/02              |    |
| Depth (ft)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 0.0     | 00           | 0.00                  |    | 0.00                  |   | 0.00                  |    |
|                                  | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · |         |              |                       |    |                       |   | ,                     |    |
| VOLATILE ORGANIC                 | COMPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | (8260)  |              |                       |    |                       |   |                       | :  |
| VOLATILE ORGANIC<br>Parameter    | Contract of the local division of the local |         |         | .9 J         | 5                     | IJ | 13                    | J | 8.7                   | J  |
|                                  | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RL      | 3       | .9 J<br>.8 J | -                     | IJ | 13<br>0.74            | J | <b>8.7</b><br>1       | JU |

# Table D-28. Equipment Rinsate Blank Results- Data Summary TablesWallops Flight Facility, Wallops Island, Virginia

| Site ID              |         |          | SB-CDL-03 |     | SB-WWP-03 |    |
|----------------------|---------|----------|-----------|-----|-----------|----|
| Field Sample Number  | r       |          | SAICRB02  |     | SAICRB01  |    |
| Site Type            |         |          | RNSW      |     | RNSW      |    |
| Collection Date      |         |          | 08/08/02  |     | 08/08/02  |    |
| Depth (ft)           |         |          | 0.00      |     | 0.00      |    |
| METALS(6010)         |         |          |           |     |           |    |
| Parameter            | Units   | RL       | ·         |     |           |    |
| Antimony             | ug/L    | 6        | 2.5       | W   | 6         | J  |
| Arsenic              | ug/L    | 10       | 3.4       | U   | 4.6       | U  |
| Calcium              | ug/L    | 1000     | 280       | U   | 272       | U. |
| Chromium             | ug/L    | 10       | 1.3       | U   | 2.1       | в  |
| Cobalt               | ug/L    | 50       | 0.6       | U   | 0.93      | J  |
| Copper               | ug/L    | 10       | 2.7       | В   | 2.5       | U  |
| Magnesium            | ug/L    | 1000     | 57.3      | U   | 43.1      | U  |
| Manganese            | ug/L    | 15       | 0.7       | U . | 0.88      | в  |
| Potassium            | ug/L    | 1000     | 25.7      | в   | 99.3      | в  |
| Silver               | ug/L    | 10       | 0.6       | U   | 2.5       | В  |
| Sodium               | ug/L    | 1000     | 857       | U   | 1350      | U  |
| Vanadium             | ug/L    | 50       | 0.7       | U   | 2.4       | U  |
| Zinc                 | ug/L    | 20       | 4         | U   | 7.6       | U  |
| SEMIVOLATILE ORG     | ANIC CO | MPOUND   | 5(8270)   |     |           |    |
| Parameter            | Units   | RL       |           |     |           | _  |
| Di-n-Butyl Phthalate | ug/L    | 10       | 12        | IJ  | 2         | J  |
| VOLATILE ORGANIC     | COMPO   | UNDS(826 | 0)        |     |           |    |
| Parameter            | Units   | RL       |           |     |           |    |
| Acatona              | ug/L    | 5        | 5         | υ   |           | J  |
| Carbon Disulfide     | ug/L    | 1        | 1.3       |     | 1.2       | J  |
|                      | uğ/L    | 1        | 7.1       | UJ  | 6         | ພ  |
| Methylene Chioride   | - yr -  | -        |           | U   | 0.52      | J  |

### Table D-29. Field Blank Results - Data Summary Tables Wallops Flight Facility, Wallops Island, Virginia

r.

Ļ

j

1

1

j

Ļ

| Site ID              |        |           | DIWATER  |      | GEOWATER |    |
|----------------------|--------|-----------|----------|------|----------|----|
| Field Sample Number  |        |           | SAIC01   |      | SAIC01   |    |
| Site Type            |        |           | FBLK     |      | FBLK     |    |
| Collection Date      |        |           | 08/06/02 |      | 08/06/02 |    |
| Depth (ft)           |        |           | 0.00     |      | 0.00     |    |
| METALS(6010)         |        | •         |          |      | · ·      |    |
| Parameter            | Units  | RL        |          |      |          |    |
| Barium               | ug/L   | 200       | 0.5      | U    | 24.2     |    |
| Calcium              | ug/L   | 1000      | 164      | U    | 27500    | J  |
| Copper               | ug/L   | 10        | 1.4      | U    | 39.3     |    |
| Magnesium            | ug/L   | 1000      | 17.1     | U    | 9400     |    |
| Manganese            | ug/L   | 15        | 0.7      | υ    | 1.5      | U  |
| Potassium            | ug/L   | 1000      | 34.3     | B    | 1950     |    |
| Sodium               | uğ/L   | 1000      | 514      | J    | 16400    | J  |
| Zinc                 | ug/L   | 20        | 7.6      | U    | 170      |    |
| VOLATILE OFIGANIC CO | OMPOUN | IDS(8260) |          |      |          |    |
| Parameter            | Units  | RL        |          |      |          |    |
| Bromodichloromethane | ug/L   | 1         | . 1      | ŪJ   | 2        | J  |
| Chloroform           | uğ/L   | 1         | 1        | , UJ | 5.2      | J  |
| Dibromochloromethane | ug/L   | 1         | 1        | ບນ   | 0.6      | J  |
| Methylene Chloride   | ug/L   | 1         | · 1      | IJ   | 1        | UJ |

### Field QC Blank Results Footnotes Wallops Flight Facility, Wallops Island, Virginia

#### Footnotes:

B - Metals: Reported value was less than the contract required detection limit, but greater than or equal to the instrument detection limit.

B - Organics; Analyte was found in the associated method blank. Validation of the data did not result in this compound being qualified as nondetect due to blank contamination.

Therefore, this result is considered to be site related.

D - The value for the target analyte was calculated from a dilution.

E - Metals: The reported value is estimated because of the presence of Interferents.

E - Organics: Concentration range exceeded for this analyte.

J - Value is estimated.

N - Metals: Spiked sample recovery not within control limits.

N - Organics: Tentetively identified compound based on mass spectral library search.

P - There is greater than 25 percent difference for detected concentrations between the two GC columns for the associated pesticide/PCB target analyte.

R - Value is rejected.

U - Compound was analyzed for but not detected.

UJ - Compound was analyzed for but not detected and is considered an estimate.

X - The mass spectrum does not meet EPA CLP criteria for confirmation, but compound presence is strongly suspected.

\* - Duplicate analysis not within control limits.

N/A - Compound not analyzed for.

NF - Data not found.

RL - Reporting Limit for each method. For SW846 methods, the samples are reported down to the method detection limit (MDL). For metals, the samples are reported down to the instrument detection limit (IDL).

MDL - Method Detection Limit.

D-39

### THIS PAGE WAS INTENTIONALLY LEFT BLANK

Ĺ.

14

ſ

Ĉ

### APPENDIX E

## SOURCE WATER LABORATORY RESULTS

## THIS PAGE WAS INTENTIONALLY LEFT BLANK

| Site ID<br>Field Secole Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                                                  |                                                                                                  |                                          |                                                                                                         |                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Einid Comple Musters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                                                                                                  | DIWATER                                                                                          |                                          | GEOWATER                                                                                                |                                                                                                                                                                                                                                                                                                                     |
| Field Sample Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |                                                                                                  | SAIC01                                                                                           |                                          | SAIC01                                                                                                  |                                                                                                                                                                                                                                                                                                                     |
| Site Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              |                                                                                                  | FBLK                                                                                             |                                          | FBLK                                                                                                    |                                                                                                                                                                                                                                                                                                                     |
| Collection Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                                                                                  | 08/06/02                                                                                         |                                          | 08/06/02                                                                                                |                                                                                                                                                                                                                                                                                                                     |
| Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              |                                                                                                  | 0.00                                                                                             |                                          | 0.00                                                                                                    |                                                                                                                                                                                                                                                                                                                     |
| METALS(6010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                                                                                                  |                                                                                                  |                                          |                                                                                                         |                                                                                                                                                                                                                                                                                                                     |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Units                                                        | RL                                                                                               |                                                                                                  | ••••••••••••••••••••••••••••••••••••••   |                                                                                                         |                                                                                                                                                                                                                                                                                                                     |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/L                                                         | 200                                                                                              | 30.9                                                                                             | U                                        | 30.9                                                                                                    | U                                                                                                                                                                                                                                                                                                                   |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/L                                                         | 6                                                                                                | 2.5                                                                                              | U                                        | 2.5                                                                                                     | U                                                                                                                                                                                                                                                                                                                   |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ug/L                                                         | 10                                                                                               | 3.4                                                                                              | U                                        | 3.4                                                                                                     | U                                                                                                                                                                                                                                                                                                                   |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/L                                                         | 200                                                                                              | 0.5                                                                                              | U                                        | 24.2                                                                                                    |                                                                                                                                                                                                                                                                                                                     |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ug/L                                                         | 5                                                                                                | 0.1                                                                                              | U                                        | 0.1                                                                                                     | U                                                                                                                                                                                                                                                                                                                   |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ug/L<br>ug/L                                                 | 5<br>1000                                                                                        | 0.3                                                                                              | U<br>U                                   | 0.3<br>27500                                                                                            | J<br>U                                                                                                                                                                                                                                                                                                              |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/L                                                         | 10                                                                                               | 1.3                                                                                              | ŭ                                        | 1.3                                                                                                     | IJ                                                                                                                                                                                                                                                                                                                  |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/L                                                         | 50                                                                                               | 0.6                                                                                              | ŭ                                        | 0.6                                                                                                     | Ŭ                                                                                                                                                                                                                                                                                                                   |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/L                                                         | 10                                                                                               | 1.4                                                                                              | ŭ                                        | 39.3                                                                                                    | •                                                                                                                                                                                                                                                                                                                   |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ug/L                                                         | 100                                                                                              | 24.3                                                                                             | Ū.                                       | 24.3                                                                                                    | U                                                                                                                                                                                                                                                                                                                   |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ug/L                                                         | 3                                                                                                | 1.6                                                                                              | U                                        | 1.6                                                                                                     | u                                                                                                                                                                                                                                                                                                                   |
| Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ug/L                                                         | 1000                                                                                             | 17.1                                                                                             | U                                        | 9400                                                                                                    |                                                                                                                                                                                                                                                                                                                     |
| Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ug/L                                                         | 15                                                                                               | 0.7                                                                                              | U                                        | 1.5                                                                                                     | IJ                                                                                                                                                                                                                                                                                                                  |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/L                                                         | 10                                                                                               | 1.1                                                                                              | U                                        | 1.1                                                                                                     | U                                                                                                                                                                                                                                                                                                                   |
| Potassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ug/L                                                         | 1000                                                                                             | 34.3                                                                                             | 8                                        | 1950                                                                                                    |                                                                                                                                                                                                                                                                                                                     |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/L                                                         | 5                                                                                                | 3.5                                                                                              | U.                                       | 3.5                                                                                                     | U                                                                                                                                                                                                                                                                                                                   |
| Silver<br>Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ug/L                                                         | 10<br>1000                                                                                       | 0.6                                                                                              | L<br>L                                   | 0.6                                                                                                     | U.                                                                                                                                                                                                                                                                                                                  |
| Socium<br>Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/L<br>ug/L                                                 | 1000                                                                                             | 2.7                                                                                              | J<br>J                                   | 2.7                                                                                                     | L<br>L                                                                                                                                                                                                                                                                                                              |
| Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/L<br>ug/L                                                 | 50                                                                                               | 0.7                                                                                              | UJ UJ                                    | 0.7                                                                                                     | ີພ                                                                                                                                                                                                                                                                                                                  |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ug/L                                                         | 20                                                                                               | 7.6                                                                                              | υ                                        | 170                                                                                                     |                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                                                                                  |                                                                                                  |                                          |                                                                                                         |                                                                                                                                                                                                                                                                                                                     |
| METALS(7470)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                                                                                                  |                                                                                                  |                                          |                                                                                                         |                                                                                                                                                                                                                                                                                                                     |
| Parameter<br>Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Units<br>ug/L                                                | <br>0.2                                                                                          | 0.1                                                                                              | ū                                        | 0.1                                                                                                     | -u-                                                                                                                                                                                                                                                                                                                 |
| Parameter<br>1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Units<br>ug/L                                                |                                                                                                  | 1                                                                                                | IJ                                       | 1                                                                                                       | IJ                                                                                                                                                                                                                                                                                                                  |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ug/L                                                         | 1                                                                                                | 1                                                                                                | ŪĴ                                       | 1                                                                                                       | UJ                                                                                                                                                                                                                                                                                                                  |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/L                                                         | 1                                                                                                | 1                                                                                                | IJ                                       | 1                                                                                                       | UJ                                                                                                                                                                                                                                                                                                                  |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/L                                                         | 1 .                                                                                              | 1                                                                                                | IJ                                       | 1                                                                                                       | IJ                                                                                                                                                                                                                                                                                                                  |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/L                                                         | 1                                                                                                | 1                                                                                                | UJ.                                      | 1                                                                                                       | UJ                                                                                                                                                                                                                                                                                                                  |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/L                                                         | 1                                                                                                | 1                                                                                                | ບງ<br>ບງ                                 | 1                                                                                                       | UJ                                                                                                                                                                                                                                                                                                                  |
| 1,2-Dichloropropane<br>2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ug/L<br>ug/L                                                 | 1<br>5                                                                                           |                                                                                                  |                                          | -                                                                                                       |                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                                                                                  |                                                                                                  | 111                                      | - E                                                                                                     |                                                                                                                                                                                                                                                                                                                     |
| ACTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              | -                                                                                                | 5                                                                                                | UJ<br>III -                              | 5                                                                                                       | IJJ                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L                                                         | 5                                                                                                | 5<br>5<br>1                                                                                      | IJ                                       | 5                                                                                                       | UJ<br>UJ                                                                                                                                                                                                                                                                                                            |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              | -                                                                                                | 5                                                                                                |                                          | -                                                                                                       | IJJ                                                                                                                                                                                                                                                                                                                 |
| Benzene<br>Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/L<br>ug/L                                                 | 5<br>1                                                                                           | 5                                                                                                | UJ<br>UJ                                 | 5                                                                                                       | 01<br>01                                                                                                                                                                                                                                                                                                            |
| Benzene<br>Bromodichloromethane<br>Bromoform<br>Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                         | 5<br>1<br>1<br>1                                                                                 | 5<br>1<br>1<br>1                                                                                 |                                          | 5<br>1<br>2<br>1<br>1                                                                                   | 01<br>01<br>01<br>01<br>01                                                                                                                                                                                                                                                                                          |
| Benzene<br>Bromodichloromethane<br>Bromoform<br>Bromomethane<br>Carbon disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                 | 5<br>1<br>1<br>1<br>1                                                                            | 5<br>1<br>1<br>1<br>1                                                                            |                                          | 5<br>1<br>2<br>1<br>1<br>1                                                                              |                                                                                                                                                                                                                                                                                                                     |
| Benzene<br>Bromodichloromethane<br>Bromonform<br>Bromomethane<br>Carbon disulfide<br>Carbon Tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                 | 5<br>1<br>1<br>1<br>1<br>1                                                                       | 5<br>1<br>1<br>1<br>1<br>1                                                                       |                                          | 5<br>1<br>2<br>1<br>1<br>1                                                                              | 00<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01                                                                                                                                                                                                                                                |
| Benzene<br>Bromodichloromethane<br>Bromoform<br>Bromomethane<br>Carbon disulfide<br>Carbon Tetrachloride<br>Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L         | 5<br>1<br>1<br>1<br>1<br>1<br>1                                                                  | 5<br>1<br>1<br>1<br>1<br>1<br>1                                                                  |                                          | 5<br>1<br>2<br>1<br>1<br>1<br>1                                                                         | ດ<br>ເມີຍ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເມືອງ<br>ເປັນ<br>ເປັນ<br>ເປັນ<br>ເປັນ<br>ເປັນ<br>ເປັນ<br>ເປັນ<br>ເປັນ |
| Benzene<br>Bromodichloromethane<br>Bromoform<br>Bromomethane<br>Carbon disulfide<br>Carbon Tetrachloride<br>Chlorobenzene<br>Chlorobenzene<br>Chlorobenane                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                             | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                        |                                          | 5<br>1<br>2<br>1<br>1<br>1<br>1<br>1                                                                    | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                         |
| Benzene<br>Bromodichloromethane<br>Bromonethane<br>Carbon disulfide<br>Carbon Tetrachloride<br>Chlorobenzene<br>Chloroethane<br>Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                             | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                        |                                          | 5<br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>5.2                                                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                         |
| Benzene<br>Bromodichloromethane<br>Bromonform<br>Bromomethane<br>Carbon disulfide<br>Carbon Tetrachloride<br>Chlorobenzene<br>Chlorobethane<br>Chloroform<br>Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                       | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                   | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                   |                                          | 5<br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>5.2<br>1                                                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                         |
| Benzene<br>Bromodichloromethane<br>Bromonform<br>Bromomethane<br>Carbon disulfide<br>Carbon Tetrachloride<br>Chlorobenzene<br>Chlorobenzene<br>Chloronethane<br>chloromethane<br>cis-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                       | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                             | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                        |                                          | 5<br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>5.2                                                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                         |
| Benzene<br>Bromodichloromethane<br>Bromotorm<br>Bromomethane<br>Carbon disulfide<br>Carbon Tetrachloride<br>Chlorobenzene<br>Chloroethane<br>Chloroethane<br>Chloromethane<br>cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                               | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                              | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                              |                                          | 5<br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>5.2<br>1<br>1                                                   | 11111111111111111111111111111111111111                                                                                                                                                                                                                                                                              |
| Benzene<br>Bromodichloromethane<br>Bromoform<br>Carbon disulfide<br>Carbon Tetrachloride<br>Chlorobenzene<br>Chlorobenzene<br>Chloroform<br>Chloroform<br>Chloromethane<br>cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene<br>Dibromochloropropene<br>Ethylbenzene                                                                                                                                                                                                                                                                                                                                          | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                               | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                    | ת<br>ת ת<br>ת<br>ת<br>ת<br>ת<br>ת        | 5<br>1<br>2<br>1<br>1<br>1<br>1<br>5.2<br>1<br>1<br>0.6<br>1                                            |                                                                                                                                                                                                                                                                                                                     |
| Benzene<br>Bromodichloromethane<br>Bromoform<br>Bromomethane<br>Carbon disulfide<br>Carbon Tetrachloride<br>Chlorobenzene<br>Chlorotethane<br>Chlorotethane<br>Chlorotethane<br>cis-1,2-Dichloropethene<br>cis-1,3-Dichloropropene<br>Dibromochloromethane<br>Ethylbenzene<br>m-and/or p-Xylene                                                                                                                                                                                                                                                                                                               | 09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                     | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                               |                                          | 5<br>1<br>2<br>1<br>1<br>1<br>1<br>5.2<br>1<br>1<br>1<br>5.2<br>1<br>1<br>0.6<br>1<br>1                 |                                                                                                                                                                                                                                                                                                                     |
| Benzene<br>Bromodichloromethane<br>Bromotiorm<br>Bromomethane<br>Carbon disulfide<br>Carbon Tetrachloride<br>Chlorobenzene<br>Chlorobenzene<br>Chloromethane<br>cis-1,2-Dichloropropene<br>Dibromethane<br>Ethylbenzene<br>m-and/or p-Xylene<br>Methyl ethyl ketone                                                                                                                                                                                                                                                                                                                                           | 09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5                               | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5                               |                                          | 5<br>1<br>2<br>1<br>1<br>1<br>1<br>5.2<br>1<br>1<br>5<br>5                                              |                                                                                                                                                                                                                                                                                                                     |
| Benzene<br>Bromodichloromethane<br>Bromodichloromethane<br>Bromomethane<br>Carbon disulfide<br>Carbon Tetrachloride<br>Chlorobenzene<br>Chlorothane<br>Chloroform<br>Chloromethane<br>cis-1,2-Dichloropropene<br>Dibromochloropethene<br>cis-1,3-Dichloropropene<br>Dibromochloropethane<br>Ethylbenzene<br>m-and/or p-Xylene<br>Methyl ethyl ketone                                                                                                                                                                                                                                                          | 09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>5                          | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>5                               |                                          | 5<br>1<br>2<br>1<br>1<br>1<br>1<br>5.2<br>1<br>1<br>5<br>5<br>5                                         | 223-3333333-333-33333                                                                                                                                                                                                                                                                                               |
| Benzene<br>Bromodichloromethane<br>Bromodisulfide<br>Carbon disulfide<br>Carbon Tetrachloride<br>Chlorobenzene<br>Chloroethane<br>Chloroethane<br>Chloromethane<br>cis-1,3-Dichloropethene<br>cis-1,3-Dichloropethene<br>Ethylbenzene<br>mand/or p-Xylene<br>Methyl ethyl ketone<br>Methyl ebulyl ketone<br>Methyl ebulyl ketone                                                                                                                                                                                                                                                                              | 09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>5<br>1                | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>5<br>1                               |                                          | 5<br>1<br>2<br>1<br>1<br>1<br>1<br>5.2<br>1<br>1<br>5.2<br>1<br>1<br>5<br>5<br>1                        |                                                                                                                                                                                                                                                                                                                     |
| Benzene<br>Bromodichloromethane<br>Bromonform<br>Bromomethane<br>Carbon disulfide<br>Carbon Tetrachloride<br>Chlorobenzene<br>Chlorobenzene<br>Chlorobenzene<br>Chlorobernane<br>Chlorobernane<br>Chloromethane<br>cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene<br>Dibromochloromethane<br>Ethylbenzene<br>m-and/or p-Xylene<br>Methyl ethyl ketone<br>Methyl isobutyl ketone<br>Methylene Chloride<br>o-xylene                                                                                                                                                                                          | 09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>5<br>1<br>1 | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>5<br>1<br>1                     | נרבר בברבר ברבר ברבר ברבר ברבר ברבר ברב  | 5<br>1<br>2<br>1<br>1<br>1<br>1<br>5.2<br>1<br>1<br>5.2<br>1<br>1<br>5<br>5<br>1<br>1                   |                                                                                                                                                                                                                                                                                                                     |
| Benzene<br>Bromodichloromethane<br>Bromonform<br>Bromomethane<br>Carbon disulfide<br>Carbon Tetrachloride<br>Chlorobenzene<br>Chlorobenzene<br>Chloromethane<br>cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene<br>Dibromochloropropene<br>Dibromochloropropene<br>Bibrylbenzene<br>m-and/or p-Xylene<br>Methyl ethyl ketone<br>Methyl isobutyl ketone<br>Methyl isobutyl ketone<br>Methylene Chloride<br>o-xylene<br>Styrene                                                                                                                                                                               | 09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>5<br>1<br>1<br>1                | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>5<br>1<br>1<br>1                     | ר ר ר ר ר ר ר ר ר ר ר ר ר ר ר ר ר ר ר    | 5<br>1<br>2<br>1<br>1<br>1<br>1<br>5.2<br>1<br>1<br>5<br>5<br>5<br>1<br>1<br>1<br>1                     |                                                                                                                                                                                                                                                                                                                     |
| Benzene<br>Bromodichloromethane<br>Bromodichloromethane<br>Bromomethane<br>Carbon disulfide<br>Carbon Tetrachloride<br>Chlorobenzene<br>Chlorobenzene<br>Chloroform<br>Chloromethane<br>cis-1,2-Dichloropethene<br>cis-1,2-Dichloropethene<br>cis-1,2-Dichloropethene<br>Chloromethane<br>Ethylbenzene<br>m-and/or p-Xylene<br>Methyl i styl ketone<br>Methyl i styl ketone<br>Methyl i styl ketone<br>Methyl i styl ketone<br>Methyl ethyl ketone<br>Methyl ethyl ketone<br>Methyl ethyl ketone<br>Methyl ethyl ketone<br>Methyl stylene<br>Methyl stylene<br>Methyl stylene<br>Styrene<br>Tetrachloroethene | 09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>5<br>1<br>1<br>1<br>1<br>1      | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>5<br>1<br>1<br>1<br>1                | רב כ כ כ כ כ כ כ כ כ כ כ כ כ כ כ כ כ כ כ | 5<br>1<br>2<br>1<br>1<br>1<br>1<br>5.2<br>1<br>1<br>5<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1           |                                                                                                                                                                                                                                                                                                                     |
| Benzene<br>Bromodichloromethane<br>Bromodichloromethane<br>Bromomethane<br>Carbon disulfide<br>Carbon Tetrachloride<br>Chlorobenzene<br>Chlorobenzene<br>Chloromethane<br>Cis-1,3-Dichloropethene<br>cis-1,3-Dichloropethene<br>cis-1,3-Dichloropethene<br>Ethylbenzene<br>m-and/or p-Xylene<br>Methyl ethyl ketone<br>Methyl sobutyl ketone<br>Methyl sobutyl ketone<br>Methyl en Chloride<br>o-xylene<br>Styrene<br>Tetrachloroethene<br>Toluene                                                                                                                                                            | vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>5<br>1<br>1<br>1                | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>5<br>1<br>1<br>1                     |                                          | 5<br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>5.2<br>1<br>1<br>5<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                                                                                                                                                                                                                                                                                                     |
| Carbon Tetrachloride<br>Chlorobenzene<br>Chlorobenzene<br>Chloromethane<br>cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene<br>Dibromochloromethane<br>Ethylbenzene<br>m-and/or p-Xylene<br>Methyl isobutyl ketone<br>Methyl isobutyl ketone<br>Methyl isobutyl ketone<br>Methylene Chloride<br>o-xylene<br>Styrene<br>Tetrachloroethene<br>Toluene<br>trans-1,2-Dichloroethene                                                                                                                                                                                                                              | 09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L<br>09/L | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>5<br>1<br>1<br>1<br>1<br>1<br>1 | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>5<br>1<br>1<br>1<br>1<br>1<br>1      | רב כ כ כ כ כ כ כ כ כ כ כ כ כ כ כ כ כ כ כ | 5<br>1<br>2<br>1<br>1<br>1<br>1<br>5.2<br>1<br>1<br>5<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1           |                                                                                                                                                                                                                                                                                                                     |
| Benzene<br>Bromodichloromethane<br>Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L<br>vg/L | 511111111111111111111111111111111111111                                                          | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>5<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                          | 5<br>1<br>2<br>1<br>1<br>1<br>1<br>5.2<br>1<br>1<br>5<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                                                                                                                                                                                                                                                                                                     |

## Table E-1. Field Blank Results - Data Presentation TablesWallops Flight Facility, Wallops Island, Virginia

بالما تما

Ţ

 $\Gamma = 1$ 

| Site ID                                      |               |          | DIWATER      | GEOWATER         |
|----------------------------------------------|---------------|----------|--------------|------------------|
| Field Sample Number                          |               |          | SAIC01       | SAIC01           |
| Site Type<br>Selfection Date                 |               |          | FBLK         | FBLK<br>08/06/02 |
| Collection Date<br>Depth (ft)                |               |          | 08/06/02     | 0.00             |
|                                              |               |          | 0.00         | 0.00             |
| SEMIVOLATILE ORGANIC C                       |               |          |              |                  |
| Parameter                                    | Units<br>ug/L | RL 10    | 12 U         | 11 U             |
| 1,2-Dichlorobenzene                          | ug/L          | 10       | 12 U         | · 11 U           |
| 1.3-Dichlorobenzene                          | ug/L          | 10       | 12 U         | 11 U             |
| 1,4-Dichlorobenzene                          | ug/L          | 10       | 12 U         | 11 U             |
| 2,4,5-Trichlorophenol                        | ug/L          | 20       | 12 U         | 11 U             |
| 2,4,6-Trichlorophenol                        | ug/L          | 10       | 12 U         | 11 U             |
| 2,4-Dichlorophenol                           | ug/L          | 10       | 12 U         | 11 U             |
| 2,4-Dimethylphenol                           | ug/L          | 10       | 12 U         | 11 U             |
| 2,4-Dinitrophenol                            | ug/L          | 20       | 24 U         | 22 U             |
| 2,4-Dinitrotoluene                           | ug/L          | 10       | 12 U         | 11 U<br>11 U     |
| 2,6-Dinitrotoluene<br>2-Chloronaphthalene    | ug/L<br>ug/L  | 10<br>10 | 12 U<br>12 U | 11 U<br>11 U     |
| 2-Chlorophenol                               | ug/L          | 10       | 12 U<br>12 U | .11 U            |
| 2-Methylnaphthalene                          | ug/L          | 10       | 12 U         | 11 U             |
| 2-Methylphenol                               | ug/L          | 10       | 12 U         | 11 U             |
| 2-Nitroaniline                               | ug/L          | 10       | 12 U         | 11 U             |
| 2-Nitrophenol                                | ug/L          | 10       | 12 U         | 11 U             |
| 3,3'-Dichlorobenzidine                       | ug/L          | 20       | 24 U         | 22 U             |
| 3-Nitroaniline                               | ug/L          | 10       | 12 U         | 11U              |
| I,6-Dinitro-2-cresol                         | ug/L          | 20       | 24 U         | 22 U             |
| -Bromophenyl phenyl ether                    | ug/L          | 10       | 12 U         | 11 U<br>11 U     |
| I-Chloro-3-methylphenol<br>I-Chloroaniline   | ug/L          | 10<br>10 | 12 U<br>12 U | 11 U 1<br>11 U   |
| -Chioroaniline<br>-Chiorophenyl phenyl ether | ug/Լ<br>ug/Լ  | 10       | 12 U         | 11 U             |
| Chilorophenyi phenyi ether<br>I-Methviphenol | ug/L          | 10       | 12 U         | 11 U             |
| I-Nitroaniline                               | ug/L          | 10       | 12 U         | 11 U             |
| I-Nitrophenol                                | ug/L          | 20       | 24 U         | 22 U             |
| Acenaphthene                                 | ug/L          | 10       | 12 U         | 11 U             |
| cenaphthylene                                | ug/L          | 10       | 12 U         | 11 U             |
| Anthracene                                   | ug/L          | 10       | 12 U         | 11 U             |
| Benzo(a)anthracene                           | ug/L          | 10       | 12 U         | 11 U<br>11 U     |
| Benzo(a)pyrane<br>Benzo(b)fluoranthene       | ug/L          | 10<br>10 | 12 U<br>12 U | . 11 U<br>11 U   |
| Senzo(g,h,i)perylene                         | ug/L<br>ug/L  | 10       | 12 U<br>12 U | 11 U             |
| Benzo(k)fluoranthene                         | ug/L          | 10       | 12 U         | 11 U             |
| ois(2-chloroethoxy) methane                  | ug/L          | 10       | 12 U         | 11 Ŭ             |
| is(2-Chloroethyl) Ether                      | ug/L          | 10       | 12 U         | 11 Ū             |
| is(2-chloroisopropyl) ether                  | ug/L          | 10       | 12 U         | 11 U             |
| bis(2-Ethylhexyl)phthalate                   | ug/L          | 10       | 12 U         | 11 U             |
| Butyibenzyl phthalate                        | ug/L          | 10       | 12 U         | 11 U             |
| Carbazole                                    | ug/L          | 10       | 12 U         | 11 U             |
| Chrysene<br>Dibenzare blanthracene           | ug/L          | 10<br>10 | 12 U<br>12 U | 11 U<br>11 U     |
| Dibenzo(a,h)anthracene<br>Dibenzofuran       | ug/L<br>ug/L  | 10       | 12 U<br>12 U | 11 U             |
| Diethyl phthaiate                            | ug/L          | 10       | 12 U         | 11 U             |
| Dimethyl phthaiate                           | ug/L          | 10       | 12 U         | 11 U             |
| Di-n-butyi phthalate                         | ug/L          | 10       | 12 U         | 11 U             |
| )i-n-octyl phthalate                         | ug/L          | 10       | 12 U         | 11 U             |
| luoranthene                                  | ug/L          | 10       | 12 U         | 11 U             |
| luorane                                      | ug/L          | 10       | 12 U         | 11 U             |
| lexachiorobenzene                            | ug/L          | 10       | 12 U         | 11 U             |
| exachiorobutadiene                           | ug/L          | 10       | 12 U         | 11 U             |
| exachlorocyclopentadiene                     | ug/L          | 10       | 12 U         | 11 U             |
| exachioroethane                              | ug/L          | 10       | 12 U         | 11 U<br>11 U     |
| ideno(1,2,3-cd)pyrene                        | ug/L          | 10       | 12 U         | 11 U<br>11 U     |
| sophorone laphthalene                        | ug/L          | 10<br>10 | 12 U<br>12 U | 11 U             |
| litrobenzene                                 | ug/L<br>ug/L  | 10       | 12 U<br>12 U | 11 U             |
| I-Nitrosodi-n-propylamine                    | ug/L          | 10       | 12 U         | 11 U             |
| I-Nitrosodiphenviamine                       | ug/L          | 10       | 12 U         | 11 U             |
| entachlorophenol                             | ug/L          | 20       | 24 U         | 22 U             |
| henanthrene                                  | ug/L          | 10       | 12 U         | 11 U             |
| henol                                        | ug/L          | 10       | 12 U         | 11 U             |
|                                              |               |          |              | 11 U             |

## Table E-1. Field Blank Results - Data Presentation Tables Wallops Flight Facility, Wallops Island, Virginia (Continued)

ľ

1

E-2

Table E-1. Field Blank Results - Data Presentation Tables Wallops Flight Facility, Wallops Island, Virginia (Continued)

#### Footnotes:

B - Metals: Reported value was less than the contract required detection limit but greater than or equal to the instrument detection limit.

- B Organics: Analyte was found in the associated method blank. Validation of the data did not result in this compound being qualified as nondetect due to
- blank contamination. Therefore this result is considered to be site related. D The value for the target analyte was calculated from a dilution.
- E Metals: The reported value is estimated because of the presence of interferents.
- E Organics: Concentration range exceeded for this analyte.
- J Value is estimated.
- N Metals: Spiked sample recovery not within control limits.
- N Organics: Tentatively identified compound based on mass spectral library search.
- P There is greater than 25% difference for detected concentrations between the two GC columns for the associated pesticide/PCB target analyte.
- R Value is rejected.
- U Compound was analyzed for but not detected.
- UJ Compound was analyzed for but not detected and is considered an estimate.
- X The mass spectrum does not meet EPA CLP criteria for confirmation, but compound presence is strongly suspected.
- \* Duplicate analysis not within control limits.
- N/A Compound not analyzed for.
- NF Data not found.
- RL Reporting Limit for each method. For SW846 methods, the samples are reported down to the method detection limits (MDL). For metals, the samples are reported down to the instrument detection limit (IDL).
- MDL Method Detection Limit.
- SAICXXR An SAIC field sample number followed by an "R" designates a recollected sample.

### THIS PAGE WAS INTENTIONALLY LEFT BLANK

ł

### APPENDIX F SURVEY DATA

## THIS PAGE WAS INTENTIONALLY LEFT BLANK

| Site ID    | Site | Northing    | Easting     |  |  |  |
|------------|------|-------------|-------------|--|--|--|
| SB-WWP-002 | WWP  | 4199762.648 | 4199762.648 |  |  |  |
| SB-WWP-001 | WWP  | 4199756.826 | 4199756.826 |  |  |  |
| SB-IWL-004 | WIL  | 4197007.559 | 4197007.559 |  |  |  |
| SB-IWL-003 | WIL  | 4196945.469 | 4196945.469 |  |  |  |
| SB-IWL-002 | WIL  | 4196882.308 | 4196882.308 |  |  |  |
| SB-IWL-001 | WIL  | 4196922.988 | 4196922.988 |  |  |  |
| SB-CDL-003 | CDL  | 4199912.031 | 4199912.031 |  |  |  |
| SB-CDL-002 | CDL  | 4199953.418 | 4199953.418 |  |  |  |
| SB-CDL-001 | CDL  | 4199990.101 | 4199990.101 |  |  |  |
| SB-WWP-003 | WWP  | 4199734.084 | 4199734.084 |  |  |  |
| SW-UST-001 | UST  | 4199918.834 | 4199918.834 |  |  |  |
| SW-UST-002 | UST  | 4199918.834 | 4199918.834 |  |  |  |
| SW-UST-003 | UST  | 4199921.480 | 4199921.480 |  |  |  |
| SW-UST-004 | UST  | 4199921.216 | 4199921.216 |  |  |  |

### SURVEY DATA

### THIS PAGE WAS INTENTIONALLY LEFT BLANK

### APPENDIX G

### ANALYTICAL DATA PRESENTATION TABLES

### THIS PAGE WAS INTENTIONALLY LEFT BLANK

Ĵ

L.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SB-WWP-01<br>SAIC01<br>BORE<br>08/08/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SB-WWP-01<br>SAIC01R<br>BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SB-WWP-01<br>SAIC02<br>BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SB-WWP-01<br>SAIC02R<br>BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SB-WWP-02<br>SAIC01<br>BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SB-WWP-02<br>SAIC01D<br>BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SB-WWP-02<br>SAIC01DR<br>BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 08/16/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 08/08/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 08/16/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08/08/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 08/08/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 08/16/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MG/KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MG/KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <b>U</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>u</b> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •••=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MG/KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 63.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MG/KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MG/KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MG/KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MG/KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MG/KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ັບມ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MG/KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Linite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NIZA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MG/NG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| and the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ~B, ~B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ua/ka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 330<br>330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ug/kg<br>ug/kg<br>ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 330<br>330<br>330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 350<br>350<br>350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 350<br>350<br>350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 350<br>350<br>350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 350<br>350<br>350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U<br>U<br>U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG<br>MG/KG | MG/KG         20           MG/KG         0.6           MG/KG         1           MG/KG         20           MG/KG         1           MG/KG         20           MG/KG         0.5           MG/KG         0.5           MG/KG         10           MG/KG         1           MG/KG         1           MG/KG         10           MG/KG         1.5           MG/KG         1.5           MG/KG         1.5           MG/KG         100           MG/KG         1.5           MG/KG         1.00           MG/KG         1.5           MG/KG         1.00           MG/KG         1.00           MG/KG         1.00           MG/KG         1.00           MG/KG         1.00           MG/KG         1.00           MG/KG         2           Units         RL           MG/KG         3.10           Ug/kg         330           ug/kg         330           ug/kg         330           ug/kg         330           ug/kg | MG/KG         20         5110           MG/KG         0.8         0.25           MG/KG         1         2.2           MG/KG         20         24.1           MG/KG         0.5         0.29           MG/KG         0.5         0.29           MG/KG         1         6.3           MG/KG         1         6.3           MG/KG         1         2.8           MG/KG         10         3850           MG/KG         10         3850           MG/KG         1.5         113           MG/KG         1.5         113           MG/KG         100         281           MG/KG         100         281           MG/KG         1         0.06           MG/KG         1         0.07           MG/KG         1         0.05           MG/KG         1         0.08           MG/KG         1         0.05           MG/KG         1         0.25           MG/KG         1         0.26           MG/KG         1         0.27           MG/KG         1         0.27           MG/KG <t< td=""><td>MG/KG         20         5110           MG/KG         0.6         0.25         UJ           MG/KG         1         2.2         MG/KG         MG/KG           MG/KG         0.5         0.2         MG/KG         1         2.2           MG/KG         0.5         0.2         MG/KG         1         5.3           MG/KG         1         5.3         MG/KG         1         5.3           MG/KG         1         2.8         MG/KG         1         2.8           MG/KG         10         3850         MG/KG         1.5         113           MG/KG         1.0         450         MG/KG         1.5         113           MG/KG         1.0         2.81         MG/KG         1.0.2         U           MG/KG         100         281         MG/KG         1.0.8         U           MG/KG         100         67.9         UJ         MG/KG         1.0.9         MG/KG           MG/KG         1         0.65         U         1.0.9         MG/KG         1.0.9           MG/KG         1         0.55         U         MG/KG         1.0.9         MG/KG         1.0.9      <tr< td=""><td>MG/KG         20         5110         N/A           MG/KG         0.6         0.25         UJ         N/A           MG/KG         1         2.2         N/A           MG/KG         20         24.1         N/A           MG/KG         0.5         0.2         N/A           MG/KG         100         541         N/A           MG/KG         100         541         N/A           MG/KG         1         5.3         N/A           MG/KG         1         2.6         N/A           MG/KG         1         2.6         N/A           MG/KG         10         3850         N/A           MG/KG         10         3850         N/A           MG/KG         100         450         N/A           MG/KG         100         281         N/A           MG/KG         100         281         N/A           MG/KG         100         67.9         UJ         N/A           MG/KG         100         67.9         UJ         N/A           MG/KG         10.05         U         N/A           MG/KG         10.9         N/A         M/A</td><td>MG/KG         20         5110         N/A         5630           MG/KG         0.6         0.25         UJ         N/A         2.2           MG/KG         1         2.2         N/A         2.4           MG/KG         20         24.1         N/A         19.1           MG/KG         0.5         0.2         N/A         0.18           MG/KG         0.5         0.09         B         N/A         0.02           MG/KG         100         541         N/A         0.18           MG/KG         1         5.3         N/A         0.02           MG/KG         1         2.6         N/A         1.7           MG/KG         10         3850         N/A         3300           MG/KG         10         3850         N/A         2.7           MG/KG         1.5         113         N/A         2.8           MG/KG         1         2.7         J         N/A         2.3           MG/KG         100         281         N/A         203           MG/KG         10.02         N/A         0.23         MG/KG         1         0.05           MG/KG         10.02</td><td>MG/KG         20         5110         N/A         5630           MG/KG         0.6         0.25         UJ         N/A         0.23         UJ           MG/KG         1         2.2         N/A         2.4         M/A         2.4           MG/KG         0.05         0.2         N/A         0.18         M/A         0.02         U           MG/KG         0.5         0.09         B         N/A         0.02         U           MG/KG         1         5.3         N/A         0.02         U           MG/KG         1         5.3         N/A         224           MG/KG         1         2.6         N/A         1.7           MG/KG         10         3350         N/A         3300           MG/KG         1.5         113         N/A         2.3           MG/KG         1.0         2.7         J         N/A         2.3           MG/KG         10.0         281         N/A         2.3         M           MG/KG         10.05         U         N/A         0.05         U           MG/KG         10.055         U         N/A         0.04</td><td>MG/KG         20         5110         N/A         6630         N/A           MG/KG         0.8         0.25         UJ         N/A         0.23         UJ         N/A           MG/KG         1         2.2         N/A         0.24         N/A         0.44         N/A           MG/KG         0.5         0.2         N/A         0.18         N/A           MG/KG         0.5         0.2         N/A         0.18         N/A           MG/KG         100         641         N/A         0.02         U         N/A           MG/KG         1         5.3         N/A         5         N/A           MG/KG         1         2.8         N/A         1         N/A           MG/KG         0.3850         N/A         300         N/A         M/A           MG/KG         1.5         113         N/A         63.6         N/A           MG/KG         1.5         113         N/A         63.6         N/A           MG/KG         1.5         113         N/A         63.6         N/A           MG/KG         1.0         0.6         U         N/A         0.23         U         N/A</td><td>MG/RG         20         5110         N/A         6630         N/A         4770           MG/RG         0.6         0.25         UJ         N/A         0.23         UJ         N/A         1.2           MG/RG         1         2.2         N/A         2.4         N/A         2.3           MG/RG         20         24.1         N/A         19.1         N/A         3.7           MG/RG         0.5         0.29         N/A         0.18         N/A         0.18           MG/RG         100         541         N/A         0.24         N/A         0.18           MG/RG         100         541         N/A         2.24         N/A         0.1           MG/RG         100         541         N/A         1         N/A         6240           MG/RG         103         850         N/A         1.7         N/A         1.4           MG/RG         0.3         8.2         N/A         2.7         N/A         362           MG/RG         10         3850         N/A         3300         N/A         2.5           MG/RG         10.25         N/A         2.7         N/A         2.6     </td></tr<><td>MG/RG         20         6116         N/A         6630         N/A         4770           MG/RG         0.6         0.25         UJ         N/A         0.23         UJ         N/A         1.2         UJ           MG/RG         2.0         2.4.1         N/A         2.4         N/A         2.3         B           MG/RG         0.5         0.2         2.4.1         N/A         0.16         N/A         0.18         B           MG/RG         0.5         0.20         N/A         0.16         N/A         0.18         B           MG/RG         10         5.1         N/A         0.16         N/A         0.22         U         N/A         4           MG/RG         10         5.3         N/A         5.8         N/A         8.1         M/A         1.4         U           MG/RG         1         2.8         N/A         1.7         N/A         1.4         0         3.870           MG/RG         10         3850         N/A         2.7         N/A         3.8         1         M/A         2.1         M/A         1.2         U         N/A         2.2         N/A         2.2         N/A</td><td>MGRG         20         5110         N/A         6530         N/A         4770         4820           MGRG         0.6         0.25         UJ         N/A         0.23         UJ         N/A         1.2         UJ         1.1           MGRG         0.6         0.25         UJ         N/A         0.23         UJ         N/A         2.3         B         2.3           MGRG         0.5         0.2         N/A         0.18         N/A         0.18         B         0.18           MGRG         0.5         0.2         N/A         0.18         N/A         4         4           MGRG         10         641         N/A         0.24         N/A         8200         9760           MGRG         1         2.8         N/A         1.7         N/A         817         7.7           MGRG         0         3850         N/A         3300         N/A         1.4         9         14.5           MG/RG         10         3850         N/A         2.7         N/A         362         36.3           MG/RG         10         4.0         N/A         2.1         1.4.5         1.4.2         1.4.5</td><td>MGRG         20         610         N/A         6630         N/A         4770         4620           MGRG         0.8         0.25         UJ         N/A         2.3         UJ         N/A         2.3         UJ         N/A         2.3         UJ         N/A         2.3         B         2.3         B         2.3         B         2.3         B         2.3         B         M/A         2.3         B         2.3         B         2.3         B         M/A         2.3         B         2.3         B         M/A         1.4         M/A         2.4         M/A         4         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A</td></td></t<> | MG/KG         20         5110           MG/KG         0.6         0.25         UJ           MG/KG         1         2.2         MG/KG         MG/KG           MG/KG         0.5         0.2         MG/KG         1         2.2           MG/KG         0.5         0.2         MG/KG         1         5.3           MG/KG         1         5.3         MG/KG         1         5.3           MG/KG         1         2.8         MG/KG         1         2.8           MG/KG         10         3850         MG/KG         1.5         113           MG/KG         1.0         450         MG/KG         1.5         113           MG/KG         1.0         2.81         MG/KG         1.0.2         U           MG/KG         100         281         MG/KG         1.0.8         U           MG/KG         100         67.9         UJ         MG/KG         1.0.9         MG/KG           MG/KG         1         0.65         U         1.0.9         MG/KG         1.0.9           MG/KG         1         0.55         U         MG/KG         1.0.9         MG/KG         1.0.9 <tr< td=""><td>MG/KG         20         5110         N/A           MG/KG         0.6         0.25         UJ         N/A           MG/KG         1         2.2         N/A           MG/KG         20         24.1         N/A           MG/KG         0.5         0.2         N/A           MG/KG         100         541         N/A           MG/KG         100         541         N/A           MG/KG         1         5.3         N/A           MG/KG         1         2.6         N/A           MG/KG         1         2.6         N/A           MG/KG         10         3850         N/A           MG/KG         10         3850         N/A           MG/KG         100         450         N/A           MG/KG         100         281         N/A           MG/KG         100         281         N/A           MG/KG         100         67.9         UJ         N/A           MG/KG         100         67.9         UJ         N/A           MG/KG         10.05         U         N/A           MG/KG         10.9         N/A         M/A</td><td>MG/KG         20         5110         N/A         5630           MG/KG         0.6         0.25         UJ         N/A         2.2           MG/KG         1         2.2         N/A         2.4           MG/KG         20         24.1         N/A         19.1           MG/KG         0.5         0.2         N/A         0.18           MG/KG         0.5         0.09         B         N/A         0.02           MG/KG         100         541         N/A         0.18           MG/KG         1         5.3         N/A         0.02           MG/KG         1         2.6         N/A         1.7           MG/KG         10         3850         N/A         3300           MG/KG         10         3850         N/A         2.7           MG/KG         1.5         113         N/A         2.8           MG/KG         1         2.7         J         N/A         2.3           MG/KG         100         281         N/A         203           MG/KG         10.02         N/A         0.23         MG/KG         1         0.05           MG/KG         10.02</td><td>MG/KG         20         5110         N/A         5630           MG/KG         0.6         0.25         UJ         N/A         0.23         UJ           MG/KG         1         2.2         N/A         2.4         M/A         2.4           MG/KG         0.05         0.2         N/A         0.18         M/A         0.02         U           MG/KG         0.5         0.09         B         N/A         0.02         U           MG/KG         1         5.3         N/A         0.02         U           MG/KG         1         5.3         N/A         224           MG/KG         1         2.6         N/A         1.7           MG/KG         10         3350         N/A         3300           MG/KG         1.5         113         N/A         2.3           MG/KG         1.0         2.7         J         N/A         2.3           MG/KG         10.0         281         N/A         2.3         M           MG/KG         10.05         U         N/A         0.05         U           MG/KG         10.055         U         N/A         0.04</td><td>MG/KG         20         5110         N/A         6630         N/A           MG/KG         0.8         0.25         UJ         N/A         0.23         UJ         N/A           MG/KG         1         2.2         N/A         0.24         N/A         0.44         N/A           MG/KG         0.5         0.2         N/A         0.18         N/A           MG/KG         0.5         0.2         N/A         0.18         N/A           MG/KG         100         641         N/A         0.02         U         N/A           MG/KG         1         5.3         N/A         5         N/A           MG/KG         1         2.8         N/A         1         N/A           MG/KG         0.3850         N/A         300         N/A         M/A           MG/KG         1.5         113         N/A         63.6         N/A           MG/KG         1.5         113         N/A         63.6         N/A           MG/KG         1.5         113         N/A         63.6         N/A           MG/KG         1.0         0.6         U         N/A         0.23         U         N/A</td><td>MG/RG         20         5110         N/A         6630         N/A         4770           MG/RG         0.6         0.25         UJ         N/A         0.23         UJ         N/A         1.2           MG/RG         1         2.2         N/A         2.4         N/A         2.3           MG/RG         20         24.1         N/A         19.1         N/A         3.7           MG/RG         0.5         0.29         N/A         0.18         N/A         0.18           MG/RG         100         541         N/A         0.24         N/A         0.18           MG/RG         100         541         N/A         2.24         N/A         0.1           MG/RG         100         541         N/A         1         N/A         6240           MG/RG         103         850         N/A         1.7         N/A         1.4           MG/RG         0.3         8.2         N/A         2.7         N/A         362           MG/RG         10         3850         N/A         3300         N/A         2.5           MG/RG         10.25         N/A         2.7         N/A         2.6     </td></tr<> <td>MG/RG         20         6116         N/A         6630         N/A         4770           MG/RG         0.6         0.25         UJ         N/A         0.23         UJ         N/A         1.2         UJ           MG/RG         2.0         2.4.1         N/A         2.4         N/A         2.3         B           MG/RG         0.5         0.2         2.4.1         N/A         0.16         N/A         0.18         B           MG/RG         0.5         0.20         N/A         0.16         N/A         0.18         B           MG/RG         10         5.1         N/A         0.16         N/A         0.22         U         N/A         4           MG/RG         10         5.3         N/A         5.8         N/A         8.1         M/A         1.4         U           MG/RG         1         2.8         N/A         1.7         N/A         1.4         0         3.870           MG/RG         10         3850         N/A         2.7         N/A         3.8         1         M/A         2.1         M/A         1.2         U         N/A         2.2         N/A         2.2         N/A</td> <td>MGRG         20         5110         N/A         6530         N/A         4770         4820           MGRG         0.6         0.25         UJ         N/A         0.23         UJ         N/A         1.2         UJ         1.1           MGRG         0.6         0.25         UJ         N/A         0.23         UJ         N/A         2.3         B         2.3           MGRG         0.5         0.2         N/A         0.18         N/A         0.18         B         0.18           MGRG         0.5         0.2         N/A         0.18         N/A         4         4           MGRG         10         641         N/A         0.24         N/A         8200         9760           MGRG         1         2.8         N/A         1.7         N/A         817         7.7           MGRG         0         3850         N/A         3300         N/A         1.4         9         14.5           MG/RG         10         3850         N/A         2.7         N/A         362         36.3           MG/RG         10         4.0         N/A         2.1         1.4.5         1.4.2         1.4.5</td> <td>MGRG         20         610         N/A         6630         N/A         4770         4620           MGRG         0.8         0.25         UJ         N/A         2.3         UJ         N/A         2.3         UJ         N/A         2.3         UJ         N/A         2.3         B         2.3         B         2.3         B         2.3         B         2.3         B         M/A         2.3         B         2.3         B         2.3         B         M/A         2.3         B         2.3         B         M/A         1.4         M/A         2.4         M/A         4         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A</td> | MG/KG         20         5110         N/A           MG/KG         0.6         0.25         UJ         N/A           MG/KG         1         2.2         N/A           MG/KG         20         24.1         N/A           MG/KG         0.5         0.2         N/A           MG/KG         100         541         N/A           MG/KG         100         541         N/A           MG/KG         1         5.3         N/A           MG/KG         1         2.6         N/A           MG/KG         1         2.6         N/A           MG/KG         10         3850         N/A           MG/KG         10         3850         N/A           MG/KG         100         450         N/A           MG/KG         100         281         N/A           MG/KG         100         281         N/A           MG/KG         100         67.9         UJ         N/A           MG/KG         100         67.9         UJ         N/A           MG/KG         10.05         U         N/A           MG/KG         10.9         N/A         M/A | MG/KG         20         5110         N/A         5630           MG/KG         0.6         0.25         UJ         N/A         2.2           MG/KG         1         2.2         N/A         2.4           MG/KG         20         24.1         N/A         19.1           MG/KG         0.5         0.2         N/A         0.18           MG/KG         0.5         0.09         B         N/A         0.02           MG/KG         100         541         N/A         0.18           MG/KG         1         5.3         N/A         0.02           MG/KG         1         2.6         N/A         1.7           MG/KG         10         3850         N/A         3300           MG/KG         10         3850         N/A         2.7           MG/KG         1.5         113         N/A         2.8           MG/KG         1         2.7         J         N/A         2.3           MG/KG         100         281         N/A         203           MG/KG         10.02         N/A         0.23         MG/KG         1         0.05           MG/KG         10.02 | MG/KG         20         5110         N/A         5630           MG/KG         0.6         0.25         UJ         N/A         0.23         UJ           MG/KG         1         2.2         N/A         2.4         M/A         2.4           MG/KG         0.05         0.2         N/A         0.18         M/A         0.02         U           MG/KG         0.5         0.09         B         N/A         0.02         U           MG/KG         1         5.3         N/A         0.02         U           MG/KG         1         5.3         N/A         224           MG/KG         1         2.6         N/A         1.7           MG/KG         10         3350         N/A         3300           MG/KG         1.5         113         N/A         2.3           MG/KG         1.0         2.7         J         N/A         2.3           MG/KG         10.0         281         N/A         2.3         M           MG/KG         10.05         U         N/A         0.05         U           MG/KG         10.055         U         N/A         0.04 | MG/KG         20         5110         N/A         6630         N/A           MG/KG         0.8         0.25         UJ         N/A         0.23         UJ         N/A           MG/KG         1         2.2         N/A         0.24         N/A         0.44         N/A           MG/KG         0.5         0.2         N/A         0.18         N/A           MG/KG         0.5         0.2         N/A         0.18         N/A           MG/KG         100         641         N/A         0.02         U         N/A           MG/KG         1         5.3         N/A         5         N/A           MG/KG         1         2.8         N/A         1         N/A           MG/KG         0.3850         N/A         300         N/A         M/A           MG/KG         1.5         113         N/A         63.6         N/A           MG/KG         1.5         113         N/A         63.6         N/A           MG/KG         1.5         113         N/A         63.6         N/A           MG/KG         1.0         0.6         U         N/A         0.23         U         N/A | MG/RG         20         5110         N/A         6630         N/A         4770           MG/RG         0.6         0.25         UJ         N/A         0.23         UJ         N/A         1.2           MG/RG         1         2.2         N/A         2.4         N/A         2.3           MG/RG         20         24.1         N/A         19.1         N/A         3.7           MG/RG         0.5         0.29         N/A         0.18         N/A         0.18           MG/RG         100         541         N/A         0.24         N/A         0.18           MG/RG         100         541         N/A         2.24         N/A         0.1           MG/RG         100         541         N/A         1         N/A         6240           MG/RG         103         850         N/A         1.7         N/A         1.4           MG/RG         0.3         8.2         N/A         2.7         N/A         362           MG/RG         10         3850         N/A         3300         N/A         2.5           MG/RG         10.25         N/A         2.7         N/A         2.6 | MG/RG         20         6116         N/A         6630         N/A         4770           MG/RG         0.6         0.25         UJ         N/A         0.23         UJ         N/A         1.2         UJ           MG/RG         2.0         2.4.1         N/A         2.4         N/A         2.3         B           MG/RG         0.5         0.2         2.4.1         N/A         0.16         N/A         0.18         B           MG/RG         0.5         0.20         N/A         0.16         N/A         0.18         B           MG/RG         10         5.1         N/A         0.16         N/A         0.22         U         N/A         4           MG/RG         10         5.3         N/A         5.8         N/A         8.1         M/A         1.4         U           MG/RG         1         2.8         N/A         1.7         N/A         1.4         0         3.870           MG/RG         10         3850         N/A         2.7         N/A         3.8         1         M/A         2.1         M/A         1.2         U         N/A         2.2         N/A         2.2         N/A | MGRG         20         5110         N/A         6530         N/A         4770         4820           MGRG         0.6         0.25         UJ         N/A         0.23         UJ         N/A         1.2         UJ         1.1           MGRG         0.6         0.25         UJ         N/A         0.23         UJ         N/A         2.3         B         2.3           MGRG         0.5         0.2         N/A         0.18         N/A         0.18         B         0.18           MGRG         0.5         0.2         N/A         0.18         N/A         4         4           MGRG         10         641         N/A         0.24         N/A         8200         9760           MGRG         1         2.8         N/A         1.7         N/A         817         7.7           MGRG         0         3850         N/A         3300         N/A         1.4         9         14.5           MG/RG         10         3850         N/A         2.7         N/A         362         36.3           MG/RG         10         4.0         N/A         2.1         1.4.5         1.4.2         1.4.5 | MGRG         20         610         N/A         6630         N/A         4770         4620           MGRG         0.8         0.25         UJ         N/A         2.3         UJ         N/A         2.3         UJ         N/A         2.3         UJ         N/A         2.3         B         2.3         B         2.3         B         2.3         B         2.3         B         M/A         2.3         B         2.3         B         2.3         B         M/A         2.3         B         2.3         B         M/A         1.4         M/A         2.4         M/A         4         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A |

# Table G-1. Data Presentation: Soil Boring Results, Site 1 - Old Wastewater Treatment Plant Wallops Flight Facility, Accomack County, Virginia

Created on 11/7/2002

| Site ID                                      |       |     | SB-WWP-01 |        | SB-WWP-01  | SB-WWP-01   |        | SB-WWP-01 | SB-WWP-02 |      | SB-WWP-02 |     | SB-WWP-02  |
|----------------------------------------------|-------|-----|-----------|--------|------------|-------------|--------|-----------|-----------|------|-----------|-----|------------|
| ield Sample Number                           |       |     | SAIC01    |        | SAIC01R    | SAIC02      |        | SAIC02R   | SAIC01    |      | SAIC01D   |     | SAIC01DR   |
| iite Type                                    |       |     | BORE      | 1.1    | BORE       | BORE        |        | BORE      | BORE      |      | BORE      |     | BORE       |
| Collection Date                              |       |     | 08/08/02  |        | 08/16/02   | 08/08/02    |        | 08/16/02  | 08/08/02  |      | 08/08/02  |     | 08/16/02   |
| Depth (ft)                                   |       |     | 0.00      |        | 0.00       | 0.50        |        | 0.50      | 0.00      |      | 0.00      |     | 0.00       |
| 1,3'-Dichlorobenzidine                       | ug/kg | 660 | 690       | υ      | N/A        | 710         | U      | N/A       | 690       | U    | 700       | U   | N/A        |
| -Nitroaniline                                | ug/kg | 330 | 350       | Ŭ      | N/A        | 350         | Ũ      | N/A       | 350       | U    | 350       | U.  | N/A        |
| 6-Dinitro-2-cresol                           | ug/kg | 660 | 690       | Ũ      | N/A        | 710         | Ū.     | N/A       | 690       | U    | 700       | U   | N/A        |
| -Bromophenyl phenyl ether                    | ug/kg | 330 | 350       | Ũ      | N/A        | 350         | Ũ      | N/A       | 350       | Ű    | 350       | U   | N/A        |
| I-Chloro-3-methylphenol                      | ug/kg | 330 | 350       | Ũ      | N/A        | 350         | Ũ      | N/A       | 350       | U -  | 350       | Ú   | N/A        |
| I-Chloroaniline                              | ug/kg | 330 | 350       | ŭ      | N/A        | 350         | UJ     | N/A       | 350       | ŬJ   | 350       | ບັນ | N/A        |
| -Chlorophenyl phenyl ether                   | ug/kg | 330 | 350       | U      | N/A        | 350         | U      | N/A       | 350       | U    | 350       | Ŭ   | N/A        |
| -Chiolophenyi phenyi ether<br>I-Methylphenol | ug/kg | 330 | 350       | ິນິ    | N/A        | 350         | ັ້ນ    | NA        | 350       | ິບໍ່ | 350       | ັບ  | N/A        |
| I-Nitroaniline                               | ug/kg | 330 | 350       | ŭ      | N/A        | 350         | ŭ      | N/A       | 350       | ŭ    | 350       | Ŭ   | N/A        |
| I-Nitrophenol                                | ug/kg | 660 | 690       | Ŭ      | N/A        | 710         | ŬJ     | N/A       | 690       | ŬJ   | 700       | ŬJ  | N/A        |
| Acenaphthene                                 | ug/kg | 330 | 350       | Ŭ      | N/A        | 350         | U      | N/A       | 350       | U.   | 350       | U   | N/A        |
| Acenaphthylene                               |       | 330 | 350       | Ŭ      | N/A<br>N/A | 350         | Ŭ      | N/A       | 350       | Ŭ    | 350       | U   | N/A<br>N/A |
| Anthracene                                   | ug/kg | 330 | 350       |        |            | <del></del> |        |           |           | U    |           | -   |            |
| Benzo(a)anthracene                           | ug/kg | 330 | 350       | U<br>U | N/A<br>N/A | 350         | U<br>U | N/A       | 350       | U    | 350       | U   | N/A        |
|                                              | ug/kg |     |           |        |            |             |        | N/A       | 350       | -    | 350       | U   | N/A        |
| Benzo(a)pyrene<br>Benzo(b)fiveranthana       | ug/kg | 330 | 350       | U      | N/A        | 350         | U      | N/A       | 34        | 1    | 350       | U   | N/A        |
| Benzo(b)fluoranthene                         | ug/kg | 330 | 350       | U      | N/A        | 350         | U      | N/A       | 350       | U    | 350       | U   | N/A        |
| Benzo(g,h,i)perylene                         | ug/kg | 330 | 350       | U      | N/A        | 350         | U      | N/A       | 350       | U    | 350       | U   | N/A        |
| Benzo(k)fluoranthene                         | ug/kg | 330 | 350       | U      | N/A        | 350         | U      | N/A       | 350       | U    | 350       | U   | N/A        |
| bis(2-chloroethoxy) methane                  | ug/kg | 330 | 350       | U      | N/A        | 350         | U      | N/A       | 350       | U    | 350       | U   | N/A        |
| bis(2-Chloroethyl) Ether                     | ug/kg | 330 | 350       | U      | N/A        | 350         | U      | N/A       | 350       | U    | 350       | U   | N/A        |
| bis(2-chloroisopropyi) ether                 | ug/kg | 330 | 350       | U      | N/A        | 350         | U      | N/A       | 350       | U    | 350       | U   | N/A        |
| bis(2-Ethylhexyl)phthalate                   | ug/kg | 330 | 350       | U      | N/A        | 350         | U      | N/A       | 350       | U    | 350       | U   | N/A        |
| Butylbenzyl phthalate                        | ug/kg | 330 | 350       | ម      | N/A        | 350         | U      | N/A       | 350       | U    | 350       | U   | N/A        |
| Carbazole                                    | ug/kg | 330 | 350       | U      | N/A        | 350         | U      | N/A       | 350       | U    | 350       | U   | N/A        |
| Chrysene<br>Discourse (a block the second    | ug/kg | 330 | 350       | ប      | N/A        | 350         | U      | N/A       | 55        | J    | 66        | J   | N/A        |
| Dibenzo(a,h)anthracene                       | ug/kg | 330 | 350       | U      | N/A        | 350         | U      | N/A       | 350       | U    | 350       | U   | N/A        |
| Dibenzofuran<br>Distant abitatut             | ug/kg | 330 | . 350     | U      | • N/A      | 350         | U      | N/A       | 350       | U    | 350       | U   | N/A        |
| Diethyl phthalate                            | ug/kg | 330 | 350       | U      | N/A        | 350         | U      | N/A       | 350       | U    | 350       | U   | N/A        |
| Dimethyl phthalate                           | ug/kg | 330 | 350       | U      | N/A        | 350         | U      | N/A       | 350       | U    | 350       | U   | N/A        |
| Di-n-butyl phthalate                         | ug/kg | 330 | 350       | U      | N/A        | 350         | U      | N/A       | 350       | U    | 350       | U   | N/A        |
| Di-n-octyl phthalate                         | ug/kg | 330 | 350       | U      | N/A        | 350         | U      | N/A       | 350       | U    | 350       | U   | N/A        |
| Fluoranthene                                 | ug/kg | 330 | 350       | U      | N/A        | 350         | U      | N/A       | 350       | - U  | 350       | U   | N/A        |
| Fluorene                                     | ug/kg | 330 | 350       | U      | N/A        | 350         | U      | N/A       | 350       | U    | 350       | U   | N/A        |
| Hexachlorobenzene                            | ug/kg | 330 | 350       | U      | N/A        | 350         | ្មប    | N/A       | 350       | U    | 350       | U   | N/A        |
| Hexachlorobutadiene                          | ug/kg | 330 | 350       | U      | N/A        | 350         | U U    | N/A       | 350       | U    | 350       | U   | N/A        |
| Hexachiorocyclopentadiene                    | ug/kg | 330 | 350       | U      | N/A        | 350         | U      | N/A       | 350       | U    | 350       | U   | N/A        |
| Hexachloroethane                             | ug/kg | 330 | 350       |        | N/A        | 350         | U.     | N/A       | 350       | U    | 350       | U   | N/A        |
| Indeno(1,2,3-cd)pyrene                       | ug/kg | 330 | 350       |        | N/A        | 350         | U      | N/A       | 350       | บ    | 350       | U   | N/A        |
| Isophorone                                   | ug/kg | 330 | 350       | U      | N/A        | 350         | U      | N/A       | 350       | U    | 350       | U   | N/A        |
| Naphthalene                                  | ug/kg | 330 | 350       |        | N/A        | 350         | U      | N/A       | 350       | U    | 350       | Ú   | N/A        |
| Nitrobenzene                                 | ug/kg | 330 | 350       |        | N/A        | 350         | U      | N/A       | 350       | U    | 350       | U   | N/A        |
| N-Nitrosodi-n-propylamine                    | ug/kg | 330 | 350       |        | N/A        | 350         | U      | N/A       | 350       | Ű    | 350       | Ū   | N/A        |
| N-Nitrosodiphenylamine                       | ug/kg | 330 | 350       | U      | N/A        | 350         | Ű      | N/A       | 350       |      | 350       | Ũ   | N/A        |
| Pentachlorophenol                            | ug/kg | 660 | 690       | U      | N/A        | 710         | U      | N/A       | 690       |      | 700       | Ū   | N/A        |
| Phenanthrene                                 | ug/kg | 330 | 350       |        | N/A        | 350         | U      | N/A       | 350       | -    | 350       | Ū   | N/A        |
| Phenot                                       | ug/kg | 330 | 350       | U      | N/A        | 350         | Ú      | N/A       | 350       |      | 350       | Ū   | N/A        |
| Pyrene                                       | ug/kg | 330 | 350       | U      | N/A        | 350         |        | N/A       | 350       |      | 350       | Ŭ   | N/A        |

# Table G-1. Data Presentation: Soil Boring Results, Site 1 - Old Wastewater Treatment Plant Wallops Flight Facility, Accomack County, Virginia (continued)

Created on 11/7/2002

G-2

1

| Site ID                            |       |     | SB-WWP-01 | SB-WWP-01                             |    | SB-WWP-01 | SB-WWP-01 |     | SB-WWP-02 | SB-WWP-02 | SB-WWP-02 |    |
|------------------------------------|-------|-----|-----------|---------------------------------------|----|-----------|-----------|-----|-----------|-----------|-----------|----|
| ield Sample Number                 |       |     | SAIC01    | · SAIC01R                             |    | SAIC02    | SAIC02R   | · · | SAIC01    | SAIC01D   | SAIC01DR  |    |
| Site Type                          |       |     | BORE      | BORE                                  |    | BORE      | BORE      |     | BORE      | BORE      | BORE      |    |
| Collection Date                    |       |     | 08/08/02  | 08/16/02                              |    | 08/08/02  | 08/16/02  |     | 08/08/02  | 08/08/02  | 08/16/02  |    |
| Depth (ft)                         |       |     | 0.00      | 0.00                                  |    | 0.50      | 0.50      |     | 0.00      | 0.00      | 0.00      |    |
|                                    |       |     |           |                                       |    |           |           |     |           |           |           |    |
| VOLATILE ORGANIC COMP<br>Parameter | Units | RL  |           | · · · · · · · · · · · · · · · · · · · |    |           |           |     |           |           |           |    |
| 1.1.1-Trichloroethane              | ug/kg | 5   | N/A       | 5.3                                   | U  | N/A       | 5.2       | U   | N/A       | N/A       | 7.4       | U  |
| 1,2,2-Tetrachloroethane            | ug/kg | 5   | N/A       | 5.3                                   | ŬJ | N/A       | 5.2       | ŪJ  | N/A       | N/A       | 7.4       | IJ |
| 1,1,2-Trichloroethane              | ug/kg | 5   | N/A       | 5.3                                   | Ű  | N/A       | 5.2       | Ŭ   | N/A       | N/A       | 7.4       | U  |
| 1-Dichloroethane                   | ug/kg | 5   | N/A       | 5.3                                   | ŭ  | N/A       | 5.2       | Ũ   | N/A       | N/A       | • 7.4     | Ū  |
| I.1-Dichloroethene                 | ug/kg | 5   | N/A       | 5.3                                   | Ŭ  | N/A       | 5.2       | Ū   | N/A       | N/A       | 7.4       | Ū  |
| .2-Dichloroethane                  | ug/kg | 5   | N/A       | 5.3                                   | บั | N/A       | 5.2       | Ŭ   | N/A       | N/A       | 7.4       | Ū  |
| 1,2-Dichioropropane                | ug/kg | 5   | N/A       | 5.3                                   | Ŭ  | N/A       | 5.2       | บั  | N/A       | N/A       | 7.4       | Ū  |
| 2-Hexanone                         | ug/kg | 10  | N/A       | 11                                    | ŭ  | N/A       | 10        | Ū   | N/A       | N/A       | 15        | U  |
| Acetone                            | ug/kg | 10  | N/A       | 37                                    | ŬJ | N/A       | 61        | ŪJ  | N/A       | N/A       | 68        | ŪJ |
| Benzene                            | ug/kg | 5   | N/A       | 5.3                                   | Ű  | N/A       | 5.2       | Ű   | N/A       | N/A       | 7.4       | U  |
| Bromodichloromethane               | ug/kg | 5   | N/A       | 5.3                                   | υ. | N/A       | 5.2       | Ŭ   | N/A       | N/A       | 7.4       | Ū  |
| Bromoform                          | ug/kg | - 5 | N/A       | 5.3                                   | บั | N/A       | 5.2       | Ŭ   | N/A       | N/A       | 7.4       | Ŭ  |
| Bromomethane                       | ug/kg | 5   | N/A       | 5.3                                   | ŬJ | N/A       | 5.2       | ŬJ  | N/A       | N/A       | 7.4       | ŬJ |
| Carbon disulfide                   | ug/kg | 5   | N/A       | 5.3                                   | Ũ  | N/A       | 5.2       | Ű   | N/A       | N/A       | 7.4       | U  |
| Carbon Tetrachloride               | ug/kg | 5   | N/A       | 5.3                                   | Ū  | N/A       | 5.2       | Ū   | N/A       | N/A       | 7.4       | Ũ  |
| Chlorobenzene                      | ug/kg | 5   | N/A       | 5.3                                   | ũ  | N/A       | 5.2       | Ū   | N/A       | N/A       | 7.4       | Ũ  |
| Chloroethane                       | ug/kg | . 5 | N/A       | 5.3                                   | Ũ  | N/A       | 5.2       | U   | N/A       | N/A       | 7.4       | Ū  |
| Chloroform                         | ug/kg | 5   | N/A       | 5.3                                   | บ่ | N/A       | 5.2       | Ū   | N/A       | N/A       | 7.4       | ū  |
| Chloromethane                      | ug/kg | 5   | N/A       | 5.3                                   | Ū  | N/A       | 5.2       | บ   | N/A       | N/A       | 7.4       | Ū  |
| cis-1,2-Dichloroethene             | ug/kg | 5   | N/A       | 5.3                                   | U  | N/A       | 5.2       | U   | N/A       | N/A       | 7.4       | Ū  |
| cis-1,3-Dichloropropene            | ug/kg | 5   | N/A       | 5.3                                   | U  | N/A       | 5.2       | U   | N/A       | N/A       | 7.4       | Ū  |
| Dibromochloromethane               | ug/kg | 5   | N/A       | 5.3                                   | Ū  | N/A       | 5.2       | Ū   | N/A       | N/A       | 7.4       | Ū  |
| Ethylbenzene                       | ug/kg | 5   | N/A       | 5.3                                   | Ū  | N/A       | 5.2       | Ū.  | N/A       | N/A       | 7.4       | Ū  |
| m-and/or p-Xylene                  | ug/kg | 5   | N/A       | 5.3                                   | U  | N/A       | 5.2       | U   | N/A       | N/A       | 7.4       | U  |
| Methyl ethyl ketone                | ug/kg | 10  | N/A       | 10                                    | J  | N/A       | 8.6       | J   | N/A       | N/A       | 15        | U  |
| Methyl isobutyl ketone             | ug/kg | 10  | N/A       |                                       | U  | N/A       | 10        | U   | N/A       | N/A       | 15        | U  |
| Methylene Chloride                 | ug/kg | 5   | N/A       | 5.3                                   | U  | N/A       | 5.2       | U   | N/A       | N/A       | 7.4       | Ú. |
| p-xylene                           | ug/kg | 5   | N/A       | 5.3                                   | U  | N/A       | 5.2       | U   | N/A       | N/A       | 7.4       | Ū  |
| Styrene                            | ug/kg | 5   | N/A       | 5.3                                   | υ  | N/A       | 5.2       | Ū   | N/A       | N/A       | 7.4       | Ũ  |
| Tetrachloroethene                  | ug/kg | 5   | N/A       | 5.3                                   | บ  | N/A       | 5.2       | Ū   | N/A       | N/A       | 7.4       | Ū  |
| Toluene                            | ug/kg | 5   | N/A       | 5.3                                   | Ŭ  | N/A       | 5.2       | Ū   | N/A       | N/A       | 7.4       | Ū  |
| rans-1,2-Dichloroethene            | ug/kg | 5   | N/A       | 5.3                                   | U  | N/A       | 5.2       | Ŭ   | N/A       | N/A       | 7.4       | Ū  |
| rans-1,3-Dichloropropene           | ug/kg | 5   | N/A       | 5.3                                   | U  | N/A       | 5.2       | บ   | N/A       | N/A       | 7.4       | Ū  |
| Trichloroethene                    | ug/kg | 5   | N/A       | 5.3                                   | Ū  | N/A       | 5.2       | Ū   | N/A       | N/A       | 7.4       | Ũ  |
| Vinyi Chloride                     | ug/kg | 5   | N/A       | 5.3                                   | ū  | N/A       | 5.2       | ŭ   | N/A       | N/A       | 7.4       | ŭ  |

| ite ID                                                  | ·····     |                   | SB-WWP-02  | SB-WWP-02         |    | SB-WWP-02  | SB-WWP-03 |     | SB-WWP-03  | SB-WWP-03  |         | SB-WWP-03  |
|---------------------------------------------------------|-----------|-------------------|------------|-------------------|----|------------|-----------|-----|------------|------------|---------|------------|
| ield Sample Number                                      |           |                   | SAIC01R    | SAIC02            |    | SAIC02R    | SAIC01    |     | SAIC01R    | SAIC02     |         | SAIC02R    |
| ite Type                                                |           |                   | BORE       | BORE              |    | BORE       | BORE      |     | BORE       | BORE       |         | BORE       |
| collection Date                                         |           |                   | 08/16/02   | 08/08/02          |    | 08/16/02   | 08/08/02  |     | 08/16/02   | 08/08/02   |         | 08/16/02   |
| lepth (ft)                                              |           |                   | 0.00       | 3.50              |    | 3.50       | 0.00      |     | 0.00       | 0.50       | <u></u> | 0.50       |
| IETALS(6010)                                            |           |                   |            |                   |    |            |           |     | -          |            |         |            |
| arameter                                                | Units     | RL                |            |                   |    |            |           |     |            |            |         |            |
| luminum                                                 | MG/KG     | 20                | N/A        | 14300             |    | N/A        | 6700      |     | N/A        | 6220       |         | N/A        |
| Intimony                                                | MG/KG     | 0.6               | N/A        | 0.26              | UJ | N/A        | 10.8      | IJJ | N/A        | 7.2        | J       | N/A        |
| vsenic                                                  | MG/KG     | 1                 | - N/A      | 11.9              |    | N/A        | 7.7       | B   | N/A        | 3.4        |         | N/A        |
| Barium                                                  | MG/KG     | 20                | N/A        | 81.8              |    | N/A        | 453       |     | N/A        | 285        |         | N/A        |
| leryllium                                               | MG/KG     | 0.5               | N/A        | 0.68              |    | N/A        | 0.49      | 6   | N/A        | 0.37       |         | N/A        |
| admium                                                  | MG/KG     | 0.5               | N/A        | 0.17              | в  | NA         | 6.4       | -   | N/A        | 5,1        |         | N/A        |
| Calcium                                                 | MG/KG     | 100               | N/A        | 1110              | ÷  | N/A        | 8460      |     | N/A        | 4090       |         | N/A        |
| Chromium                                                | MG/KG     | 1                 | N/A        | 13.8              |    | N/A        | 61.3      |     | N/A        | 38.2       |         | N/A        |
| Cobalt                                                  | MG/KG     | 5                 | N/A        | 4.1               |    | N/A        | 4.9       |     | N/A        | 2.7        |         | N/A        |
| Copper                                                  | MG/KG     | 1                 | N/A        | 6,9               |    | N/A        | 221       |     | N/A        | 146        |         | N/A        |
| ron                                                     | MG/KG     | 10                | N/A        | 9920              |    | N/A        | 53200     |     | N/A<br>N/A | 140        |         | N/A<br>N/A |
| .ead                                                    | MG/KG     | 0.3               | N/A        | . 9920            |    | N/A        |           |     | N/A<br>N/A |            |         |            |
| Aagnesium                                               | MG/KG     | 100               | N/A<br>N/A |                   |    | N/A        | 883       |     |            | 586        |         | N/A        |
| Manganese                                               | MG/KG     | 1.5               | N/A<br>N/A | 1330              |    | N/A<br>N/A | 1450      |     | N/A        | 1080       |         | N/A        |
| lickel                                                  | MG/KG     | 1.5               |            |                   |    | •          | 632       |     | N/A        | 237        |         | N/A        |
| otassium                                                |           | •                 | N/A        | 7.9               | J  | N/A        | 16.8      | J   | N/A        | 10.9       | J       | N/A        |
|                                                         | MG/KG     | 100               | N/A        | 485               |    | N/A        | 486       | _   | N/A        | 308        | _       | N/A        |
| Selenium                                                | MG/KG     | 0.5               | N/A        | 0.26              | U  | N/A        | 2.5       | 8   | N/A        | 1.1        | 8       | N/A        |
| Silver                                                  | MG/KG     | 1                 | N/A        | 0.06              | U  | N/A        | 144       |     | N/A        | 103        |         | N/A        |
| Sodium                                                  | MG/KG     | 100               | N/A        | . 126             | UJ | N/A        | 118       | UJ  | - N/A      | 82.8       | UJ      | N/A        |
| Thallium                                                | MG/KG     | 1                 | N/A        | 0.58              | U  | N/A        | 3.3       | U   | N/A        | 1.2        | U       | N/A        |
| Vanadium                                                | MG/KG     | 5                 | N/A        | 20.9              |    | N/A        | 23.4      |     | N/A        | 11.6       |         | N/A        |
| Zinc                                                    | MG/KG     | 2                 | N/A        | 58.2              |    | N/A        | 1180      |     | N/A        | 746        |         | N/A        |
| METALS(7471)                                            |           |                   |            |                   |    |            |           | -   |            |            |         |            |
| Parameter                                               | Units     | RL                |            |                   |    |            |           |     |            |            | _       |            |
| Mercury                                                 | MG/KG     | 0.1               | N/A        | 0.21              |    | N/A        | 32.2      |     | N/A        | 24.3       |         | N/A        |
| SEMIVOLATILE ORGANIC                                    | COMPOUNDS | (8270)            |            | •                 |    |            |           |     |            |            |         |            |
| Parameter                                               | Units     | RL                |            |                   |    |            |           |     |            |            |         |            |
| 1,2,4-Trichlorobenzene                                  | ug/kg     | 330               | N/A        | 370               | U  | N/A        | 430       | υ   | N/A        | 400        | U       | N/A        |
| 1,2-Dichlorobenzene                                     | ug/kg     | 330               | N/A        | 370               | Ū  | N/A        | 430       |     | N/A        | 400        | Ū       | N/A        |
| 1,3-Dichlorobenzene                                     | ug/kg     | 330               | N/A        | 370               |    | N/A        | 430       |     | N/A        | 400        | บั      | N/A        |
| 1,4-Dichlorobenzene                                     | ug/kg     | 330               | N/A        | 370               |    | N/A        | 240       | J   | N/A        | 480        | -       | N/A        |
| 2,4,5-Trichlorophenol                                   | ug/kg     | 660               | N/A        | 370               | -  | N/A        | 430       | Ű   | N/A        | 400        | U       | N/A        |
| 2,4,8-Trichiorophenol                                   | ug/kg     | 330               | N/A        | 370               | _  | N/A        | 430       |     | N/A        | 400        | Ŭ       | N/A        |
| 2.4-Dichlorophenol                                      | ug/kg     | 330               | N/A        | 370               | -  | N/A        | 430       |     | N/A        |            | U       | N/A        |
| 2,4-Dimethylphenol                                      | ug/kg     | 330               | N/A        | 370               |    | N/A        |           | -   |            | 400        | -       |            |
| 2,4-Dinitrophenol                                       | • •       | 660               | N/A        |                   | -  |            | 430       |     | N/A        | 400        | U       | N/A        |
|                                                         | ug/kg     |                   |            | 750               |    | N/A        | 860       |     | N/A        | 800        | Ų       | N/A        |
| 2,4-Dinitrototuene                                      | ug/kg     | 330               | N/A        | 370               | -  | N/A        | 430       | -   | N/A        | 82         | J       | N/A        |
| 2,6-Dinitrotoluene                                      | ug/kg     | 330               | N/A        | 370               |    | N/A        | 430       |     | N/A        | 400        | υ       | N/A        |
| 2-Chloronaphthalene                                     | ug/kg     | 330               | N/A        | 370               |    | N/A        | 430       |     | N/A        | 400        | υ       | . N/A      |
|                                                         | ug/kg     | 330               | N/A        | 370               | -  | N/A        | 430       |     | N/A        | 400        | U       | N/A        |
|                                                         | ug/kg     | 330               | N/A        | 370               | -  | N/A        | 430       | -   | N/A        | 51         | J       | N/A        |
| 2-Methylnaphthalene                                     |           |                   |            |                   |    |            |           |     |            |            |         |            |
| 2-Chlorophenol<br>2-Methylnaphthalene<br>2-Methylphenol | ug/kg     | 330               | N/A        | 370               |    | N/A        | 430       | U   | N/A        | 400        | U       | N/A        |
| 2-Methylnaphthalene                                     |           | 330<br>330<br>330 | N/A<br>N/A | 370<br>370<br>370 | Ū  | N/A<br>N/A | 430       | -   | N/A<br>N/A | 400<br>400 | U<br>U  | N/A<br>Ň/A |

Created on 11/7/2002

ဌ 4

| Site ID                                       |                |            | SB-WWP-02  | SB-WWP-02  |        | SB-WWP-02  | SB-WWP-03  |     | SB-WWP-03  | SB-WWP-03  |        | SB-WWP-03       |
|-----------------------------------------------|----------------|------------|------------|------------|--------|------------|------------|-----|------------|------------|--------|-----------------|
| ield Sample Number                            |                | -          | SAIC01R    | SAIC02     |        | SAIC02R    | SAIC01     |     | SAIC01R    | SAIC02     |        | SAIC02R<br>BORE |
| lite Type                                     |                |            | BORE       | BORE       |        | BORE       | BORE       |     | BORE       | BORE       |        |                 |
| Collection Date                               |                |            | 08/16/02   | 08/08/02   |        | 08/16/02   | 08/08/02   |     | 08/16/02   | 08/08/02   |        | 08/16/02        |
| Depth (ft)                                    |                |            | 0.00       | 3.50       |        | 3.50       | 0.00       |     | 0.00       | 0.50       |        | 0.50            |
| .3'-Dichlorobenzidine                         | ug/kg          | 660        | N/A        | 750        | U      | N/A        | 860        | U   | N/A        | 800        | ບ :    | N/A             |
| -Nitroaniline                                 | ug/kg          | 330        | N/A        | 370        | U      | N/A        | 430        | U., | N/A        | 400        | U      | N/A             |
| 1,6-Dinitro-2-cresol                          | ug/kg          | 660        | N/A        | 750        | Ŭ      | N/A        | 860        | υ   | N/A        | 800        | U      | N/A             |
| I-Bromophenyl phenyl ether                    | ug/kg          | 330        | N/A        | 370        | Ū      | N/A        | 430        | U   | N/A        | 400        | บ      | N/A             |
| I-Chloro-3-methylphenol                       | ug/kg          | 330        | N/A        | 370        | Ū      | N/A        | 430        | U   | N/A        | 400        | U      | N/A             |
| I-Chloroaniline                               | ug/kg          | 330        | N/A        | 370        | UJ     | N/A        | 430        | ŪJ  | N/A        | 400        | UJ     | N/A             |
| -Chlorophenyl phenyl ether                    | ug/kg          | 330        | N/A        | 370        | U      | N/A        | 430        | ប   | N/A        | 400        | บ      | N/A             |
| -Methylphenol                                 | ug/kg          | 330        | N/A        | 370        | Ū      | N/A        | ° 430      | U   | N/A        | 400        | υ      | N/A             |
| -Nitroaniline                                 | ug/kg          | 330        | N/A        | 370        | U      | N/A        | 430        | υ   | N/A        | 400        | U      | N/A             |
| I-Nitrophenol                                 | ug/kg          | 660        | N/A        | 750        | ŪJ     | N/A        | 860        | UJ  | N/A        | 800        | UJ     | N/A             |
| cenaphthene                                   | ug/kg          | 330        | N/A        | . 370      | Ū      | N/A        | . 89       | J   | N/A        | 400        | U      | . N/A           |
| cenaphthylene                                 | ug/kg          | 330        | N/A        | 370        | Ū      | ' N/A      | 150        | Ĵ   | N/A        | 400        | Ŭ      | N/#             |
| Anthracene                                    | ug/kg          | 330        | N/A        | 370        | Ū      | N/A        | 810        | -   | N/A        | 420        |        | N/A             |
| Benzo(a)anthracene                            | ug/kg          | 330        | N/A        | 370        | Ū      | N/A        | 3200       |     | N/A        | 1700       |        | N/#             |
| Benzo(a)pyrene                                | ug/kg          | 330        | N/A        | 370        | Ŭ      | N/A        | 3100       |     | N/A        | 1500       |        | N/A             |
| Benzo(b)fluoranthene                          | ug/kg          | 330        | N/A        | 370        | บั     | N/A        | 4300       |     | N/A        | 2300       |        | N/A             |
| Benzo(g,h,i)perytene                          | ug/kg          | 330        | N/A        | 370        | ŭ      | N/A        | 2000       | •   | N/A        | 1100       |        | N//             |
| Benzo(k)fluoranthene                          | ug/kg          | 330        | N/A        | 370        | บั     | N/A        | 1300       |     | N/A        | 600        |        | N/A             |
| is(2-chloroethoxy) methane                    | ug/kg          | 330        | N/A        | 370        | Ŭ      | N/A        | 430        | U   | N/A        | 400        | U      | N//             |
| bis(2-Chloroethyl) Ether                      | ug/kg          | 330        | N/A        | 370        | บั     | N/A        | 430        |     | N/A        | 400        | ũ      | N//             |
| bis(2-chioroisopropyl) ether                  | ug/kg          | 330        | N/A        | 370        | ັບ     | N/A        | 430        | Ŭ   | N/A        | 400        | Ŭ      | N//             |
| bis(2-Ethylhexyl)phthalate                    | ug/kg          | 330        | N/A        | 370        | Ŭ      | N/A        | 67         | ĩ   | N/A        | 400        | Ŭ      | N//             |
| Butylbenzyl phthalate                         | ug/kg          | 330        | N/A        | 370        | บั     | N/A        | 430        | -   | N/A        | 400        | ŭ      | N//             |
| Carbazole                                     | ug/kg          | 330        | N/A        | 370        | Ŭ      | N/A        | 420        |     | N/A        | 300        | J      | N//             |
| Chrysene                                      | ug/kg          | 330        | N/A        | 370        | ŭ      | N/A        | 3100       | -   | · N/A      | 1500       | v      | N//             |
| Dibenzo(a,h)anthracene                        | ug/kg          | 330        | N/A        | 370        | ŭ      | N/A        | 430        |     | N/A        | 400        | บ      | . N//           |
| Dibenzoluran                                  |                | 330        | N/A        | 370        | Ŭ      | N/A        | 76         |     | Ň/A        | 61         | ĭ      | N//             |
|                                               | ug/kg          | 330        |            |            | Ŭ      | N/A        | 430        |     | N/A        | 400        | บ      | N//             |
| Diethyl phthalate                             | ug/kg          | 330        | N/A        | 370        | -      | N/A        | 430        | _   | N/A        | 400        | Ŭ      | N//             |
| Dimethyl phthalate                            | ug/kg          | 330        | N/A<br>N/A | 370        | U<br>U | N/A        | 430        |     | N/A        | 400        | Ū      | N//             |
| Di-n-butyl phthalate                          | ug/kg          | 330        | N/A        | 370        | U      | N/A<br>N/A | 430        |     | N/A        | 400        | υ      | N//             |
| Di-n-octyl phthalate<br>Fluoranthene          | ug/kg          | 330        | N/A<br>N/A | 370        | U      | N/A        | 4700       | -   | N/A        | 2700       | 0      | N//             |
| Fluorantnene                                  | ug/kg          | 330        | N/A<br>N/A | 370        | UU     | N/A        | 4700       |     | N/A        | 2700       | J      | N//             |
| Hexachlorobenzene                             | ug/kg<br>ug/kg | 330        | N/A<br>N/A | 370        | บ<br>บ | N/A        | 430        |     | N/A<br>N/A | 400        | U      | N/A             |
|                                               |                | 330        | N/A        | 370        | U      | N/A        | 430        |     | N/A<br>N/A | 400        | Ŭ      | N//             |
| Hexachlorobuladiene                           | ug/kg          |            |            |            | -      | • · · · ·  |            | -   |            |            | U<br>U |                 |
| Hexachlorocyclopentadiene<br>Hexachloroethane | ug/kg          | 330<br>330 | N/A<br>N/A | 370<br>370 | U      | N/A        | 430<br>430 |     | N/A<br>N/A | 400<br>400 | U      | N//             |
|                                               | ug/kg          |            |            |            | U      | N/A        |            | -   |            |            | U      | N//             |
| ndeno(1,2,3-cd)pyrene                         | ug/kg          | 330        | N/A        | 370        | U      | N/A        | 1800       |     | N/A        | 1000       | ·      | N//             |
| sophorone                                     | ug/kg          | 330        | N/A        | 370        | U      | N/A        | 430        |     | N/A        | 400        | U      | N//             |
| Naphthalene                                   | ug/kg          | 330        | N/A        | 370        | U      | N/A        | 430        | -   | N/A        | 400        | U      | N//             |
| Nitrobenzene                                  | ug/kg          | 330        | N/A        | 370        | U      | N/A        | 430        |     | N/A        | 400        | u      | N//             |
| V-Nitrosodi-n-propylamine                     | ug/kg          | 330        | N/A        | 370        | U      | N/A        | 430        | _   | N/A        | 400        | U      | N//             |
| N-Nitrosodiphenylamine                        | ug/kg          | 330        | N/A        | 370        | U      | N/A        | 430        |     | N/A        | 30         | J      | N/.             |
| Pentachlorophenoi                             | ug/kg          | 660        | N/A        | 750        | U      | N/A        | 860        | -   | N/A        | 800        | U      | N//             |
| Phenanthrene                                  | ug/kg          | 330        | • N/A      | 370        | U      | N/A        | 2500       |     | N/A        | 1300       |        | N//             |
| Phenol                                        | ug/kg          | 330        | N/A        | 370        | U      | N/A        | 430        | U   | N/A        | 400        | U      | N//             |
| Pyrene                                        | ug/kg          | 330        | N/A        | 370        | U      | N/A        | 4200       | )   | N/A        | 2000       |        | N//             |

| Site ID                            |                     |                | SB-WWP-02  |        | SB-WWP-02  | SB-WWP-02 |     | SB-WWP-03  | SB-WWP-03 |    | SB-WWP-03    | SB-WWP-03 |    |
|------------------------------------|---------------------|----------------|------------|--------|------------|-----------|-----|------------|-----------|----|--------------|-----------|----|
| Field Sample Number                |                     |                | SAIC01R    |        | SAIC02     | SAIC02R   |     | SAIC01     | SAIC01R   |    | SAIC02       | SAIC02R   |    |
| Site Type                          |                     |                | BORE       |        | BORE       | BORE      |     | BORE       | BORE      |    | BORE         | BORE      |    |
| Collection Date                    |                     | •              | 08/16/02   |        | 08/08/02   | 08/16/02  |     | 08/08/02   | 08/16/02  |    | 08/08/02     | 06/16/02  |    |
| Depth (ft)                         |                     |                | 0.00       |        | 3.50       | 3.50      |     | 0.00       | 0.00      |    | 0.50         | 0.50      |    |
|                                    |                     |                |            |        |            |           |     |            |           |    |              |           |    |
| VOLATILE ORGANIC COMP<br>Parameter | OUNDS(8260<br>Units | <u>"</u><br>RL |            |        |            |           |     |            |           |    |              |           |    |
| 1,1,1-Trichloroethane              | ug/kg               | 5              | 5.9        | U      | N/A        | 6.1       | U   | N/A        | 6.6       | U  | N/A          | 6.1       | U  |
| 1,1,2,2-Tetrachloroethane          | ug/kg               | 5              | 5.9        | บ็ม    | N/A        | 6.1       | ŬJ  | N/A        | 6.6       | ŬJ | N/A          | 6.1       | ŬJ |
| 1,1,2-Trichloroethane              | ug/kg               | 5              | 5.9        | บ      | N/A        | 6.1       | Ű   | N/A        | 6.6       | Ű  | N/A          | 6.1       | Ŭ  |
| 1,1-Dichloroethane                 | ug/kg               | 5              | 5.9        | Ŭ      | N/A        | 6.1       | Ŭ   |            |           |    |              | -         |    |
| 1,1-Dichloroethene                 | ug/kg               | 5              | 5.9        | U      | N/A<br>N/A | 6.1       | U   | N/A<br>N/A | 6.6       | U  | N/A          | 6.1       | U  |
| 1.2-Dichloroethane                 | ug/kg               | 5              | 5.9        | Ŭ      | N/A        | 8.1       | -   |            | 6.6       | U  | N/A          | 6.1       | U  |
| 1,2-Dichloropropane                | ug/kg               | 5              | 5.9        | Ŭ      | N/A<br>N/A |           | U   | N/A        | 6.6       | U  | N/A          | 6.1       | U  |
| 2-Hexanone                         | ug/kg               | 10             | 12         | ŭ      | N/A        | 6.1       | U · | N/A        | 6.6       | U  | N/A          | 6.1       | U  |
| Acetone                            | ug/kg               | 10             | 45         | UJ.    | N/A<br>N/A | 12        | U   | N/A        | 13        | U  | N/A          | 12        | ย  |
| Benzene                            | ug/kg               | 5              | 5.9        | . U    | N/A        | 25        | UJ  | N/A        | 65        | UJ | N/A          | 84        | UJ |
| Bromodichloromethane               | ug/kg               | J<br>#         |            | -      |            | 6.1       | U   | N/A        | 6.6       | U  | N/A          | 6.1       | υ  |
| Bromoform                          | ug/kg               | 5              | 5.9        | U      | N/A        | 6.1       | U   | N/A        | 6.8       | υ  | N/A          | 6.1       | U  |
| Bromomethane                       |                     | 5              | 5.9        | U      | N/A        | 6.1       | U   | N/A        | 6.6       | U  | N/A          | 6.1       | U  |
| Carbon disulfide                   | ug/kg<br>ug/kg      | 2              | 5.9        | UJ     | N/A        | 6.1       | UJ  | N/A        | 6.6       | UJ | N/A          | 6.1       | UJ |
| Carbon Tetrachloride               | ug/kg<br>ug/kg      | 5              | 5.9        | U      | N/A        | 6.1       | U   | N/A        | 6.6       | U  | N/A          | 6.1       | U  |
| Chlorobenzene                      | ug/kg<br>ug/kg      |                | 5.9        | U      | N/A        | 6.1       | U   | N/A        | 6.6       | U  | N/A          | 6.1       | U  |
| Chloroethane                       | ug/kg<br>ug/kg      | 5              | 5.9<br>5.9 | U      | N/A        | 6.1       | U   | N/A        | 6.6       | U  | N/A          | 6.1       | U  |
| Chloroform                         | ug/kg<br>ug/kg      | . D'.          | 5.9        | UU     | N/A        | 6.1       | U   | N/A        | 6.6       | U  | N/A          | 6,1       | U  |
| Chloromethane                      | ug/kg               | · .            | 5.9        | Ŭ      | N/A<br>N/A | 6.1       | U   | N/A        | 6.6       | U  | N/A          | 6.1       | U  |
| cis-1,2-Dichloroethene             | ug/kg               |                | 5.9        | Ŭ      |            | 8.1       | U   | N/A        | 6.6       | U  | N/A          | 6.1       | U  |
| cis-1,3-Dichloropropene            | ug/kg               | · 6            | 5.9        | Ŭ      | N/A        | 6.1       | U   | N/A        | 6.6       | U  | . <b>N/A</b> | 6.1       | U  |
| Dibromochloromethane               | ug/kg               | 5<br>E         |            | -      | N/A        | 6.1       | U   | N/A        | 6.6       | U  | N/A          | 6.1       | U  |
| Ethylbenzene                       | ug/kg               | 5              | 5.9        | U      | N/A        | 6.1       | U   | N/A        | 6.6       | υ  | N/A          | 6.1       | U  |
| m-and/or p-Xylene                  | ug/kg               | 5              | 5.9<br>5.9 | U<br>U | N/A        | 6.1       | U   | N/A        | 6.6       | U  | N/A          | 6.1       | U  |
| Methyl ethyl ketone                | ug/kg               | 10             | 5.9<br>8.9 |        | N/A        | 6.1       | U.  | N/A        | 6.6       | U  | N/A          | 6.1       | U  |
| Methyl isobutyl ketone             | ug/kg               | 10             |            | 3      | N/A        | 4.8       | 1   | N/A        | 14        |    | N/A          | 17        |    |
| Methylene Chloride                 |                     | 10             | 12         | U      | N/A        | 12        | U   | N/A        | 13        | U  | N/A          | 12        | U  |
| o-xylene                           | ug/kg               |                | 5.9        | U      | N/A        | • 6.1     | U   | N/A        | 6.6       | U  | N/A          | 6.1       | U  |
| Styrene                            | ug/kg               | 0              | 5.9        | U      | N/A        | 6.1       | U   | N/A        | 6.6       | U  | N/A          | 6.1       | U  |
| Tetrachloroethene                  | ug/kg               | 5              | 5.9        | Ŭ.     | N/A        | 6.1       | U   | N/A        | 6.6       | U  | N/A          | 6.1       | U  |
|                                    | ug/kg               | 5              | 5.9        | ບ      | N/A        | 6.1       | U   | N/A        | 6.6       | Ú  | N/A          | 6.1       | Ű  |
| Toluene                            | ug/kg               | 5              | 5.9        | U      | N/A        | 6.1       | -U  | N/A        | 6.6       | U  | N/A          | 6.1       | Ū  |
| trans-1,2-Dichloroethene           | ug/kg               | 5              | 5.9        | U      | N/A        | 6.1       | U   | N/A        | 8.6       | υ  | N/A          | 6.1       | ū  |
| trans-1,3-Dichloropropene          | ug/kg               | -5             | 5.9        | U      | N/A        | 6.1       | U   | N/A        | 6.6       | U  | N/A          | 6.1       | Ū  |
| Trichloroethene                    | ug/kg               | 5              | 5.9        | U      | N/A        | 6.1       | U   | N/A        | 6.6       | Ū  | N/A          | 6.1       | Ŭ  |
| Vinyl Chloride                     | ug/kg               | 5              | 5.9        | U      | N/A        | 6.1       | U   | N/A        | 6.6       | ŭ  | N/A          | 6.1       | Ŭ  |

Created on 11/7/2002

**Ģ**-6

.

#### Footnotes: B - Metals: Reported value was less than the contract required detection limit but greater than or equal to the instrument detection limit. B - Organics: Analyte was found in the associated method blank. Validation of the data did not result in this compound being qualified as nondetect due to blank contamination. Therefore this result is considered to be site related. D - The value for the target analyte was calculated from a dilution.

E - Metals: The reported value is estimated because of the presence of interferents.

E - Organics: Concentration range exceeded for this analyte.

J - Value is estimated.

N - Metals: Spiked sample recovery not within control limits.

N - Organics: Tentatively identified compound based on mass spectral library search.

P - There is greater than 25% difference for detected concentrations between the two GC columns for the associated pesticide/PCB target analyte.

R - Value is rejected.

U - Compound was analyzed for but not detected.

UJ - Compound was analyzed for but not detected and is considered an estimate.

X - The mass spectrum does not meet EPA CLP criteria for confirmation, but compound presence is strongly suspected.

\* - Duplicate analysis not within control limits,

N/A - Compound not analyzed for.

NF - Data not found.

RL - Reporting Limit for each method. For SW846 methods, the samples are reported down to the method detection limits (MDL). For metals, the samples are reported down to the instrument detection limit (IDL).

MDL – Method Detection Limit.

SAICXXR - An SAIC field sample number followed by an "R" designates a recollected sample.

## Table G-2. Data Presentation: UST Liquids Results, Site 3 - Two 600,000-Gallon Fuel TanksWallops Flight Facility, Accomack County, Virginia

| Site ID                                                                                                                                                                                                                                             |                                                              |                                                          | WA-UST-01                                                          |                            | WA-UST-02                                                                        |                                      | WA-UST-03                                                      |                                                                                                   | WA-UST-04                                                                                    |                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------|
| Field Sample Number                                                                                                                                                                                                                                 |                                                              |                                                          | SAIC01                                                             |                            | SAIC01                                                                           |                                      | SAIC01                                                         |                                                                                                   | SAIC01                                                                                       |                  |
| Site Type                                                                                                                                                                                                                                           |                                                              |                                                          | SWTR                                                               |                            | SWTR                                                                             |                                      | SWTR                                                           |                                                                                                   | SWTR                                                                                         |                  |
| Collection Date                                                                                                                                                                                                                                     |                                                              |                                                          | 08/08/02                                                           |                            | 08/08/02                                                                         |                                      | 08/08/02                                                       |                                                                                                   | 08/08/02                                                                                     |                  |
| Depth (ft)                                                                                                                                                                                                                                          | · · · · ·                                                    |                                                          | 0.00                                                               |                            | 13.00                                                                            |                                      | 0.00                                                           |                                                                                                   | 11.00                                                                                        |                  |
| METALS(6010)                                                                                                                                                                                                                                        |                                                              |                                                          |                                                                    |                            |                                                                                  |                                      |                                                                | _                                                                                                 |                                                                                              |                  |
| Parameter                                                                                                                                                                                                                                           | Units                                                        | RL                                                       |                                                                    |                            |                                                                                  |                                      |                                                                |                                                                                                   |                                                                                              |                  |
| Aluminum                                                                                                                                                                                                                                            | ug/L                                                         | 200                                                      | 30.9                                                               | U)                         | 30.9                                                                             | IJ                                   | 30.9                                                           | UJ                                                                                                | 30.9                                                                                         | UJ               |
| Antimony                                                                                                                                                                                                                                            | ug/L                                                         | 6                                                        | 2.5                                                                | UJ                         | 2.5                                                                              | UJ                                   | 2.5                                                            | IJ                                                                                                | 2.5                                                                                          | UJ               |
| Arsenic                                                                                                                                                                                                                                             | ug/L                                                         | 10                                                       | 3.6                                                                | U                          | 3.4                                                                              | U                                    | 3.4                                                            | U                                                                                                 | 4.1                                                                                          | U                |
| Barium                                                                                                                                                                                                                                              | ug/L                                                         | 200                                                      | 3.3                                                                | В                          | 2.9                                                                              | B                                    | 16.1                                                           |                                                                                                   | 13.5                                                                                         |                  |
| Beryllium                                                                                                                                                                                                                                           | ug/L                                                         | 5                                                        | 0.1                                                                | U                          | 0.1                                                                              | υ                                    | 0.1                                                            | U                                                                                                 | 0.1                                                                                          | U                |
| Cadmium                                                                                                                                                                                                                                             | ug/L                                                         | 5                                                        | 0.3                                                                | U                          | 0.3                                                                              | U                                    | 0.3                                                            | U                                                                                                 | 0.3                                                                                          | U                |
| Calcium                                                                                                                                                                                                                                             | ug/L                                                         | 1000                                                     | 8160                                                               |                            | 7640                                                                             |                                      | 8490                                                           |                                                                                                   | 8230                                                                                         |                  |
| Chromium                                                                                                                                                                                                                                            | ug/L                                                         | 10                                                       | 1.3                                                                | U                          | 1.3                                                                              | υ                                    | 1.3                                                            | U                                                                                                 | 1.3                                                                                          | U                |
| Cobalt                                                                                                                                                                                                                                              | ug/L                                                         | 50                                                       | 0.6                                                                | UJ                         | 0.6                                                                              | UJ                                   | 0.6                                                            | UJ                                                                                                | 0.83                                                                                         | Ĵ                |
| Copper                                                                                                                                                                                                                                              | ug/L                                                         | 10                                                       | 2.5                                                                | U                          | 2.9                                                                              | U                                    | 2                                                              | U                                                                                                 | 3.2                                                                                          | Ū                |
| Iron                                                                                                                                                                                                                                                | ug/L                                                         | 100                                                      | 40.1                                                               | в                          | 817                                                                              |                                      | 2110                                                           |                                                                                                   | 5070                                                                                         | -                |
| Lead                                                                                                                                                                                                                                                | ug/L                                                         | 3                                                        | 1.6                                                                | Ū                          | 1.6                                                                              | U                                    | 1.6                                                            | U                                                                                                 | 1.6                                                                                          | U                |
| Magnesium                                                                                                                                                                                                                                           | ug/L                                                         | 1000                                                     | 5400                                                               |                            | 5180                                                                             | -                                    | 5930                                                           | -                                                                                                 | 5760                                                                                         | •                |
| Manganese                                                                                                                                                                                                                                           | ug/L                                                         | 15                                                       | 72.8                                                               |                            | . 123                                                                            |                                      | 335                                                            |                                                                                                   | 367                                                                                          |                  |
| Nickel                                                                                                                                                                                                                                              | ug/L                                                         | 10                                                       | 1.1                                                                | U                          | 2                                                                                | в                                    | 1.1                                                            | ບ່                                                                                                | 1.5                                                                                          | В                |
| Potassium                                                                                                                                                                                                                                           | ug/L                                                         | 1000                                                     | 3740                                                               | •                          | 3910                                                                             |                                      | 3920                                                           | U                                                                                                 | 3910                                                                                         |                  |
| Selenium                                                                                                                                                                                                                                            | ug/L                                                         | 5                                                        | 3.5                                                                | υ                          | 3.5                                                                              | U ·                                  | 3.5                                                            | U                                                                                                 | 3.5                                                                                          | u                |
| Silver                                                                                                                                                                                                                                              | ug/L                                                         | 10                                                       | 0.6                                                                | ŭ                          | 0.6                                                                              | ŭ                                    | 0.6                                                            | ŭ                                                                                                 | 0.6                                                                                          | U                |
| Sodium                                                                                                                                                                                                                                              | սց/Լ                                                         | 1000                                                     | 12300                                                              | Ŭ                          | 12300                                                                            | 0                                    | 14100                                                          | U                                                                                                 | 13900                                                                                        | U                |
| Thailium                                                                                                                                                                                                                                            | սց/է                                                         | 1000                                                     | 2.7                                                                | U                          | 3.6                                                                              | υ.                                   | 2.8                                                            | B                                                                                                 | 13900                                                                                        | u                |
| Vanadium                                                                                                                                                                                                                                            | ug/L                                                         | 50                                                       | 0.7                                                                | Ŭ                          | 0.7                                                                              | Ŭ                                    | 0.7                                                            | Ũ                                                                                                 |                                                                                              | U<br>U           |
| Zinc                                                                                                                                                                                                                                                | ug/L                                                         | 20                                                       | 5.2                                                                | Ŭ                          | 5                                                                                | Ŭ                                    | 4                                                              | Ŭ                                                                                                 | 0.7                                                                                          | U                |
| METALS(7470)                                                                                                                                                                                                                                        | -                                                            |                                                          |                                                                    |                            |                                                                                  |                                      |                                                                |                                                                                                   |                                                                                              | -                |
| Parameter                                                                                                                                                                                                                                           | Units                                                        | RL                                                       |                                                                    |                            |                                                                                  |                                      |                                                                |                                                                                                   |                                                                                              |                  |
| Mercury                                                                                                                                                                                                                                             | ug/L                                                         | 0.2                                                      | 0.1                                                                | U                          | 0.1                                                                              | U                                    | 0.1                                                            | Û                                                                                                 | 0.1                                                                                          | U                |
| SEMIVOLATILE ORGANIC<br>Parameter                                                                                                                                                                                                                   | Units                                                        | RL                                                       |                                                                    |                            | ·                                                                                |                                      | ·                                                              |                                                                                                   |                                                                                              |                  |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                              | ug/L                                                         | 10                                                       | 250                                                                | U                          | 130                                                                              | U                                    | 13                                                             | U                                                                                                 | 2900                                                                                         | U                |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                 | ug/L                                                         | 10                                                       | 250                                                                | U                          | 130                                                                              | U                                    | 13                                                             | U                                                                                                 | 2900                                                                                         | U                |
|                                                                                                                                                                                                                                                     | ug/L                                                         | 10                                                       | 050                                                                | U                          | 130                                                                              | U                                    | 13                                                             | U                                                                                                 | 2900                                                                                         | U                |
| •                                                                                                                                                                                                                                                   | •                                                            |                                                          | 250                                                                | -                          |                                                                                  |                                      |                                                                |                                                                                                   | 2900                                                                                         | U                |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                 | ug/L                                                         | 10                                                       | 250                                                                | Ū                          | 130                                                                              | U                                    | 13                                                             | U                                                                                                 | 2900                                                                                         | U                |
| 2,4,5-Trichlorophenol                                                                                                                                                                                                                               | ug/L<br>ug/L                                                 | 10<br>20                                                 | 250<br>250                                                         | Ŭ<br>U                     |                                                                                  | U<br>U                               | 13<br>13                                                       | U<br>U                                                                                            | 2900                                                                                         |                  |
| 1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol                                                                                                                                                                                                        | ug/L                                                         | 10                                                       | 250                                                                | Ū                          | 130                                                                              | -                                    |                                                                |                                                                                                   |                                                                                              | Ū                |
| 1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol                                                                                                                                                                               | ug/L<br>ug/L                                                 | 10<br>20                                                 | 250<br>250                                                         | Ŭ<br>U                     | 130<br>130                                                                       | Ū                                    | 13                                                             | Ū                                                                                                 | 2900                                                                                         | Ŭ                |
| 1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4,8-Trichlorophenol<br>2,4-Dichlorophenol                                                                                                                                                         | ug/L<br>ug/L<br>ug/L                                         | 10<br>20<br>10                                           | 250<br>250<br>250                                                  | U<br>U<br>U                | 130<br>130<br>130                                                                | Ŭ<br>U                               | 13<br>13                                                       | U<br>U                                                                                            | 2900<br>2900                                                                                 | บ<br>บ<br>บ<br>บ |
| 1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4,8-Trichlorophenol<br>2,4-Dichlorophenol                                                                                                                                                         | ug/L<br>ug/L<br>ug/L<br>ug/L                                 | 10<br>20<br>10<br>10                                     | 250<br>250<br>250<br>250                                           | ม<br>บ<br>บ<br>บ           | 130<br>130<br>130<br>130                                                         | U<br>U<br>U                          | 13<br>13<br>13                                                 | บ<br>ป<br>บ                                                                                       | 2900<br>2900<br>2900<br>2900                                                                 | ม<br>ม<br>ม<br>ม |
| 1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dimethylphenol                                                                                                                                   | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                         | 10<br>20<br>10<br>10<br>10                               | 250<br>250<br>250<br>250<br>250<br>250                             | ม<br>บ<br>บ<br>บ<br>บ      | 130<br>130<br>130<br>130<br>130                                                  | U<br>U<br>U<br>U                     | 13<br>13<br>13<br>13<br>25                                     | บ<br>บ<br>บ<br>บ                                                                                  | 2900<br>2900<br>2900<br>2900<br>2900<br>5700                                                 |                  |
| 1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dimethylphenol<br>2,4-Dimethylphenol                                                                                                             | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                 | 10<br>20<br>10<br>10<br>10<br>20                         | 250<br>250<br>250<br>250<br>250<br>250<br>500<br>250               | ม<br>บ<br>บ<br>บ<br>บ      | 130<br>130<br>130<br>130<br>130<br>130<br>250<br>130                             | บ<br>บ<br>บ<br>บ<br>บ<br>บ           | 13<br>13<br>13<br>13<br>25<br>13                               | บ<br>U<br>U<br>U<br>U<br>U<br>U                                                                   | 2900<br>2900<br>2900<br>2900<br>5700<br>2900                                                 |                  |
| 1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Diritrophenol<br>2,4-Dinitrophenol<br>2,4-Dinitrotoluene                                                                                         | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L         | 10<br>20<br>10<br>10<br>10<br>20<br>10                   | 250<br>250<br>250<br>250<br>250<br>500<br>250<br>250<br>250        | ม<br>ม<br>ม<br>ม<br>ม<br>ม | 130<br>130<br>130<br>130<br>130<br>130<br>250<br>130                             | บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ      | 13<br>13<br>13<br>13<br>13<br>25<br>13<br>13                   | บ<br>บ<br>บ<br>บ<br>บ<br>บ                                                                        | 2900<br>2900<br>2900<br>2900<br>5700<br>2900<br>2900                                         |                  |
| 1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dinitrophenol<br>2,4-Dinitrophenol<br>2,4-Dinitrophenol<br>2,6-Dinitrotoluene<br>2,6-Dinitrotoluene                                              | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 10<br>20<br>10<br>10<br>20<br>20<br>10<br>10<br>10       | 250<br>250<br>250<br>250<br>250<br>500<br>250<br>250<br>250<br>250 |                            | 130<br>130<br>130<br>130<br>130<br>250<br>130<br>130<br>130                      | ັ<br>ບ<br>ບ<br>ບ<br>ນ<br>ບ<br>ບ<br>ນ | 13<br>13<br>13<br>13<br>25<br>13<br>13<br>13                   | บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ                                                              | 2900<br>2900<br>2900<br>2900<br>5700<br>2900<br>2900<br>2900                                 |                  |
| 1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dimethylphenol<br>2,4-Dinitrophenol<br>2,4-Dinitrophenol<br>2,6-Dinitrotoluene<br>2,6-Dinitrotoluene<br>2-Chloronaphthalene<br>2-Chlorophenol    | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 10<br>20<br>10<br>10<br>20<br>10<br>10<br>10<br>10       | 250<br>250<br>250<br>250<br>500<br>250<br>250<br>250<br>250<br>250 |                            | 130<br>130<br>130<br>130<br>130<br>250<br>130<br>130<br>130<br>130               | ູ່<br>ບັບບັນ<br>ບັບບັນ<br>ບັບບັນ     | 13<br>13<br>13<br>13<br>25<br>13<br>13<br>13<br>13<br>13       |                                                                                                   | 2900<br>2900<br>2900<br>2900<br>5700<br>2900<br>2900<br>2900<br>2900<br>2900                 |                  |
| 1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dinethylphenol<br>2,4-Dinitrophenol<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>2,6-Dinitrotoluene<br>2-Chloronaphthalene<br>2-Chlorophenol<br>2-Methylnaphthalene     | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 10<br>20<br>10<br>10<br>20<br>10<br>10<br>10<br>10<br>10 | 250<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250 |                            | 130<br>130<br>130<br>130<br>130<br>250<br>130<br>130<br>130<br>130<br>130<br>130 | ນ<br>ບບບ<br>ບບບ<br>ບບບ<br>ບບ<br>ບບ   | 13<br>13<br>13<br>13<br>25<br>13<br>13<br>13<br>13<br>13<br>13 | ັນ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ | 2900<br>2900<br>2900<br>2900<br>5700<br>2900<br>2900<br>2900<br>2900<br>2900<br>2900<br>1000 |                  |
| 1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dinitrophenol<br>2,4-Dinitrophenol<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>2,6-Dinitrotoluene<br>2,6-Dinitrotoluene<br>2,6-Dinitrotoluene | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 10<br>20<br>10<br>10<br>20<br>10<br>10<br>10<br>10       | 250<br>250<br>250<br>250<br>500<br>250<br>250<br>250<br>250<br>250 |                            | 130<br>130<br>130<br>130<br>130<br>250<br>130<br>130<br>130<br>130               | ູ່<br>ບັບບັນ<br>ບັບບັນ<br>ບັບບັນ     | 13<br>13<br>13<br>13<br>25<br>13<br>13<br>13<br>13<br>13       |                                                                                                   | 2900<br>2900<br>2900<br>2900<br>5700<br>2900<br>2900<br>2900<br>2900<br>2900                 |                  |

| Site ID<br>Field Sample Number<br>Site Type<br>Collection Date<br>Depth (ft) |      |    | WA-UST-01<br>SAIC01<br>SWTR<br>08/08/02<br>0.00 |    | WA-UST-02<br>SAIC01<br>SWTR<br>08/08/02<br>13.00 |            | WA-UST-03<br>SAIC01<br>SWTR<br>08/08/02<br>0.00 |     | WA-UST-04<br>SAIC01<br>SWTR<br>08/08/02<br>11.00 | -  |
|------------------------------------------------------------------------------|------|----|-------------------------------------------------|----|--------------------------------------------------|------------|-------------------------------------------------|-----|--------------------------------------------------|----|
| 3,3'-Dichlorobenzidine                                                       | ug/L | 20 | 500                                             | U  | 250                                              | U          | 25                                              | U   | 5700                                             | υ  |
| 3-Nitroaniline                                                               | ug/L | 10 | 250                                             | U  | 130                                              | . <b>B</b> | 13                                              | บ   | 2900                                             | U  |
| 4,6-Dinitro-2-cresol                                                         | ug/L | 20 | 500                                             | U  | 250                                              | U          | 25                                              | U   | 5700                                             | U  |
| -Bromophenvi phenvi ether                                                    | ug/L | 10 | 250                                             | U  | 130                                              | U          | 13                                              | บ   | 2900                                             | U  |
| -Chloro-3-methylphenol                                                       | ug/L | 10 | 250                                             | Ū  | 130                                              | U          | 13                                              | U   | 2900                                             | U  |
| I-Chloroaniline                                                              | ug/L | 10 | 250                                             | ŨJ | 130                                              | ŬĴ         | 13                                              | ÛJ  | 2900                                             | UJ |
| -Chlorophenyl phenyl ether                                                   | ug/L | 10 | 250                                             | Ū  | 130                                              | Ū          | 13                                              | Ū   | 2900                                             | U  |
| f-Methylphenoi                                                               | ug/L | 10 | 250                                             | ŭ  | 130                                              | ŭ          | 13                                              | ũ   | 2900                                             | Ū  |
| l-Nitroaniline                                                               | ug/L | 10 | 250                                             | ŭ  | 130                                              | ŭ          | 13                                              | Ŭ   | 2900                                             | Ū  |
| I-Nitrophenol                                                                | ug/L | 20 | 500                                             | ŬJ | 250                                              | บัม        | 25                                              | ŭ   | 5700                                             | Ŭ  |
| Acenaphthene                                                                 | սց/Լ | 10 | 250                                             | Ű  | 130                                              | บั         | 13                                              | Ŭ   | 2900                                             | U  |
| Acenaphthylene                                                               | ug/L | 10 | 250                                             | Ŭ  | 130                                              | ΰ          | 13                                              | บั  | 2900                                             | Ŭ  |
| Anthracene                                                                   | ug/L | 10 | 250                                             | ŭ  | 130                                              | Ŭ          | 13                                              | ŭ   | 2900                                             | Ŭ  |
| Benzo(a)anthracene                                                           | ug/L | 10 | 250                                             | Ŭ  | 130                                              | ŭ          | 13                                              | ŭ   | 2900                                             | Ŭ  |
| Benzo(a)pyrene                                                               | ug/L | 10 | 250                                             | Ŭ  | 130                                              | ŭ          | 13                                              | ŭ   | 2900                                             | Ŭ  |
| Benzo(b)fluoranthene                                                         | ua/L | 10 | 250                                             | Ŭ  | 130                                              | ŭ          | 13                                              | ŭ   | 2900                                             | Ū  |
| Benzo(g,h,i)perylene                                                         | սց/Լ | 10 | 250                                             | Ŭ  | 130                                              | ŭ          | 13                                              | ŭ   | 2900                                             | Ŭ  |
| Benzo(k)fluoranthene                                                         | ug/L | 10 | 250                                             | Ŭ  | 130                                              | Ŭ          | 13                                              | ŭ   | 2900                                             | บั |
| bis(2-chloroethoxy) methane                                                  | ug/L | 10 | 250                                             | ŭ  | 130                                              | บั         | 13                                              | ŭ   | 2900                                             | Ŭ  |
| is(2-Chloroethyl) Ether                                                      | սց/Լ | 10 | 250                                             | Ŭ  | 130                                              | Ŭ          | 13                                              | ŭ   | 2900                                             | Ŭ  |
|                                                                              | ug/L | 10 | 250                                             | ยั | 130                                              | ยั         | 13                                              | บั  | 2900                                             | ŭ  |
| bis(2-chloroisopropyl) ether                                                 |      |    |                                                 | Ű  | 130                                              | U          | 13                                              | Ŭ   | 2900                                             | Ŭ  |
| bis(2-Ethylhexyl)phthalate                                                   | ug/L | 10 | 250                                             | -  |                                                  | _          |                                                 |     |                                                  | -  |
| Butylbenzyl phthalate                                                        | ug/L | 10 | 250                                             | U  | 130                                              | U          | - 13                                            | U   | 2900                                             | U  |
| Carbazole                                                                    | ug/L | 10 | 250                                             | U  | 130                                              | U          | 13                                              | U   | 2900                                             | U  |
| Chrysene                                                                     | ug/L | 10 | 250                                             | U  | 130                                              | U          | 13                                              | U   | 2900                                             | U  |
| Dibenzo(a,h)anthracene                                                       | ug/L | 10 | 250                                             | U  | 130                                              | U          | 13                                              | U   | 2900                                             | U  |
| Dibenzofuran                                                                 | ug/L | 10 | 250                                             | U  | 130                                              | U          | 13                                              | U   | 2900                                             | U  |
| Diethyl phthalate                                                            | ug/L | 10 | 250                                             | U  | 130                                              | U          | 13                                              | U   | 2900                                             | U  |
| Dimethyl phthalate                                                           | ug/L | 10 | 250                                             | U  | 130                                              | U          | 13                                              | U   | 2900                                             | U  |
| Di-n-butyl phthalate                                                         | ug/L | 10 | 250                                             | U  | 130                                              | U          | 1.7                                             | 1   | 2900                                             | U  |
| Di-n-octyl phthalate                                                         | ug/L | 10 | 250                                             | U  | 130                                              | U          | 13                                              | U   | 2900                                             | U  |
| Fluoranthene                                                                 | ug/L | 10 | 250                                             | U  | 130                                              | U          | 13                                              | U   | 2900                                             | U  |
| Fluorene                                                                     | ug/L | 10 | 250                                             | U  | 130                                              | U          | 13                                              | U   | 2900                                             | U  |
| Hexachlorobenzene                                                            | ug/L | 10 | 250                                             | U  | 130                                              | U          | 13                                              | U   | 2900                                             | U  |
| Hexachlorobutadiene                                                          | ug/L | 10 | 250                                             | U  | 130                                              | U          | 13                                              | U   | 2900                                             | U  |
| Hexachlorocyclopentadiene                                                    | ug/L | 10 | 250                                             | U  | 130                                              | υ.         | 13                                              | U   | 2900                                             | U  |
| Hexachtoroethane                                                             | ug/L | 10 | 250                                             | U  | 130                                              | U          | 13                                              | U   | 2900                                             | U  |
| Indeno(1,2,3-cd)pyrene                                                       | ug/L | 10 | 250                                             | U  | 130                                              | U          | 13                                              | . U | 2900                                             | U  |
| Isophorone                                                                   | ug/L | 10 | 250                                             | U  | 130                                              | U          | 13                                              | U   | 2900                                             | U  |
| Naphthalene                                                                  | ug/L | 10 | 250                                             | ່ບ | 130                                              | U          | <sup>′</sup> 13                                 | U   | 2900                                             | U  |
| Nitrobenzene                                                                 | ug/L | 10 | 250                                             | U  | 130                                              | Ú          | 13                                              | U   | 2900                                             | U  |
| N-Nitrosodi-n-propylamine                                                    | ug/L | 10 | 250                                             | U  | 130                                              | Ū          | 13                                              | Ū   | 2900                                             | Ū  |
| N-Nitrosodiphenylamine                                                       | ug/L | 10 | 250                                             | U  | 130                                              | Ũ          | 13                                              | Ū   | 2900                                             | Ū  |
| Pentachlorophenol                                                            | ug/L | 20 | 500                                             | U  | 250                                              | Ū          | 25                                              | Ŭ   | 5700                                             | Ū  |
| Phenanthrene                                                                 | ug/L | 10 | 250                                             | Ũ  | 130                                              | Ŭ          | 13                                              | Ŭ   | 2900                                             | Ū  |
| Phenol                                                                       | ug/L | 10 | 250                                             | Ū  | 130                                              | Ŭ          | 13                                              | Ū   | 2900                                             | บ  |
| Pyrane                                                                       | ug/L | 10 | 250                                             | ũ  | 130                                              | Ŭ.         | 13                                              | ŭ   | 2900                                             | ŭ  |

# Table G-2. Data Presentation: UST Liquids Results, Site 3 - Two 600,000-Gallon Fuel TanksWallops Flight Facility, Accomack County, Virginia (continued)

| Table G-2. Data Presentation: UST Liquids Results, Site 3 - Two 600,000-Gallon Fuel Tanks |  |
|-------------------------------------------------------------------------------------------|--|
| Wallops Flight Facility, Accomack County, Virginia (continued)                            |  |

| Site ID                   | ······································ |                | WA-UST-01 |     | WA-UST-02 |    | WA-UST-03 |     | WA-UST-04 |           |
|---------------------------|----------------------------------------|----------------|-----------|-----|-----------|----|-----------|-----|-----------|-----------|
| Field Sample Number       |                                        |                | SAIC01    |     | SAIC01    |    | SAIC01    |     | SAIC01    |           |
| Site Type                 |                                        |                | SWTR      |     | SWTR      |    | SWTR      |     | SWTR      |           |
| Collection Date           |                                        |                | 08/08/02  |     | 08/08/02  |    | 08/08/02  |     | 08/08/02  |           |
| Depth (ft)                |                                        |                | 0.00      |     | 13.00     | ·  | 0.00      |     | 11.00     |           |
| VOLATILE ORGANIC COMPO    |                                        | (0)            |           |     |           |    |           |     |           |           |
| Parameter                 | Units                                  | RL             | ·····     |     |           |    |           |     |           |           |
| 1,1,1-Trichloroethane     | ug/L                                   | 1              | 5         | υ   | 5         | U  | 1         | U   | 25        | IJ        |
| 1,1,2,2-Tetrachloroethane | ug/L                                   | 1              | 5         | บ   | 5         | U  | 1         | U   | 25        | UJ        |
| 1,1,2-Trichloroethane     | ug/L                                   | 1              | 5         | U   | . 5       | U. | 1         | U   | 25        | UJ        |
| 1,1-Dichloroethane        | ug/L                                   | 1              | . 5       | U   | 5         | U  | 1         | U   | 25        | UJ        |
| 1,1-Dichloroethene        | ug/L                                   | 1 -            | 5         | U   | 5         | U  | 1         | U   | 25        | UJ        |
| 1,2-Dichloroethane        | ug/L                                   | 1              | 5         | U   | 5         | υ  | 1         | U   | 25        | UJ        |
| 1,2-Dichloropropane       | ug/L                                   | 1              | 5         | U   | 5         | U  | 1         | U   | 25        | UJ        |
| 2-Hexanone                | ug/L                                   | 5              | 25        | U   | 25        | U  | 5         | U   | 130       | UJ        |
| Acetone                   | ug/L                                   | 5              | 25        | U.  | 25        | U  | 5         | U   | 140       | UJ        |
| Benzene                   | ug/L                                   | 1.             | 5         | U   | 5         | U  | 8.7       |     | 25        | UJ        |
| Bromodichloromethane      | ug/L                                   | 1              | 5         | U   | 5         | U  | 1         | . บ | 25        | <b>UJ</b> |
| Bromoform                 | ug/L                                   | 1 -            | 5         | U   | 5         | υ  | 1         | U   | 25        | UJ        |
| Bromomethane              | ug/L                                   | 1              | 5         | U   | 5         | U  | 1         | ย   | 25        | UJ        |
| Carbon disulfide          | ug/L                                   | 1              | 5         | U   | 5         | U  | 1         | U   | 42        | UJ        |
| Carbon Tetrachloride      | ug/L                                   | 1              | 5         | U   | 5         | U  | 1         | U   | 25        | បរ        |
| Chlorobenzene             | ug/L                                   | . 1            | 5         | U   | 5         | U  | 1         | U   | 25        | UJ        |
| Chloroethane              | ug/L                                   | - x <b>1</b> x | 5         | U   | 5         | U  | 1         | U   | 25        | UJ        |
| Chloroform                | ug/L                                   | 1              | 5         | U   | 5         | U  | 1         | U   | 25        | UJ        |
| Chloromethane             | ug/L                                   | 1              | 5         | U   | 5         | Ū  | 1         | Ū   | 25        | UJ        |
| cis-1,2-Dichloroethene    | ug/L                                   | 1              | 5         | Ū.  | 5         | Ū. | 1         | Ũ   | 25        | UJ        |
| cis-1,3-Dichloropropene   | ug/L                                   | 1              | 5         | Ŭ   | 5         | Ū  | 1         | ŭ   | 25        | ŪJ        |
| Dibromochloromethane      | ua/L                                   | 1              | . 5       | ũ   | 5         | Ū  | 1         | ū   | 25        | UJ        |
| Ethylbenzene              | ug/L                                   | 1              | 5         | Ū   | 5         | Ŭ  | 1         | Ŭ   | 28        | J         |
| m-and/or p-Xylene         | ug/L                                   | 1              | 5         | ū   | 5         | -  | 4.1       | •.  | 33        | Ĵ.        |
| Methyl ethyl ketone       | ug/L                                   | 5              | 25        | ŪJ  | 25        |    | 5         | ÚJ  | 130       | บับ       |
| Methyl isobutyl ketone    | ug/L                                   | 5              | 25        | Ū   | 25        | Ŭ  | 5         | ŭ   | 130       | - ŬĴ      |
| Methylene Chloride        | ug/L                                   | 1              | 7.4       | ũ   | 6.4       | -  | 1.1       | ŭ   | 31        | Ū         |
| o-xylene                  | ug/L                                   | - i -          | 5         | Ŭ   | 5         |    | 1.5       | v   | 25        | ŰĴ        |
| Styrene                   | ug/L                                   | · .            | 5         | Ŭ   | 5         |    | 1.5       | Ð   | 25        | - UJ      |
| Tetrachloroethene         | ug/L                                   | 1              | . 5       | ັບັ | 5         |    | 1         | บั  | 25        |           |
| Toluene                   | ug/L                                   | i              | 5         | ŭ   | 5         |    | 5.1       | v   | 25        |           |
| trans-1,2-Dichloroethene  | ug/L                                   | 1              | 5         | Ŭ   | 5         |    | 5.1       | U   | 25        |           |
| trans-1.3-Dichloropropene | ug/L                                   | 1              | 5         | บั  | 5         | -  |           | Ŭ   | 25        |           |
| Trichloroethene           | ug/L                                   | 1              | 5         | ŭ   | 5         |    | 4         | U U | 25        |           |
| Vinyl Chloride            | ug/L                                   |                | 5         | Ŭ   | . 5       |    | 1         | -   | 25        |           |

### Table G-2. Data Presentation: UST Liquids Results, Site 3 - Two 600,000-Gallon Fuel Tanks Wallops Flight Facility, Accomack County, Virginia (continued)

#### Footnates:

B - Metals: Reported value was less than the contract required detection limit but greater than or equal to the instrument detection limit.

B - Organics: Analyte was found in the associated method blank. Validation of the data did not result in this compound being qualified as nondetect due to blank contamination.

Therefore this result is considered to be site related.

D - The value for the target analyte was calculated from a dilution.

E - Metals: The reported value is estimated because of the presence of interferents.

E - Organics: Concentration range exceeded for this analyte.

J - Value is estimated.

N - Metals: Spiked sample recovery not within control limits.

N - Organics: Tentatively identified compound based on mass spectral library search.

P - There is greater than 25% difference for detected concentrations between the two GC columns for the associated pesticide/PCB target analyte.

R - Value is rejected.

U - Compound was analyzed for but not detected.

UJ - Compound was analyzed for but not detected and is considered an estimate.

X - The mass spectrum does not meet EPA CLP criteria for confirmation, but compound presence is strongly suspected.

\* - Duplicate analysis not within control limits.

N/A - Compound not analyzed for.

NF - Data not found.

RL - Reporting Limit for each method. For SW846 methods, the samples are reported down to the method detection limits (MDL). For metals, the samples are reported down to the instrument detection limit (IDL).

MDL - Method Detection Limit.

SAICXXR - An SAIC field sample number followed by an "R" designates a recollected sample.

G-11

| Site ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |                                                                                         | SB-IWL-01                                                          |                                                                                             | SB-IWL-01                                                                                      |                                                                                                    | SB-IWL-02                                                                        |                                                                                             | SB-IWL-02<br>SAIC02                                                     |                                                                                             | SB-IWL-03<br>SAIC01                                                |                                                                                             | SB-IWL-03<br>SAIC02                                                              |                            | SB-IWL-04<br>SAIC01                                                |                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------|-----------------------|
| ield Sample Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |                                                                                         | SAIC01                                                             |                                                                                             | SAIC02                                                                                         |                                                                                                    | SAIC01<br>BORE                                                                   |                                                                                             | BORE                                                                    |                                                                                             | BORE                                                               |                                                                                             | BORE                                                                             |                            | BORE                                                               |                       |
| lite Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                          |                                                                                         | BORE                                                               |                                                                                             | BORE                                                                                           |                                                                                                    | 08/06/02                                                                         |                                                                                             | 08/06/02                                                                |                                                                                             | 08/06/02                                                           |                                                                                             | 08/06/02                                                                         |                            | 08/07/02                                                           |                       |
| Collection Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                                                         | 08/06/02                                                           |                                                                                             | 08/06/02                                                                                       |                                                                                                    | 0.00                                                                             |                                                                                             | 18.00                                                                   |                                                                                             | 0.00                                                               |                                                                                             | 19.00                                                                            |                            | 13.00                                                              |                       |
| Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                          |                                                                                         | 0.00                                                               |                                                                                             | 16.50                                                                                          |                                                                                                    | 0.00                                                                             |                                                                                             | 10.00                                                                   |                                                                                             | 0.00                                                               |                                                                                             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                          | <u> </u>                   |                                                                    |                       |
| AETALS(6010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                          |                                                                                         |                                                                    |                                                                                             | · · · · · · · · · · · · · · · · · · ·                                                          |                                                                                                    |                                                                                  |                                                                                             |                                                                         |                                                                                             |                                                                    |                                                                                             |                                                                                  |                            |                                                                    |                       |
| arameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Units                                                                                                    | RL                                                                                      |                                                                    |                                                                                             | 2440                                                                                           |                                                                                                    | 3960                                                                             |                                                                                             | 6590                                                                    |                                                                                             | 3350                                                               |                                                                                             | 508                                                                              |                            | 2610                                                               |                       |
| luminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MG/KG                                                                                                    | 20                                                                                      | 4450                                                               |                                                                                             |                                                                                                |                                                                                                    |                                                                                  | UJ                                                                                          | 0.2                                                                     | UJ                                                                                          | 0.2                                                                | UJ                                                                                          | 0.2                                                                              | UJ                         | 0.23                                                               | IJJ                   |
| ntimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MG/KG                                                                                                    | 0.6                                                                                     | 0.25                                                               | UJ                                                                                          | 0.22                                                                                           | UJ                                                                                                 | 0.2                                                                              | 01                                                                                          |                                                                         | UJ                                                                                          |                                                                    | B                                                                                           | 0.7                                                                              | B                          | 1.2                                                                | B                     |
| rsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MG/KG                                                                                                    | 1                                                                                       | 1.8                                                                |                                                                                             | 2                                                                                              |                                                                                                    | 1.6                                                                              |                                                                                             | 2                                                                       |                                                                                             | 1.1                                                                | D                                                                                           |                                                                                  | D                          |                                                                    | U                     |
| larium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MG/KG                                                                                                    | 20                                                                                      | 10.5                                                               | _                                                                                           | 3.3                                                                                            |                                                                                                    | 9.5                                                                              |                                                                                             | 18.3                                                                    | · _ ·                                                                                       | 4.3                                                                | <u>.</u>                                                                                    | 1.1                                                                              |                            | 4.4                                                                |                       |
| eryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MG/KG                                                                                                    | 0.5                                                                                     | 0.11                                                               | B                                                                                           | 0.06                                                                                           | В                                                                                                  | 0.09                                                                             | B                                                                                           | 0.12                                                                    | в                                                                                           | 0.08                                                               | 8                                                                                           | 0.02                                                                             | в                          | 0.07                                                               | B                     |
| admium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MG/KG                                                                                                    | 0.5                                                                                     | 0.02                                                               | B                                                                                           | 0.02                                                                                           | U                                                                                                  | 0.02                                                                             | บ                                                                                           | 0.02                                                                    | บ                                                                                           | 0.02                                                               | U                                                                                           | 0.02                                                                             | U                          | 0.02                                                               | U                     |
| alcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MG/KG                                                                                                    | 100                                                                                     | 97.8                                                               |                                                                                             | 101                                                                                            |                                                                                                    | 48.1                                                                             | в                                                                                           | 144                                                                     |                                                                                             | 59.2                                                               | B                                                                                           | 23.3                                                                             | B                          | 108                                                                |                       |
| hromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MG/KG                                                                                                    | 1                                                                                       | 4.2                                                                |                                                                                             | 2.1                                                                                            |                                                                                                    | 3.3                                                                              |                                                                                             | 4.2                                                                     |                                                                                             | 3.5                                                                |                                                                                             | 0.8                                                                              | υ                          | 11.2                                                               |                       |
| obalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MG/KG                                                                                                    | 5                                                                                       | 1                                                                  | J                                                                                           | 0.19                                                                                           | UJ                                                                                                 | 0.6                                                                              | ្រ                                                                                          | 0.9                                                                     | J                                                                                           | 0.7                                                                | J                                                                                           | 0.08                                                                             | UJ .                       | 0.62                                                               |                       |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MG/KG                                                                                                    | 1                                                                                       | 3.1                                                                |                                                                                             | 0,5                                                                                            | B                                                                                                  | 3.2                                                                              |                                                                                             | 1                                                                       |                                                                                             | 2.7                                                                |                                                                                             | 0.38                                                                             | в                          | . 2                                                                |                       |
| ron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MG/KG                                                                                                    | 10                                                                                      | 2900                                                               |                                                                                             | 1110                                                                                           |                                                                                                    | 1900                                                                             |                                                                                             | 1710                                                                    |                                                                                             | 2010                                                               |                                                                                             | 683                                                                              |                            | 2020                                                               |                       |
| ead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MG/KG                                                                                                    | 0.3                                                                                     | 3.6                                                                |                                                                                             | 0.7                                                                                            |                                                                                                    | 2.8                                                                              |                                                                                             | 2.1                                                                     |                                                                                             | 4.5                                                                |                                                                                             | 0.6                                                                              | B                          | 1.4                                                                |                       |
| lagnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MG/KG                                                                                                    | 100                                                                                     | 263                                                                |                                                                                             | 145                                                                                            |                                                                                                    | 145                                                                              |                                                                                             | 205                                                                     |                                                                                             | 180                                                                |                                                                                             | 30.8                                                                             |                            | 143                                                                |                       |
| langanese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MG/KG                                                                                                    | 1.5                                                                                     | 34.4                                                               | _                                                                                           | 5.8                                                                                            |                                                                                                    | 21.9                                                                             | 1.1                                                                                         | 28                                                                      |                                                                                             | 18.7                                                               |                                                                                             | 4                                                                                |                            | 38.3                                                               |                       |
| lickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MG/KG                                                                                                    | 1                                                                                       | 2.3                                                                | 1                                                                                           | 0.62                                                                                           | J                                                                                                  | 1.3                                                                              | J                                                                                           | 1                                                                       | J                                                                                           | 2.1                                                                | J                                                                                           | 0.2                                                                              | J                          | 1.7                                                                | J                     |
| otassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MG/KG                                                                                                    | 100                                                                                     | 162                                                                |                                                                                             | 146                                                                                            |                                                                                                    | 114                                                                              |                                                                                             | 204                                                                     |                                                                                             | 118                                                                |                                                                                             | 29                                                                               | U                          | 131                                                                |                       |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MG/KG                                                                                                    | 0.5                                                                                     | 0.2                                                                | U.                                                                                          | 0.22                                                                                           | U                                                                                                  | 0.2                                                                              | U                                                                                           | 0.2                                                                     | U                                                                                           | 0.2                                                                | U                                                                                           | 0.2                                                                              | υ                          | 0.23                                                               | U                     |
| lilver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MG/KG                                                                                                    | 1                                                                                       | 0.1                                                                | 8                                                                                           | 0.06                                                                                           | U                                                                                                  | 0.06                                                                             | в                                                                                           | 0.06                                                                    | U                                                                                           | 0.06                                                               | U                                                                                           | 0.06                                                                             | Ū.                         | 0.05                                                               | υ                     |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MG/KG                                                                                                    | 100                                                                                     | 51.3                                                               | UJ                                                                                          | 55                                                                                             | UJ                                                                                                 | 46.3                                                                             | UJ                                                                                          | 57.4                                                                    | UJ                                                                                          | 45.9                                                               | UJ                                                                                          | 42.6                                                                             | UJ                         | 75.3                                                               | UJ                    |
| hallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MG/KG                                                                                                    | 1                                                                                       | 0.5                                                                | U                                                                                           | 0.5                                                                                            | U                                                                                                  | 0.5                                                                              | U.                                                                                          | 0.5                                                                     | U                                                                                           | 0.5                                                                | U                                                                                           | 0.5                                                                              | U                          | 0.51                                                               | U.                    |
| /anadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MG/KG                                                                                                    | 5                                                                                       | 6.7                                                                | J                                                                                           | 2.6                                                                                            | J                                                                                                  | 4.6                                                                              | J                                                                                           | 4.9                                                                     | J                                                                                           | 4.7                                                                | J                                                                                           | 0.8                                                                              | J                          | 3.2                                                                |                       |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MG/KG                                                                                                    | 2                                                                                       | . 7.1                                                              |                                                                                             | 3.8                                                                                            |                                                                                                    | 4.9                                                                              |                                                                                             | 3.9                                                                     |                                                                                             | 6.7                                                                |                                                                                             | 1.7                                                                              |                            | 3.3                                                                |                       |
| METALS(7471)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                          |                                                                                         |                                                                    |                                                                                             |                                                                                                |                                                                                                    |                                                                                  |                                                                                             |                                                                         |                                                                                             |                                                                    |                                                                                             |                                                                                  |                            |                                                                    |                       |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Units                                                                                                    | RL                                                                                      | •                                                                  |                                                                                             |                                                                                                |                                                                                                    |                                                                                  |                                                                                             |                                                                         |                                                                                             |                                                                    |                                                                                             |                                                                                  |                            |                                                                    |                       |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MG/KG                                                                                                    | 0,1                                                                                     | 0.02                                                               | В                                                                                           | 0.02                                                                                           | U                                                                                                  | 0,02                                                                             | U                                                                                           | 0.02                                                                    | U                                                                                           | 0.02                                                               | U                                                                                           | 0.02                                                                             | U                          | 0.02                                                               | U                     |
| SEMIVOLATILE ORGANIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COMPOUNDS                                                                                                | (8270)                                                                                  |                                                                    |                                                                                             |                                                                                                |                                                                                                    |                                                                                  |                                                                                             |                                                                         |                                                                                             |                                                                    |                                                                                             |                                                                                  |                            |                                                                    |                       |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Units                                                                                                    | RL                                                                                      | · · · · · · · · · · · · · · · · · · ·                              |                                                                                             |                                                                                                |                                                                                                    |                                                                                  |                                                                                             |                                                                         |                                                                                             |                                                                    |                                                                                             |                                                                                  |                            |                                                                    |                       |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                          |                                                                                         |                                                                    |                                                                                             |                                                                                                |                                                                                                    |                                                                                  |                                                                                             |                                                                         | _                                                                                           |                                                                    | U                                                                                           | 390                                                                              | U                          | 350                                                                | U                     |
| A Disklassk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/kg                                                                                                    | 330                                                                                     | 340                                                                | U                                                                                           | 430                                                                                            | U                                                                                                  | 360                                                                              | U                                                                                           | 400                                                                     | U                                                                                           | 340                                                                | U                                                                                           |                                                                                  |                            |                                                                    | U                     |
| I,Z-LICNIOFODENZENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg<br>ug/kg                                                                                           | 330<br>330                                                                              | 340<br>340                                                         | -                                                                                           | 430<br>430                                                                                     | U<br>U                                                                                             | 360<br>360                                                                       | U<br>U                                                                                      | 400 400                                                                 |                                                                                             | 340<br>340                                                         | U                                                                                           | 390                                                                              | ŭ                          | 350                                                                |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ug/kg                                                                                                    |                                                                                         |                                                                    | บ                                                                                           |                                                                                                |                                                                                                    |                                                                                  | U                                                                                           |                                                                         | U                                                                                           |                                                                    |                                                                                             | 390                                                                              |                            | 350                                                                | Ŭ                     |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg<br>ug/kg                                                                                           | 330                                                                                     | 340                                                                | Ū<br>U                                                                                      | 430<br>430                                                                                     | U                                                                                                  | 360                                                                              | U<br>U                                                                                      | 400                                                                     | U<br>U                                                                                      | 340<br>340                                                         | U<br>U                                                                                      | 390<br>390                                                                       | Ū                          | 350                                                                |                       |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/kg<br>ug/kg<br>ug/kg                                                                                  | 330<br>330<br>330                                                                       | 340<br>340<br>340                                                  | U<br>U<br>U                                                                                 | 430<br>430<br>430                                                                              | U<br>U<br>U                                                                                        | 360<br>360<br>360                                                                | U<br>U<br>U                                                                                 | 400<br>400<br>400                                                       | U<br>U<br>U                                                                                 | 340<br>340<br>340                                                  | U<br>U<br>U                                                                                 | 390<br>390<br>390                                                                | U<br>U<br>U                | 350<br>350                                                         | Ū<br>U                |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                                                                         | 330<br>330                                                                              | 340<br>340                                                         | U<br>U<br>U                                                                                 | 430<br>430<br>430<br>430                                                                       | U                                                                                                  | 360<br>360                                                                       | ม<br>บ<br>บ<br>บ                                                                            | 400<br>400                                                              | U<br>U<br>U<br>U                                                                            | 340<br>340                                                         | U<br>U                                                                                      | 390<br>390<br>390<br>390                                                         | U<br>U                     | 350                                                                | Ū<br>U<br>U           |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4,8-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                                                                | 330<br>330<br>330<br>660<br>330                                                         | 340<br>340<br>340<br>340                                           | บ<br>บ<br>บ<br>บ<br>บ                                                                       | 430<br>430<br>430<br>430<br>430<br>430                                                         | U<br>U<br>U<br>U<br>U                                                                              | 360<br>360<br>360<br>360<br>360<br>360                                           | ม<br>บ<br>บ<br>บ<br>บ                                                                       | 400<br>400<br>400<br>400                                                | U<br>U<br>U<br>U<br>U                                                                       | 340<br>340<br>340<br>340<br>340<br>340                             | บ<br>บ<br>บ<br>บ                                                                            | 390<br>390<br>390<br>390<br>390<br>390                                           | U<br>U<br>U<br>U           | 350<br>350<br>350<br>350                                           | บ<br>บ<br>บ<br>บ      |
| f,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>2,4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                                                       | 330<br>330<br>330<br>660<br>330<br>330                                                  | 340<br>340<br>340<br>340<br>340<br>340                             | บ<br>บ<br>บ<br>บ<br>บ                                                                       | 430<br>430<br>430<br>430<br>430<br>430<br>430                                                  | U<br>U<br>U<br>U<br>U                                                                              | 360<br>360<br>360<br>360<br>360<br>360                                           |                                                                                             | 400<br>400<br>400<br>400<br>400<br>400                                  | U<br>U<br>U<br>U<br>U                                                                       | 340<br>340<br>340<br>340<br>340<br>340<br>340                      | U<br>U<br>U<br>U<br>U                                                                       | 390<br>390<br>390<br>390<br>390<br>390<br>390                                    | U<br>U<br>U<br>U<br>U<br>U | 350<br>350<br>350<br>350<br>350<br>350                             | บ<br>บ<br>บ<br>บ<br>บ |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                                              | 330<br>330<br>330<br>660<br>330                                                         | 340<br>340<br>340<br>340<br>340<br>340                             |                                                                                             | 430<br>430<br>430<br>430<br>430<br>430<br>430<br>430                                           | U<br>U<br>U<br>U<br>U<br>U                                                                         | 360<br>360<br>360<br>360<br>360<br>360                                           | บ<br>บ<br>บ<br>บ<br>บ<br>บ                                                                  | 400<br>400<br>400<br>400<br>400                                         | U<br>U<br>U<br>U<br>U<br>U                                                                  | 340<br>340<br>340<br>340<br>340<br>340<br>340<br>340               | บ<br>บ<br>บ<br>บ                                                                            | 390<br>390<br>390<br>390<br>390<br>390<br>390<br>390                             | U<br>U<br>U<br>U           | 350<br>350<br>350<br>350<br>350<br>350<br>350                      |                       |
| 7,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dinethylphenol<br>2,4-Dinethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                                              | 330<br>330<br>330<br>660<br>330<br>330<br>330<br>330<br>660                             | 340<br>340<br>340<br>340<br>340<br>340<br>340                      |                                                                                             | 430<br>430<br>430<br>430<br>430<br>430<br>430<br>430<br>870                                    | บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ                                                                    | 360<br>360<br>360<br>360<br>360<br>360<br>360<br>360<br>720                      |                                                                                             | 400<br>400<br>400<br>400<br>400<br>400<br>400<br>800                    | U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U                                                   | 340<br>340<br>340<br>340<br>340<br>340<br>340<br>880               |                                                                                             | 390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>770                      |                            | 350<br>350<br>350<br>350<br>350<br>350<br>350<br>690               | บบบบบบบบบบบบบบบบบ     |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dimethylphenol<br>2,4-Dinitrophenol<br>2,4-Dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                                     | 330<br>330<br>330<br>660<br>330<br>330<br>330<br>660<br>330                             | 340<br>340<br>340<br>340<br>340<br>340<br>340<br>680<br>340        |                                                                                             | 430<br>430<br>430<br>430<br>430<br>430<br>430<br>430<br>870<br>430                             | ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ<br>ບ        | 360<br>360<br>360<br>360<br>360<br>360<br>360<br>720<br>360                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 400<br>400<br>400<br>400<br>400<br>400<br>400<br>800<br>800<br>400      | บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ                                                   | 340<br>340<br>340<br>340<br>340<br>340<br>340<br>880<br>340        |                                                                                             | 390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>770<br>390               |                            | 350<br>350<br>350<br>350<br>350<br>350<br>350<br>690<br>350        |                       |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4-B-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dinitrophenol<br>2,4-Dinitrophenol<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                            | 330<br>330<br>660<br>330<br>330<br>330<br>660<br>330<br>330<br>330                      | 340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 430<br>430<br>430<br>430<br>430<br>430<br>430<br>870<br>430<br>430<br>430                      | บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ        | 360<br>360<br>360<br>360<br>360<br>360<br>360<br>720<br>360<br>360               |                                                                                             | 400<br>400<br>400<br>400<br>400<br>400<br>400<br>800<br>400<br>400      | U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U                                                   | 340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340 | U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U | 390<br>390<br>390<br>390<br>390<br>390<br>390<br>770<br>390<br>390               |                            | 350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350 |                       |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dinitrophenol<br>2,4-Dinitrophenol<br>2,4-Dinitrobluene<br>2,6-Dinitrotoluene<br>2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                   | 330<br>330<br>860<br>330<br>330<br>330<br>330<br>860<br>330<br>330<br>330               | 340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340 | ับ<br>บบ<br>บบ<br>บบ<br>บบ<br>บบ<br>บบ<br>บบ<br>บบ<br>บบ<br>บบ<br>บบ<br>บบ<br>บ             | 430<br>430<br>430<br>430<br>430<br>430<br>430<br>870<br>430<br>430<br>430<br>430               | บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ        | 360<br>360<br>360<br>360<br>360<br>360<br>360<br>720<br>360<br>360<br>360<br>360 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 400<br>400<br>400<br>400<br>400<br>400<br>800<br>800<br>400<br>400      | ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม | 340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340 | U U U U U U U U U U U U U U U U U U U                                                       | 390<br>390<br>390<br>390<br>390<br>390<br>390<br>770<br>390<br>390<br>390        |                            | 350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350 |                       |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dinitrophenol<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>2,6-Dinitrotoluene<br>2-Chloronaphthalene<br>2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg                   | 330<br>330<br>860<br>330<br>330<br>330<br>330<br>860<br>330<br>330<br>330<br>330<br>330 | 340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340 | ับ<br>บบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบ                                                   | 430<br>430<br>430<br>430<br>430<br>430<br>430<br>870<br>430<br>430<br>430<br>430<br>430        | บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ        | 360<br>360<br>360<br>360<br>360<br>360<br>360<br>720<br>360<br>360<br>360<br>360 | บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ | 400<br>400<br>400<br>400<br>400<br>400<br>800<br>400<br>400<br>400      | ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม | 340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340 | U U U U U U U U U U U U U U U U U U U                                                       | 390<br>390<br>390<br>390<br>390<br>390<br>390<br>770<br>390<br>390<br>390<br>390 |                            | 350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350 |                       |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>2,4-Dimethylphenol<br>2,4-Dimethylphenol<br>2,4-Dimitrotoluene<br>2,6-Dimitrotoluene<br>2,6-Dimitrotoluene<br>2-Chloronaphthalene<br>2-Chlorophenol<br>2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg          | 330<br>330<br>330<br>660<br>330<br>330<br>660<br>330<br>330<br>330                      | 340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340 | บบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบบ                                                     | 430<br>430<br>430<br>430<br>430<br>430<br>430<br>870<br>430<br>430<br>430<br>430<br>430<br>430 | <b>U</b><br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U<br>U | 360<br>360<br>360<br>360<br>360<br>360<br>360<br>360<br>360<br>360               | ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม<br>ม | 400<br>400<br>400<br>400<br>400<br>400<br>800<br>800<br>400<br>400      | บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ | 340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340 | U U U U U U U U U U U U U U U U U U U                                                       | 390<br>390<br>390<br>390<br>390<br>390<br>390<br>770<br>390<br>390<br>390<br>390 |                            | 350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350 |                       |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4-B-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dimitrophenol<br>2,4-Dimitrophenol<br>2,4-Dimitrotoluene<br>2,6-Dimitrotoluene<br>2,6-Dimitrotoluene<br>2-Chloronaphthalene<br>2-Chloronaphthalene<br>2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg | 330<br>330<br>660<br>330<br>330<br>330<br>660<br>330<br>330<br>330                      | 340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340 | -<br>v<br>v<br>v<br>v<br>v<br>v<br>v<br>v<br>v<br>v<br>v<br>v<br>v                          | 430<br>430<br>430<br>430<br>430<br>430<br>430<br>430<br>430<br>430                             | 5<br>5<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7   | 360<br>360<br>360<br>360<br>360<br>360<br>360<br>360<br>360<br>360               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 400<br>400<br>400<br>400<br>400<br>400<br>800<br>800<br>800<br>400<br>4 | บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ<br>บ | 340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340 | U U U U U U U U U U U U U U U U U U U                                                       | 390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390<br>390               |                            | 350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350 |                       |
| 1,2-Dichlorobenzene<br>1,3-Dichlorobenzene<br>1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol<br>2,4-Dimethylphenol<br>2,4-Dinitrobluene<br>2,4-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,6-Dinitrobluene<br>2,7-Dinitrobluene<br>2,7-Dinitrobluene<br>2,7-Dinitrobluene<br>2,7-Dinitrobluene<br>2,7-Dinitrobluene<br>2,7-Dinitrobluene<br>2,7-Dinitrobluene<br>2,7-Dinitrobluene<br>2,7-Dinitrobluene<br>2,7-Dinitrobluene<br>2,7-Dinitrobluene<br>2,7-Dinitrobluene<br>2,7-Dinitrobluene<br>2,7-Dinitrobluene | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg          | 330<br>330<br>330<br>660<br>330<br>330<br>660<br>330<br>330<br>330                      | 340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340 |                                                                                             | 430<br>430<br>430<br>430<br>430<br>430<br>430<br>870<br>430<br>430<br>430<br>430<br>430<br>430 | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5        | 360<br>360<br>360<br>360<br>360<br>360<br>360<br>360<br>360<br>360               | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 400<br>400<br>400<br>400<br>400<br>400<br>800<br>800<br>400<br>400      | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340 | U U U U U U U U U U U U U U U U U U U                                                       | 390<br>390<br>390<br>390<br>390<br>390<br>390<br>770<br>390<br>390<br>390<br>390 |                            | 350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350 |                       |

Created on 11/7/2002

.

1 ]

# Table G-3. Data Presentation: Soil Boring Results, Industrial Waste/Sanitary LandfillWallops Flight Facility, Accomack County, Virginia (continued)

| Site ID<br>Field Sample Number<br>Site Type<br>Collection Date |         |     | SB-IWL-01<br>SAIC01<br>BORE<br>08/06/02 |    | SB-IWL-01<br>SAIC02<br>BORE<br>08/06/02 |    | SB-IWL-02<br>SAIC01<br>BORE<br>08/06/02 |     | SB-IWL-02<br>SAIC02<br>BORE<br>08/06/02 |     | SB-IWL-03<br>SAIC01<br>BORE<br>08/06/02<br>0.00 |    | SB-IWL-03<br>SAIC02<br>BORE<br>08/06/02<br>19.00 |    | SB-IWL-04<br>SAIC01<br>BORE<br>05/07/02<br>13.00 |            |
|----------------------------------------------------------------|---------|-----|-----------------------------------------|----|-----------------------------------------|----|-----------------------------------------|-----|-----------------------------------------|-----|-------------------------------------------------|----|--------------------------------------------------|----|--------------------------------------------------|------------|
| Depth (ft)                                                     | <u></u> |     | 0.00                                    |    | 16.50                                   |    | 0.00                                    |     | 16.00                                   |     | 0.00                                            |    | 18.00                                            |    | 10.00                                            |            |
| 3,3'-Dichlorobenzidine                                         | ug/kg   | 660 | 680                                     | U  | 870                                     | U  | 720                                     | U   | 800                                     | U   |                                                 | Ú  | • • •                                            | U  | 690                                              |            |
| 3-Nitroaniline                                                 | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | U   | 400                                     | U   |                                                 | U  |                                                  | U  | 350                                              | U          |
| 4,6-Dinitro-2-cresol                                           | ug/kg   | 660 | 660                                     | U  | 870                                     | U  | . 720                                   | U   | 800                                     | U   |                                                 | U  |                                                  | U  | 690                                              | U          |
| 4-Bromophenyl phenyl ether                                     | ug/kg   | 330 | 340                                     | U  | 430                                     | บ  | 360                                     | U   | 400                                     | U   |                                                 | U  |                                                  | υ  | 350                                              |            |
| 4-Chloro-3-methylphenol                                        | ug/kg   | 330 | 340                                     | ្ម | 430                                     | U  | 360                                     | U   | 400                                     | U   |                                                 | U  |                                                  | U  | 350                                              | Ŭ          |
| 4-Chloroaniline                                                | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | U   | 400                                     | .U  |                                                 | U  |                                                  | U  | 350                                              |            |
| 4-Chlorophenyl phenyl ether                                    | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | U   | 400                                     | U   |                                                 | U  |                                                  | U  | 350                                              | ι          |
| 4-Methylphenol                                                 | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | U   | 400                                     | U   |                                                 | บ  |                                                  | U  | 350                                              |            |
| 4-Nitroaniline                                                 | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | U   | 400                                     | υ   |                                                 | U  |                                                  | U  | . 350                                            |            |
| 4-Nitrophenol                                                  | ug/kg   | 660 | 680                                     | U  | 870                                     | υ  | 720                                     | U   | 800                                     | U   |                                                 | U  | 770                                              | U  | 690                                              |            |
| Acenaphthene                                                   | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | U   | 400                                     | U   |                                                 | U  |                                                  | υ  | 350                                              |            |
| Acenaphthylene                                                 | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | U   | 400                                     | ย   |                                                 | U  | 390                                              | U  | 350                                              |            |
| Anthracene                                                     | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | U   | 400                                     | U   | 340                                             | U  | 390                                              | U  | 350                                              | ų ا        |
| Benzo(a)anthracene                                             | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | U   | 400                                     | U   | 340                                             | U  | 390                                              | U  | 350                                              | - L        |
| Benzo(a)pyrene                                                 | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | υ   | 400                                     | .U  | 340                                             | U  | 390                                              | U  | 350                                              | ι L        |
| Benzo(b)fluoranthene                                           | ug/kg   | 330 | 340                                     | U. | 430                                     | U  | 360                                     | U   | 400                                     | U   | 340                                             | U  | 390                                              | U  | 350                                              | 1 - L      |
| Benzo(g,h,i)perylene                                           | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | U   | 400                                     | U   | 340                                             | ប  | 390                                              | U. | 350                                              |            |
| Benzo(k)fluoranthene                                           | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | U   | 400                                     | U   | 340                                             | U  | 390                                              | U  | 350                                              | ) L        |
| bis(2-chloroethoxy) methane                                    | ug/kg   | 330 | 340                                     | ប  | 430                                     | U  | 360                                     | U   | 400                                     | U   | 340                                             | U  | 390                                              | Ú  | 350                                              | . (        |
| bis(2-Chloroethyl) Ether                                       | ug/kg   | 330 | 340                                     | U  | 430                                     | Ú. | 360                                     | U   | 400                                     | U   | 340                                             | U  | 390                                              | U  | 350                                              | ) i        |
| bis(2-chloroisopropyl) ether                                   | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | U   | 400                                     | U   | 340                                             | U  | 390                                              | U  | 350                                              | ) (        |
| bis(2-Ethylhexyl)phthalate                                     | ug/kg   | 330 | 340                                     | U  | 33                                      | J  | 360                                     | U   | 400                                     | U   | 340                                             | U  | 390                                              | U  | 350                                              | ) <b>t</b> |
| Butylbenzyl phthalate                                          | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | ບ   | 400                                     | U   | 340                                             | U  | 390                                              | U  | 350                                              | ) t        |
| Carbazole                                                      | ug/kg   | 330 | 340                                     | υ  | 430                                     | U  | 360                                     | U   | 400                                     | U   | 340                                             | U  | 390                                              | U  | 350                                              | ) I        |
| Chrysene                                                       | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | U   | 400                                     | U   | 340                                             | U  | 390                                              | U  | 350                                              | ) (        |
| Dibenzo(a,h)anthracene                                         | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | U.  | 400                                     | U   | 340                                             | U  | 390                                              | U  | 350                                              | ) (        |
| Dibenzofuran                                                   | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | U   | 400                                     | U   | 340                                             | U  | 390                                              | υ  | 350                                              | ) (        |
| Diethyl phthalate                                              | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | U   | 400                                     | U   | 340                                             | U  | 390                                              | U  | 350                                              | ) (        |
| Dimethyl phthalate                                             | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | U   | 400                                     | U   | 340                                             | U  | 390                                              | U  | 350                                              | ) (        |
| DI-n-butyl phthalate                                           | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | · U | 400                                     | U   | 340                                             | U  | 390                                              | U  | 350                                              | ) (        |
| DI-n-octyl phthalate                                           | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | U   | 400                                     | U   | 340                                             | U  | 390                                              | U  | 350                                              | ) (        |
| Fluoranthene                                                   | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | U   | 400                                     | U   | 340                                             | U  | 390                                              | U  | 350                                              | ) 1        |
| Fluorene                                                       | ug/kg   | 330 | 340                                     | U  | 430                                     | U  | 360                                     | υ   | 400                                     | U   | 340                                             | U  | 390                                              | U  | 350                                              | ) (        |
| Hexachlorobenzene                                              | ug/kg   | 330 | 340                                     | Ú  | 430                                     | Ū  | 360                                     | Ū   | 400                                     | U   | 340                                             | บ  | 390                                              | U  | 350                                              | ) 1        |
| Hexachtorobutadiene                                            | ug/kg   | 330 | 340                                     | U  | 430                                     | Ű  | 360                                     | U   | 400                                     | U   | 340                                             | U  | 390                                              | U  | 350                                              | ) (        |
| Hexachlorocyclopentadiene                                      | · ug/kg | 330 | 340                                     | ีย | 430                                     | Ū  | 380                                     | U   | 400                                     | U   | 340                                             | U  | 390                                              | υ  | 350                                              | ) (        |
| Hexachloroethane                                               | ug/kg   | 330 | 340                                     | U  | 430                                     | Ū  | 360                                     | Ú   | 400                                     | · U | 340                                             | U  | 390                                              | U  | 350                                              | ) (        |
| Indeno(1,2,3-cd)pyrene                                         | ug/kg   | 330 | 340                                     | U  | 430                                     | Ð  | 360                                     | Ú   | 400                                     | U   | 340                                             | U  | 390                                              | U  | 350                                              | ) (        |
| Isophorone                                                     | ug/kg   | 330 | 340                                     | Ū  | 430                                     | Ū  | 360                                     | Ū   | 400                                     | Ū   | 340                                             | Ū  | 390                                              | Ū  | 350                                              | ) 1        |
| Naphthalene                                                    | ug/kg   | 330 | 340                                     | -  | 430                                     | ŭ  | 360                                     | ŭ   | 400                                     | บั  | 340                                             | Ū  | 390                                              | Ŭ  | 350                                              |            |
| Nitrobenzene                                                   | ug/kg   | 330 | 340                                     | -  | 430                                     | ŭ  | 360                                     | Ŭ   | 400                                     | ŭ   | 340                                             | ŭ  | 390                                              | ŭ  | 350                                              |            |
| N-Nitrosodi-n-propylamine                                      | ug/kg   | 330 | 340                                     | -  | 430                                     | ŭ  | 360                                     | Ŭ   | 400                                     | Ŭ   | 340                                             | ŭ  | 390                                              | ŭ  | 350                                              |            |
| N-Nitrosodiphenylamine                                         | ug/kg   | 330 | 340                                     | -  | 430                                     | Ŭ  | 360                                     | υ   | 400                                     | Ŭ   | 340                                             | ŭ  | 390                                              | Ŭ  | 350                                              |            |
| Pentachlorophenot                                              | ug/kg   | 660 | 680                                     |    | 870                                     | Ŭ  | 720                                     | Ŭ   | 800                                     | Ŭ   | 680                                             | ŭ  | 770                                              | Ŭ  | 690                                              |            |
| Phenanthrene                                                   | ug/kg   | 330 | 340                                     |    | 430                                     | υ  | 360                                     | ยั  | 400                                     | Ŭ   | 340                                             | Ŭ. | 390                                              | ŭ  | 350                                              |            |
| Phenot                                                         | ug/kg   | 330 | 340                                     | -  | 430                                     | Ŭ  | 360                                     | Ŭ   | 400                                     | Ŭ   | 340                                             | ŭ  | 390                                              | U  | 350                                              |            |
| Pyrene                                                         | ug/kg   | 330 | 340                                     | -  | 430                                     | 0  | - 300                                   | ~   | 400                                     | U U | 340                                             |    | 390                                              |    | 300                                              | ,          |

| Site ID<br>Field Sample Number<br>Sile Type<br>Collection Date<br>Depth (ft) |                |        | SB-IWL-01<br>SAIC01<br>BORE<br>08/06/02<br>0.00 |     | SB-IWL-01<br>SAIC02<br>BORE<br>08/06/02<br>16.50 |    | SB-IWL-02<br>SAIC01<br>BORE<br>08/06/02<br>0.00 |    | SB-IWL-02<br>SAIC02<br>BORE<br>08/06/02<br>16.00 | -        | SB-IWL-03<br>SAIC01<br>BORE<br>08/06/02<br>0.00 |     | SB-IWL-03<br>SAIC02<br>BORE<br>08/06/02<br>19.00 |    | SB-IWL-04<br>SAIC01<br>BORE<br>08/07/02<br>13.00 |     |
|------------------------------------------------------------------------------|----------------|--------|-------------------------------------------------|-----|--------------------------------------------------|----|-------------------------------------------------|----|--------------------------------------------------|----------|-------------------------------------------------|-----|--------------------------------------------------|----|--------------------------------------------------|-----|
| VOLATILE ORGANIC COMP                                                        | DUNDS(8260     |        |                                                 |     |                                                  |    |                                                 |    |                                                  |          |                                                 |     |                                                  |    |                                                  |     |
| Parameter                                                                    | Units          | RL     |                                                 |     |                                                  |    |                                                 |    |                                                  |          | 6.8                                             |     | . 6                                              | U  | 5                                                | Û   |
| 1,1,1-Trichloroethane                                                        | ug/kg          | 5      | 6.2                                             | U U | 5.8                                              | U  | 6.4                                             | U  | 5.1                                              | <u>.</u> |                                                 | U   | . 0                                              | Ŭ  | 5                                                | ŭ   |
| 1,1,2,2-Tetrachloroethane                                                    | ug/kg          | 5      | 6.2                                             | U   | 5.8                                              | U  | 6.4                                             | U  | 5.1                                              | U        | 6.8                                             | U   |                                                  | Ŭ  | J<br>5                                           | ŭ   |
| 1,1,2-Trichloroethane                                                        | ug/kg ·        | 5      | 6.2                                             | U   | 5.8                                              | U  | 6.4                                             | U  | 5.1                                              | U        | 6.8                                             | U   | 0                                                |    | 5                                                | ň   |
| 1,1-Dichloroethane                                                           | ug/kg          | 5      | 6.2                                             | U   | 5.8                                              | U  | 6.4                                             | U  | 5.1                                              | U        | 6.8                                             | U   | 6                                                | U  | 5                                                | U   |
| 1,1-Dichloroethene                                                           | ug/kg          | 5      | 6.2                                             | U   | 5.8                                              | U  | 6.4                                             | U  | 5.1                                              | υ        | 6.8                                             | U   | 6                                                | U  | 5                                                | U   |
| 1,2-Dichloroethane                                                           | ug/kg          | 5      | 6.2                                             | U   | 5.8                                              | U  | 6.4                                             | U  | 5.1                                              | U        | 6.8                                             | U   | 5                                                | υ  | 5                                                | υ   |
| 1,2-Dichloropropane                                                          | ug/kg          | 5      | 6.2                                             | U   | 5.8                                              | υ  | 6.4                                             | U  | 5.1                                              | U        | 6.8                                             | U   | 6                                                | U  | 5                                                | U   |
| 2-Hexanone                                                                   | ug/kg          | 10     | 12                                              | U   | 12                                               | U  | 13                                              | U  | 10                                               | U        | 20                                              |     | 12                                               | U  | 10                                               | -   |
| Acetone                                                                      | ug/kg          | 10     | 12                                              | U.  | 12                                               | U  | 14                                              | U  | 10                                               | U        | 32                                              | U   | 12                                               | U. | 41                                               | U   |
| Benzene                                                                      | ug/kg          | 5      | 6.2                                             | U   | 5.8                                              | U  | 6.4                                             | U  | 5.1                                              | U        | 6.8                                             | U   | 6                                                | U  | 5                                                | U   |
| Bromodichloromethane                                                         | ug/kg          | 5      | 6.2                                             | υ - | 5.8                                              | U  | 6.4                                             | U  | 5.1                                              | U.       | 6.8                                             | U   | 6                                                | U  | 5                                                | U   |
| Bromoform                                                                    | ug/kg          | 5      | 6.2                                             | Ŭ.  | 5.8                                              | Ū  | 6.4                                             | U  | 5.1                                              | U        | 6.8                                             | U   | 6                                                | U  | 5                                                | U   |
| Bromomethane                                                                 | ug/kg          | 5      | 6.2                                             | U   | 5.8                                              | U  | 6.4                                             | U  | 5.1                                              | U        | 6.8                                             | U   | 6                                                | U  | 5                                                | U   |
| Carbon disulfide                                                             | ug/kg          | 5      | 6.2                                             | U   | 5.8                                              | Ú  | 6.4                                             | U  | 5.1                                              | U        | 6.8                                             | U   | 6                                                | U  | 5                                                | U   |
| Carbon Tetrachloride                                                         | ug/kg          | 5      | 6.2                                             | U   | 5.8                                              | Ŭ  | 6.4                                             | U  | 5.1                                              | U        | 6.8                                             | U   | 6                                                | U  | 5                                                | U   |
| Chlorobenzene                                                                | ug/kg          | 5      | 6.2                                             | υ   | 5.8                                              | U  | 6.4                                             | U  | 5.1                                              | ບ່       | 6.8                                             | U   | . 6                                              | U  | 5                                                | U   |
| Chloroethane                                                                 | ug/kg          | 5      | 6.2                                             | Ŭ   | 5.8                                              | Ū  | 6.4                                             | Ū. | 5.1                                              | U        | 6.8                                             | Ű   | 6                                                | Ū  | 5                                                | U   |
| Chloroform                                                                   | ug/kg          | 5      | 6.2                                             | บั  | 5.8                                              | Ū  | 6.4                                             | Ū  | 5.1                                              | Ū        | 6.8                                             | ũ   | 6                                                | ū  | 5                                                | Ū   |
| Chloromethane                                                                | ug/kg          | 5      | 6.2                                             | Ũ   | 5.8                                              | Ū  | 6.4                                             | Ũ  | 5.1                                              | Ũ        | 6.8                                             | Ũ   | 6                                                | ŭ  | 5                                                | Ū   |
| cis-1,2-Dichloroethene                                                       | ug/kg          | 5      | 6.2                                             | Ũ   | 5.8                                              | Ŭ  | 6.4                                             | Ū  | 5.1                                              | Ū        | 6.8                                             | Ŭ   | 6                                                | บั | 5                                                | Ũ   |
| cis-1,3-Dichloropropene                                                      | ug/kg          | 5      | 6.2                                             | ŭ   | 5.8                                              | Ŭ  | 6.4                                             | Ū  | 5.1                                              | Ū        | 6.8                                             | Ŭ   | 6                                                | ŭ  | . 5                                              | -   |
| Dibromochloromethane                                                         | ug/kg          | 5      | 6.2                                             | Ũ   | 5.8                                              | Ũ  | 6.4                                             | Ũ  | 5.1                                              | Ŭ        | 6.8                                             | Ŭ   | 6                                                | Ŭ  | 5                                                | Ū   |
| Elhylbenzene                                                                 | ug/kg          | 5      | 6.2                                             | ŭ   | 5.8                                              | Ŭ  | 6.4                                             | Ŭ  | 5.1                                              | ŭ        | 6.8                                             | Ŭ   | 6                                                | Ŭ  | . 5                                              | Ŭ   |
| m-and/or p-Xylene                                                            | ug/kg          | - 5    | 6.2                                             | บั  | 5.8                                              | บั | 6.4                                             | Ŭ  | 5.1                                              | Ũ        | 6.8                                             | Ũ   | 6                                                | ŭ  | 5                                                | -   |
| Methyl ethyl ketone                                                          | ug/kg          | 10     | 12                                              | ŭJ  | 12                                               | ŭJ | 13                                              | ŬJ | 10                                               | ŬĴ       | 14                                              | บัม | 12                                               | ŬJ | 5.7                                              |     |
| Methyl isobutyl ketone                                                       | ug/kg          | 10     | 12                                              | Ű   | 12                                               | บั | 13                                              | Ű  | 10                                               | Ŭ        | - 14                                            | Ű   | 12                                               | บ  | 10                                               |     |
| Methylene Chloride                                                           | ug/kg          | . 5    | 6.2                                             | -   | 5.8                                              | Ŭ  | 6.4                                             | Ŭ  | 5.1                                              | ŭ        | 6.8                                             | ŭ   | 6                                                | ŭ  | 5                                                | -   |
| o-xylene                                                                     | ug/kg<br>ug/kg | ວ<br>5 | 6.2                                             | U.  |                                                  | Ŭ  | 6.4                                             | Ŭ  | 5.1                                              | Ŭ        | 6.8                                             | Ŭ   | 6                                                | Ŭ  |                                                  | -   |
| •                                                                            |                | 5      |                                                 | -   | 5.8<br>5.8                                       |    |                                                 |    |                                                  |          |                                                 | -   | -                                                |    | 5                                                | -   |
| Styrene                                                                      | ug/kg          | 5      | 6.2                                             | -   |                                                  | U  | 6.4                                             | U  | - 5.1                                            | U        | 6.8                                             | U   | 8                                                | U  | 5                                                |     |
| Tetrachloroethene                                                            | ug/kg          | 5      | 6.2                                             |     | 5.8                                              | U  | 6.4                                             | U  | 5.1                                              | U        | 6.8                                             | U . |                                                  | U  | -                                                |     |
| Toluene                                                                      | ug/kg          | 5      | 6.2                                             | -   | 5.8                                              | U  | 6.4                                             | U  | 5.1                                              | U        | 6.8                                             | U   | 6                                                | U  | 5                                                |     |
| trans-1,2-Dichloroethene                                                     | ug/kg          | 5      | 6.2                                             | -   | 5.8                                              | U  | 6.4                                             | U  | 5.1                                              | U        | 6.8                                             | U   | e                                                | U  | 5                                                |     |
| trans-1,3-Dichloropropene                                                    | ug/kg          | 5      | 6.2                                             | -   | 5.8                                              | U  | 6.4                                             | U  | 5.1                                              | U        | 6.8                                             | U   | . 6                                              | υ  | 5                                                |     |
| Trichloroethene                                                              | ug/kg          | 5      | 6.2                                             |     | 5.8                                              | U  | 6.4                                             | U  | 5.1                                              | U        | 6.8                                             |     | · E                                              | _  | Ę                                                |     |
| Vinyl Chloride                                                               | ug/kg          | - 5    | 6.2                                             | U   | 5.8                                              | U  | 6.4                                             | U  | 5.1                                              | υ        | 6.8                                             | υ   | 6                                                | U  |                                                  | 5 U |

|                        |                | •      |           |     |
|------------------------|----------------|--------|-----------|-----|
| Site ID                |                |        | SB-IWL-04 |     |
| Field Sample Number    |                |        | SAIC02    |     |
| Site Type              |                |        | BORE      |     |
| Collection Date        |                |        | 08/07/02  |     |
| Depth (ft)             |                |        | 19.00     |     |
|                        |                |        |           |     |
| METALS(6010)           |                | RL     |           |     |
| Parameter              | Units<br>MG/KG | 20     | 1080      |     |
| Aluminum               |                | 0.6    | 0.2       | UJ  |
| Antimony               | MG/KĢ<br>MG/KG | 0.0    | 1.3       | 00  |
| Arsenic<br>Barium      | MG/KG          | 20     | 1.2       |     |
|                        | MG/KG          | 0.5    | 0.03      | в   |
| Beryllium<br>Cadmium   | MG/KG          | 0.5    | 0.02      | บั  |
| Calcium                | MG/KG          | 100    | 33        | 8   |
| Chromium               | MG/KG          | 1      | 1.3       | 0   |
| Cobalt                 | MG/KG          | 5      | 0.24      | U   |
| Copper                 | MG/KG          | 1      | 0.42      | ŭ   |
| Iron                   | MG/KG          | 10     | 641       | 0   |
| Lead                   | MG/KG          | 0.3    | 0.41      | 8   |
| Magnesium              | MG/KG          | 100    | 68.6      | 5   |
| Manganese              | MG/KG          | 1.5    | 13.4      |     |
| Nickel                 | MG/KG          | 1.5    | 0,49      | J   |
| Potassium              | MG/KG          | 100    | 34.4      | ŭ   |
| Selenium               | MG/KG          | 0.5    | 0.2       | บั  |
| Silver                 | MG/KG          | 1      | 0.05      | ŭ   |
| Sodium                 | MG/KG          | 100    | 51        | ŪJ  |
| Thallium               | MG/KG          | 1      | 0.44      | Ŭ   |
| Vanadium               | MG/KG          | 5      | 1.6       | U   |
| Zinc                   | MG/KG          | 2      | 1.6       |     |
| 200                    | WORKS          | -      |           |     |
| METALS(7471)           |                |        |           |     |
| Parameter              | Units          | RL     |           |     |
| Mercury                | MG/KG          | 0.1    | 0.01      | U   |
| SEMIVOLATILE ORGANIC   | COMPOUNDS      | (8970) |           |     |
| Parameter              | Units          | RL     |           |     |
| 1.2.4-Trichlorobenzene | ug/kg          | 330    | 380       | Ü   |
| 1.2-Dichlorobenzene    | ug/kg          | 330    | 380       | Ū   |
| 1.3-Dichlorobenzene    | ug/kg          | 330    | 380       | Ũ   |
| 1.4-Dichlorobenzene    | ug/kg          | 330    | 380       | บั  |
| 2,4,5-Trichlorophenol  | ug/kg          | 660    | 380       | Ū   |
| 2.4.6-Trichlorophenol  | ug/kg          | 330    | 380       | ม   |
| 2.4-Dichlorophenol     | ug/kg          | 330    | 380       | Ŭ   |
| 2,4-Dimethylphenol     | ug/kg          | 330    | 380       | ŭ   |
| 2,4-Dinitrophenol      | ug/kg          | 660    | 760       | Ŭ   |
| 2.4-Dinitrotoluene     | ug/kg          | 330    | 380       | ŭ   |
| 2.6-Dinitrotoluene     | ug/kg          | 330    | 380       | Ŭ   |
| 2-Chloronaphthalene    | ug/kg          | 330    | 380       | - Ŭ |
| 2-Chlorophenol         | ug/kg          | 330    | 380       | Ŭ   |
| 2-Methylnaphthalene    | ug/kg          | 330    | 380       | Ŭ   |
| 2-Methylphenol         | ug/kg          | 330    | 380       | ŭ   |
| 2-Nitroaniline         | ug/kg          | 330    | 380       | ŭ   |
| 2-Nitrophenol          | ug/kg          | 330    | 380       | ŭ   |
|                        | ~BR            |        | 000       | -   |

|                                             |                | •   |           |    |
|---------------------------------------------|----------------|-----|-----------|----|
| Site ID                                     |                |     | SB-IWL-04 |    |
| Field Sample Number                         |                |     | SAIC02    |    |
| Site Type                                   |                |     | BORE      |    |
| Collection Date                             |                |     | 08/07/02  |    |
| Depth (ft)                                  |                |     | 19.00     |    |
| 3.3'-Dichlorobenzidine                      | ua/ka          | 660 | 760       | U. |
| 3.3-Dichlorobenzigine                       | ug/kg<br>ug/kg | 330 | 380       | Ŭ  |
| 4,6-Dinitro-2-cresol                        | ug/kg          | 660 | 760       | ŭ  |
| 4-Bromophenyl phenyl ether                  | ug/kg          | 330 | 380       | Ŭ  |
| 4-Chloro-3-methylphenol                     | ug/kg          | 330 | 380       | Ū  |
| 4-Chioroaniline                             | ug/kg          | 330 | 380       | Ū  |
| 4-Chlorophenyl phenyl ether                 | ug/kg          | 330 | 380       | บั |
| 4-Methylphenol                              | ug/kg          | 330 | 380       | U  |
| 4-Nitroaniline                              | ug/kg          | 330 | 380       | Ū  |
| 4-Nitrophenol                               | ug/kg          | 660 | 760       | ป  |
| Acenaphthene                                | ug/kg          | 330 | 380       | U  |
| Acenaphthylene                              | ug/kg          | 330 | 380       | U  |
| Anthracene                                  | ug/kg          | 330 | 380       | U  |
| Benzo(a)anthracene                          | ug/kg          | 330 | 380       | U  |
| Benzo(a)pyrene                              | ug/kg          | 330 | 380       | U  |
| Benzo(b)fluoranthene                        | ug/kg          | 330 | 380       | U  |
| Benzo(g,h,i)perylene                        | ug/kg          | 330 | 380       | U  |
| Benzo(k)fluoranthene                        | ug/kg          | 330 | 380       | U  |
| bis(2-chloroethoxy) methane                 | ug/kg          | 330 | 380       | U  |
| bis(2-Chloroethyl) Ether                    | ug/kg          | 330 | 380       | U  |
| bis(2-chloroisopropyl) ether                | ug/kg          | 330 | 380       | U  |
| bis(2-Ethylhexyl)phthalate                  | ug/kg          | 330 | 380       | U  |
| Butylbenzyl phthalate                       | ug/kg          | 330 | 380       | U  |
| Carbazole                                   | ug/kg          | 330 | 380       | U  |
| Chrysene                                    | ug/kg          | 330 | 380       | U  |
| Dibenzo(a,h)anthracene                      | ug/kg          | 330 | 380       | U  |
| Dibenzofuran                                | ug/kg          | 330 | 380       | U  |
| Diethyl phthalate                           | ug/kg          | 330 | 380       | U  |
| Dimethyl phthalate                          | ug/kg          | 330 | 380       | U  |
| Di-n-butyl phihalate                        | ug/kg          | 330 | 380       | U  |
| Di-n-octyl phthalate                        | ug/kg          | 330 | 380       | U  |
| Fluoranthene                                | ug/kg          | 330 | 380       | U  |
| Fluorene                                    | ug/kg          | 330 | 380       | U  |
| Hexachlorobenzene                           | ug/kg          | 330 | 380       | U  |
| Hexachlorobutadiene                         | ug/kg          | 330 | 380       | U  |
| Hexachlorocyclopentadiene                   | ug/kg          | 330 | 380       | U  |
| Hexachloroethane                            | ug/kg          | 330 | 380       | U  |
| Indeno(1,2,3-cd)pyrene                      | ug/kg          | 330 | 380       | U  |
| Isophorone                                  | ug/kg          | 330 | 380       | 0  |
| Naphthalene                                 | ug/kg          | 330 | 380       | U  |
| Nitrobenzene                                | ug/kg          | 330 | 380       | U  |
| N-Nitrosodi-n-propylamine                   | ug/kg          | 330 | 380       | U  |
| N-Nitrosodiphenylamine<br>Rostashlasonhanal | ug/kg          | 330 | 380       | _  |
| Pentachlorophenol<br>Phenanthrene           | ug/kg          | 660 | 760       |    |
| Phenol                                      | ug/kg          | 330 | 380       | -  |
|                                             | ug/kg          | 330 | 380       |    |
| Pyrene                                      | ug/kg          | 330 | 380       | U  |

| Site ID             | SB-IWL-04 |
|---------------------|-----------|
| Field Sample Number | SAIC02    |
| Sile Type           | BORE      |
| Collection Date     | 08/07/02  |
| Depth (ft)          | 19.00     |

#### **VOLATILE ORGANIC COMPOUNDS(8260)**

| Parameler                 | Units | RL   |     |    |
|---------------------------|-------|------|-----|----|
| 1,1,1-Trichloroethane     | ug/kg | 5    | 5.2 | U  |
| 1,1,2,2-Tetrachloroethane | ug/kg | 5    | 5.2 | Ũ  |
| 1,1,2-Trichloroethane     | ug/kg | 5    | 5.2 | Ũ  |
| 1.1-Dichloroethane        | ug/kg | 5    | 5.2 | U  |
| 1,1-Dichloroethene        | ug/kg | 5    | 5.2 | U  |
| 1,2-Dichloroethane        | ug/kg | 5    | 5.2 | U  |
| 1,2-Dichloropropane       | ug/kg | 5    | 5.2 | U  |
| 2-Hexanone                | ug/kg | 10   | 10  | U  |
| Acetone                   | ug/kg | . 10 | 10  | U  |
| Benzene                   | ug/kg | 5    | 5.2 | U. |
| Bromodichloromethane      | ug/kg | 5    | 5.2 | ບ  |
| Bromoform                 | ug/kg | - 5  | 5.2 | U  |
| Bromomethane              | ug/kg | 5    | 5.2 | U  |
| Carbon disulfide          | ug/kg | 5    | 5.2 | U  |
| Carbon Tetrachloride      | ug/kg | 5    | 5.2 | U  |
| Chlorobenzene             | ug/kg | 5    | 5.2 | U  |
| Chioroethane              | ug/kg | 5    | 5.2 | U  |
| Chloroform                | ug/kg | 5    | 5.2 | U  |
| Chloromethane             | ug/kg | 5    | 5.2 | U  |
| cis-1,2-Dichloroethene    | ug/kg | 5    | 5.2 | U  |
| cis-1,3-Dichloropropene   | ug/kg | 5    | 5.2 | U  |
| Dibromochloromethane      | ug/kg | 5    | 5.2 | U  |
| Ethylbenzene              | ug/kg | 5    | 5.2 | U  |
| m-and/or p-Xylene         | ug/kg | 5    | 5.2 | U  |
| Methyl ethyl ketone       | ug/kg | 10   | 10  | UJ |
| Methyl isobutyl ketone    | ug/kg | 10   | 10  | U  |
| Methylene Chloride        | ug/kg | 5    | 5.2 | U  |
| 0-xylene                  | ug/kg | 5    | 10  | U  |
| Styrene                   | ug/kg | 5    | 5.2 | U  |
| Tetrachloroethene         | ug/kg | 5    | 5.2 | U  |
| Toluene                   | ug/kg | 5    | 5.2 | U  |
| trans-1,2-Dichloroethene  | ug/kg | 5    | 5.2 | U  |
| trans-1,3-Dichloropropene | ug/kg | 5    | 5.2 | U  |
| Trichloroethene           | ug/kg | 5    | 5.2 | U  |
| Vinyl Chloride            | ug/kg | 5    | 5.2 | U  |

#### Footnotes:

B - Metals: Reported value was less than the contract required detection limit but greater than or equal to the instrument detection limit.

B - Organics: Analyte was found in the associated method blank. Validation of the data did not result in this compound being qualified as nondetect due to blank contamination.

Therefore this result is considered to be site related.

D - The value for the target analyte was calculated from a dilution.

E - Metals: The reported value is estimated because of the presence of interferents.

E - Organics: Concentration range exceeded for this analyte.

J - Value Is estimated.

N - Metals: Spiked sample recovery not within control limits.

N - Organics: Tentatively identified compound based on mass spectral library search.

P - There is greater than 25% difference for detected concentrations between the two GC columns for the associated pesticide/PCB larget analyte.

R - Value is rejected.

U - Compound was analyzed for but not detected.

UJ - Compound was analyzed for but not detected and is considered an estimate.

X - The mass spectrum does not meet EPA CLP criteria for confirmation, but compound presence is strongly suspected.

\* - Duplicate analysis not within control limits.

N/A - Compound not analyzed for.

NF - Data not found.

G-18

RL - Reporting Limit for each method. For SW846 methods, the samples are reported down to the method detection limits (MDL). For metals, the samples are reported down to

the instrument detection limit (IDL).

MDL - Method Detection Limit.

SAICXXR - An SAIC field sample number followed by an "R" designates a recollected sample.

### Table G-4. Data Presentation: Groundwater Results, Industrial Waste/Sanitary Landfill Wallops Flight Facility, Accomack County, Virginia

| lite ID                                                                                                                                                                                      |                                                              |                                              | HP-IWL-01                                                |                                                                    | HP-IWL-01                                    |                                 | HP-IWL-02                                    |                            | HP-IWL-03                                    |                            | HP-IWL-04                              |                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|----------------------------|----------------------------------------------|----------------------------|----------------------------------------|---------------------------------|
| ield Sample Number                                                                                                                                                                           |                                                              |                                              | SAIC01                                                   |                                                                    | SAIC01D                                      |                                 | SAIC01                                       |                            | SAIC01                                       |                            | SAIC01                                 |                                 |
| ite Type                                                                                                                                                                                     |                                                              |                                              | PNCH                                                     |                                                                    | PNCH                                         |                                 | PNCH                                         |                            | PNCH                                         |                            | PNCH                                   |                                 |
| Collection Date                                                                                                                                                                              |                                                              |                                              | 08/06/02                                                 |                                                                    | 08/06/02                                     |                                 | 08/06/02                                     |                            | 08/06/02                                     |                            | 08/07/02                               |                                 |
| Depth (ft)                                                                                                                                                                                   |                                                              |                                              | 16.50                                                    |                                                                    | 16.50                                        |                                 | 16.00                                        |                            | 19.00                                        |                            | 19.00                                  |                                 |
| METALS(6010)                                                                                                                                                                                 | <u> </u>                                                     |                                              |                                                          |                                                                    |                                              |                                 |                                              |                            |                                              |                            |                                        |                                 |
| arameter                                                                                                                                                                                     | Units                                                        | RL                                           |                                                          |                                                                    |                                              |                                 |                                              |                            |                                              |                            |                                        |                                 |
| Numinum                                                                                                                                                                                      | ug/L                                                         | 200                                          | 30.9                                                     | U                                                                  | 30.9                                         | U                               | 30.9                                         | U                          | 30.9                                         | Ù                          | 30.9                                   | UJ                              |
| Antimony                                                                                                                                                                                     | ug/L                                                         | 6                                            | 2.5                                                      | บ                                                                  | 2.5                                          | Ũ                               | 2.5                                          | Ū                          | 2.5                                          | Ū                          | 2.5                                    | ÚJ                              |
| rsenic                                                                                                                                                                                       | ug/L                                                         | 10                                           | 3.4                                                      | ŭ                                                                  | 3.4                                          | ŭ                               | 3.4                                          | Ū                          | 3.4                                          | U                          | 3.4                                    | U                               |
| Barium                                                                                                                                                                                       | ug/L                                                         | 200                                          | 14.5                                                     |                                                                    | 14.1                                         | J                               | 8.6                                          | v                          | 12.6                                         | •                          | 19.3                                   |                                 |
| Beryllium                                                                                                                                                                                    | ug/L                                                         | 5                                            | 0.1                                                      | U                                                                  | 0.1                                          | U                               | 0.1                                          | U                          | 0.1                                          | u                          | 0.1                                    | U                               |
| •                                                                                                                                                                                            |                                                              | 5                                            | 0.1                                                      | ŭ                                                                  | 0.3                                          | Ŭ.                              | 0.3                                          | Ŭ                          | 0.3                                          | Ŭ                          | 0.3                                    | ŭ                               |
| Cadmium                                                                                                                                                                                      | ug/L                                                         | -                                            | 26600                                                    | Ň                                                                  | 26800                                        | J ·                             | 11500                                        | j                          | 15000                                        | J                          | 29300                                  | Ŭ                               |
| Calcium                                                                                                                                                                                      | ug/L                                                         | 1000                                         |                                                          |                                                                    |                                              | -                               |                                              |                            |                                              | U<br>U                     |                                        | U                               |
| Chromium                                                                                                                                                                                     | ug/L                                                         | 10                                           | 1.3                                                      | U                                                                  | 1.3                                          | U                               | 1.3                                          | U                          | 1.3                                          | -                          | 1.3                                    | UJ                              |
| Cobalt                                                                                                                                                                                       | ug/L                                                         | 50                                           | 1                                                        | 8                                                                  | 0.8                                          | U                               | 1.8                                          | В                          | 0.8                                          | 8                          | 0.6                                    |                                 |
| Copper                                                                                                                                                                                       | ug/L                                                         | 10                                           | 1.5                                                      | U                                                                  | 1.4                                          | U                               | 1                                            | U                          | 1.7                                          | U                          | 2.8                                    | U                               |
| ron                                                                                                                                                                                          | ug/L                                                         | 100                                          | 187                                                      |                                                                    | 116                                          | B                               | 660                                          | •                          | 952                                          |                            | 568                                    |                                 |
| _ead                                                                                                                                                                                         | ug/L                                                         | 3                                            | 1.6                                                      | U.                                                                 | 1.6                                          | U                               | 1,6                                          | U                          | 1.6                                          | U                          | 1.6                                    | U                               |
| Magnesium                                                                                                                                                                                    | ug/L                                                         | 1000                                         | 5210                                                     |                                                                    | 5250                                         |                                 | 3460                                         |                            | 5160                                         |                            | 7820                                   |                                 |
| Manganese                                                                                                                                                                                    | ug/L                                                         | 15                                           | 128                                                      |                                                                    | 80.8                                         |                                 | 91.7                                         |                            | 35.8                                         |                            | 52.3                                   |                                 |
| Nickel                                                                                                                                                                                       | ug/L                                                         | 10                                           | 1.1                                                      | U                                                                  | 1.1                                          | U                               | 2.8                                          | 8                          | 3.9                                          | B                          | 1.5                                    | 8                               |
| Potassium                                                                                                                                                                                    | ug/L                                                         | 1000                                         | 4360                                                     |                                                                    | 4240                                         |                                 | 1560                                         |                            | 1730                                         |                            | 2190                                   |                                 |
| Setenium                                                                                                                                                                                     | ug/L                                                         | 5                                            | 3.5                                                      | U                                                                  | 3.5                                          | U                               | 3.5                                          | U                          | 3.5                                          | U                          | 3.5                                    | U                               |
| Silver                                                                                                                                                                                       | ug/L                                                         | 10                                           | 0.6                                                      | U                                                                  | 0.6                                          | U                               | 0.6                                          | U                          | 0.6                                          | U                          | 0.6                                    | U                               |
| Sodium                                                                                                                                                                                       | ug/L                                                         | 1000                                         | 12900                                                    | Ĵ.                                                                 | 12800                                        | ŪJ                              | 7420                                         | J.                         | 6290                                         | . J                        | 7300                                   |                                 |
| Thallium                                                                                                                                                                                     | ug/L                                                         | 10                                           | 2.7                                                      | Ū                                                                  | 2.7                                          | ŭ                               | 2.7                                          | Ū                          | 2.7                                          | Ū                          | 2.7                                    | U                               |
| Vanadium                                                                                                                                                                                     | ug/L                                                         | 50                                           | 0.7                                                      | ŬJ                                                                 | 0.7                                          | บัม                             | 0.7                                          | บ็ม                        | 0.7                                          | ŪJ                         | 0.7                                    | Ū                               |
| Zinc                                                                                                                                                                                         | ug/L                                                         | 20                                           | 4.2                                                      | υ                                                                  | 4                                            | Ű                               | 7.2                                          | Ū                          | 26.6                                         | U                          | 8.6                                    | U                               |
| METALS(7470)                                                                                                                                                                                 | -                                                            |                                              |                                                          |                                                                    |                                              |                                 |                                              |                            |                                              |                            |                                        |                                 |
| Parameter                                                                                                                                                                                    | Units                                                        | RL                                           | <u> </u>                                                 |                                                                    |                                              |                                 |                                              |                            |                                              |                            |                                        |                                 |
| Mercurv                                                                                                                                                                                      | ug/L                                                         | 0.2                                          | 0.1                                                      | <u>U</u>                                                           | 0.1                                          | U                               | 0.1                                          | U                          | 0.1                                          | U                          | 0.1                                    | U                               |
|                                                                                                                                                                                              |                                                              |                                              | 0.7                                                      | U                                                                  | 0.1                                          | U                               | 0.7                                          | 0                          | 0.7                                          | Ū                          | 0.7                                    | 0                               |
| SEMIVOLATILE ORGANIC                                                                                                                                                                         |                                                              |                                              |                                                          |                                                                    |                                              |                                 |                                              |                            |                                              |                            |                                        |                                 |
| Parameter                                                                                                                                                                                    | Units                                                        | RL                                           |                                                          | <u>.</u><br>U                                                      |                                              |                                 | 13                                           | υ                          | 12                                           | U                          | 12                                     | υ                               |
| 1,2,4-Trichlorobenzene                                                                                                                                                                       | ug/L                                                         | 10                                           | 13                                                       |                                                                    | 13                                           | U                               |                                              |                            |                                              |                            |                                        | ŭ                               |
| 1,2-Dichlorobenzene                                                                                                                                                                          | ug/L                                                         | 10                                           | 13                                                       | U                                                                  | - 13                                         | U                               | 13                                           | U                          | 12                                           | U                          | 12                                     | -                               |
| 1,3-Dichlorobenzene                                                                                                                                                                          | ug/L                                                         | 10                                           | 13                                                       | U                                                                  | 13                                           | U                               | 13                                           | U                          | 12                                           | U                          | 12                                     | U                               |
| 1,4-Dichlorobenzene                                                                                                                                                                          | ug/L                                                         | 10                                           | 13                                                       | U                                                                  | 13                                           | U                               | 13                                           | U                          | 12                                           | U                          | 12                                     | U                               |
|                                                                                                                                                                                              | ug/L                                                         | 20                                           | 13                                                       | U                                                                  | 13                                           | U                               | 13                                           | U                          | 12                                           | U                          | 12                                     | U                               |
|                                                                                                                                                                                              |                                                              | 10                                           | 13                                                       | U                                                                  | 13                                           | U                               | 13                                           | U                          | 12                                           | U                          | 12                                     | U                               |
| 2;4,5-Trichlorophenol<br>2,4,6-Trichlorophenol                                                                                                                                               | ug/L                                                         |                                              |                                                          |                                                                    |                                              |                                 | 13                                           | U                          | 12                                           | U                          | 12                                     | U                               |
| 2,4,6-Trichlorophenol<br>2,4-Dichlorophenol                                                                                                                                                  | ug/L                                                         | 10                                           | 13                                                       | U                                                                  | 13                                           | U                               |                                              | -                          |                                              |                            |                                        |                                 |
| 2,4,6-Trichlorophenol<br>2,4-Dichlorophenol                                                                                                                                                  |                                                              |                                              |                                                          | U<br>U                                                             | 13<br>13                                     | U                               | 13                                           | Ũ                          | 12                                           | Ũ                          | 12                                     | U                               |
| 2,4,8-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dimethylphenol                                                                                                                            | ug/L<br>ug/L                                                 | 10                                           | 13                                                       |                                                                    |                                              | -                               |                                              | -                          |                                              |                            | 12<br>24                               | -                               |
| 2,4,8-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dimethylphenol<br>2,4-Dinitrophenol                                                                                                       | ug/L                                                         | 10<br>10                                     | 13<br>13                                                 | Ū                                                                  | 13                                           | Ũ                               | 13                                           | Ũ                          | 12                                           | Ũ                          |                                        | Ū                               |
| 2,4,8-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dimethylphenol<br>2,4-Dinitrophenol<br>2,4-Dinitrotoluene                                                                                 | ug/L<br>ug/L<br>ug/L<br>ug/L                                 | 10<br>10<br>20                               | 13<br>13<br>25                                           | Ū<br>U                                                             | 13<br>27<br>13                               | บั<br>เม<br>บ                   | 13<br>25<br>13                               | Ŭ<br>U                     | 12<br>24<br>12                               | Ŭ<br>U                     | 24                                     | Ŭ<br>U                          |
| 2,4,6-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dimethylphenol<br>2,4-Dinitrophenol<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene                                                           | ug/i.<br>ug/L<br>ug/L<br>ug/L<br>ug/L                        | 10<br>10<br>20<br>10                         | 13<br>13<br>25<br>13<br>13                               | U<br>U<br>U<br>U                                                   | 13<br>27<br>13<br>13                         | U<br>U<br>U<br>U                | 13<br>25<br>13<br>13                         | U<br>U<br>U<br>U           | 12<br>24<br>12<br>12                         | บ<br>ม<br>บ<br>บ           | 24<br>12<br>12                         | U<br>U<br>U                     |
| 2,4,6-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dimethylphenol<br>2,4-Dinitrophenol<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>2,6-Dinitrotoluene<br>2-Chloronaphthalene              | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                 | 10<br>10<br>20<br>10<br>10<br>10             | 13<br>13<br>25<br>13<br>13<br>13                         | U<br>U<br>U<br>U<br>U                                              | 13<br>27<br>13<br>13<br>13                   | 0<br>0<br>0<br>0<br>0           | 13<br>25<br>13<br>13<br>13                   | บ<br>บ<br>บ<br>บ           | 12<br>24<br>12<br>12<br>12                   | บ<br>บ<br>บ<br>บ           | 24<br>12<br>12<br>12                   | มั<br>บ<br>บ<br>บ               |
| 2,4,8-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dimethylphenol<br>2,4-Dinitrophenol<br>2,4-Dinitrotoluene<br>2,8-Dinitrotoluene<br>2-Chloronaphthalene<br>2-Chloronaphthalene             | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L         | 10<br>10<br>20<br>10<br>10<br>10<br>10       | 13<br>13<br>25<br>13<br>13<br>13<br>13<br>13             | 0<br>0<br>0<br>0<br>0                                              | 13<br>27<br>13<br>13<br>13<br>13             | บ<br>ช<br>บ<br>บ<br>บ<br>บ      | 13<br>25<br>13<br>13<br>13<br>13<br>13       | บ<br>บ<br>บ<br>บ<br>บ      | 12<br>24<br>12<br>12<br>12<br>12             | U<br>U<br>U<br>U<br>U<br>U | 24<br>12<br>12<br>12<br>12             | ม<br>บ<br>บ<br>บ<br>บ           |
| 2,4,6-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dimethylphenol<br>2,4-Dinitrophenol<br>2,4-Dinitrotoluene<br>2,6-Dinitrotoluene<br>2,6-Dinitrotoluene<br>2-Chlorophenol<br>2-Chlorophenol | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 10<br>10<br>20<br>10<br>10<br>10<br>10<br>10 | 13<br>13<br>25<br>13<br>13<br>13<br>13<br>13<br>13<br>13 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 13<br>27<br>13<br>13<br>13<br>13<br>13<br>13 | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 13<br>25<br>13<br>13<br>13<br>13<br>13<br>13 | บ<br>บ<br>บ<br>บ<br>บ<br>บ | 12<br>24<br>12<br>12<br>12<br>12<br>12<br>12 | U<br>U<br>U<br>U<br>U<br>U | 24<br>12<br>12<br>12<br>12<br>12<br>12 | 0<br>0<br>0<br>0<br>0<br>0<br>0 |
| 2,4,8-Trichlorophenol<br>2,4-Dichlorophenol<br>2,4-Dimethylphenol<br>2,4-Dinitrophenol<br>2,4-Dinitrotoluene<br>2,8-Dinitrotoluene<br>2-Chloronaphthalene<br>2-Chloronaphthalene             | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L         | 10<br>10<br>20<br>10<br>10<br>10<br>10       | 13<br>13<br>25<br>13<br>13<br>13<br>13<br>13             | 0<br>0<br>0<br>0<br>0                                              | 13<br>27<br>13<br>13<br>13<br>13             | บ<br>ช<br>บ<br>บ<br>บ<br>บ      | 13<br>25<br>13<br>13<br>13<br>13<br>13       | บ<br>บ<br>บ<br>บ<br>บ      | 12<br>24<br>12<br>12<br>12<br>12             | U<br>U<br>U<br>U<br>U<br>U | 24<br>12<br>12<br>12<br>12             |                                 |

| Site ID<br>Field Sample Number<br>Site Type<br>Collection Date<br>Depth (ft) |       |    | -IWL-01<br>SAIC01<br>PNCH<br>08/06/02<br>16.50 | -  | `. | HP-IWL-01<br>SAIC01D<br>PNCH<br>08/06/02<br>16.50 |     | HP-IWL-02<br>SAIC01<br>PNCH<br>08/06/02<br>16.00 | <br> <br> | HP-IWL-03<br>SAIC01<br>PNCH<br>08/06/02<br>19.00 |        | HP-IWL-04<br>SAIC01<br>PNCH<br>08/07/02<br>19.00 |    |        |
|------------------------------------------------------------------------------|-------|----|------------------------------------------------|----|----|---------------------------------------------------|-----|--------------------------------------------------|-----------|--------------------------------------------------|--------|--------------------------------------------------|----|--------|
| 3,3'-Dichtorobenzidine                                                       | ug/L  | 20 | 25                                             | U  |    | 27                                                | υ   | 25                                               | υ         | 24                                               | U      | 24                                               | ι  | J      |
| 3-Nitroaniline                                                               | ug/L  | 10 | 13                                             | Ū  |    | 13                                                | Ū   | 13                                               |           | 12                                               | υ      | 12                                               | L  | U      |
| 4.6-Dinitro-2-cresol                                                         | ug/L  | 20 | 25                                             | Ŭ  |    | 27                                                | U   | 25                                               | iU        | 24                                               | U      | 24                                               | ι  | U      |
| 4-Bromophenyl phenyl ether                                                   | ug/L  | 10 | 13                                             | Ū  |    | 13                                                | Ū   | 13                                               | υ         | 12                                               | U      | 12                                               | ι  | U      |
| 4-Chloro-3-methylphenol                                                      | ug/L  | 10 | 13                                             | U  |    | 13                                                | U   | 13                                               | 1 U       | 12                                               | U      | 12                                               | ્ય | U      |
| 4-Chloroaniline                                                              | ug/L  | 10 | 13                                             | Ū  |    | 13                                                | - บ | . 1                                              | 9 U       | 12                                               | U      | 12                                               | 1  | U      |
| 4-Chlorophenyl phenyl ether                                                  | ug/L  | 10 | 13                                             | Ŭ  |    | 13                                                | Ũ   | 1                                                |           | 12                                               | Ŭ      | 12                                               |    | Ũ      |
| 4-Methylphenol                                                               | ug/L  | 10 | 13                                             | Ŭ  |    | 13                                                | Ŭ   | 1                                                |           | 12                                               | ŭ      | 12                                               |    | Ŭ      |
| 4-Nitroaniline                                                               | ug/L  | 10 | 13                                             | Ũ  |    | 13                                                | Ŭ   | 1:                                               |           | 12                                               | ŭ      | 12                                               |    | ŭ      |
| 4-Nitrophenol                                                                | ug/L  | 20 | 25                                             | Ũ  |    | 27                                                | ū   | 2                                                |           | 24                                               | Ŭ      | 24                                               |    | บ      |
| Acenaphthene                                                                 | ug/L  | 10 | 13                                             | Ŭ  |    | 13                                                | ŭ   | 1                                                |           | 12                                               | Ŭ      | 12                                               |    | ŭ      |
| Acenaphthylene                                                               | ug/L  | 10 | 13                                             | Ŭ  |    | 13                                                | ŭ   | 1                                                |           | 12                                               | Ŭ      | 12                                               |    | บั     |
| Anthracene                                                                   | ug/L  | 10 | 13                                             | ŭ  |    | 13                                                | Ŭ   | 1                                                |           | 12                                               | ŭ      | 12                                               |    | Ŭ      |
| Benzo(a)anthracene                                                           | ug/L  | 10 | 13                                             | ŭ  |    | 13                                                | ŭ   | 1                                                |           | 12                                               | Ŭ      | 12                                               |    | U      |
| Benzo(a)pyrene                                                               | ug/L  | 10 | 13                                             | ŭ  |    | 13                                                | ŭ   | - 1.<br>- 1.                                     |           | 12                                               | U.     | 12                                               |    | U<br>U |
| Benzo(b)/luoranthene                                                         | ug/L  | 10 | <br>13                                         | ŭ  | •  | 13                                                | Ŭ   | 1                                                |           | 12                                               | Ŭ      | 12                                               |    | บั     |
| Benzo(g,h,i)perylene                                                         | ug/L  | 10 | 13                                             | ŭ  |    | 13                                                |     | 1                                                |           | 12                                               | ŭ      | 12                                               |    | Ŭ      |
| Benzo(k)fluoranthene                                                         | ug/L  | 10 | 13                                             | บั |    | 13                                                | -   | 1                                                |           | 12                                               | υ      | 12                                               |    | U      |
| bis(2-chloroethoxy) methane                                                  | ug/L  | 10 | 13                                             | ŭ  |    | 13                                                |     | 1                                                |           | 12                                               | ŭ      |                                                  |    | U      |
| bis(2-Chloroethyl) Ether                                                     | ug/L  | 10 | 13                                             | Ŭ  |    | 13                                                | -   | 1                                                |           | 12                                               | U<br>U | 12                                               |    | U      |
| bis(2-chloroisopropyl) ether                                                 | ug/L  | 10 | 13                                             | Ŭ  |    |                                                   | -   |                                                  |           |                                                  | -      |                                                  |    | -      |
| bis(2-Ethythexyl)phthalate                                                   |       | 10 |                                                | Ŭ  |    | 13                                                | -   | 1                                                |           | 12                                               | U      | 12                                               |    | U      |
| Butylbenzyl phthalate                                                        | ug/L  | 10 | 13                                             | U  |    | 13                                                | U   | 1                                                |           | 12                                               | U      | 12                                               |    | U      |
| Carbazole                                                                    | ug/L  |    | 13                                             | -  |    | 13                                                | U   | 1                                                |           | 12                                               | U      | 12                                               |    | U      |
|                                                                              | ug/L  | 10 | 13                                             | U  |    | 13                                                | -   | 1                                                |           | 12                                               | U      | 12                                               |    | U      |
| Chrysene                                                                     | ug/L  | 10 | 13                                             | U  |    | 13                                                | -   |                                                  | 3 U       | 12                                               | U      | 12                                               |    | U      |
| Dibenzo(a,h)anthracene                                                       | ug/L  | 10 | 13                                             | U  |    | 13                                                |     |                                                  | 3 U       | 12                                               | U      | 12                                               |    | U      |
| Dibenzofuran                                                                 | ug/L  | 10 | 13                                             | U  |    | 13                                                |     | 1                                                |           | 12                                               | U      | 12                                               |    | U      |
| Diethyl phthalate                                                            | ug/L  | 10 | - 13                                           | υ. |    | 13                                                | U   | 1                                                | 3 U       | 12                                               | U      | 12                                               | !  | U      |
| Dimethyl phthalate                                                           | ug/L  | 10 | 13                                             | U  |    | 13                                                | U   | 1                                                | 3 U       | 12                                               | ប      | 12                                               | 2  | U      |
| Di-n-butyl phthalate                                                         | ug/L  | 10 | 13                                             | U  |    | 13                                                | U   | 1                                                | 3 U       | 12                                               | U      | 12                                               | 2  | U      |
| Di-n-octyl phthalate                                                         | ug/L  | 10 | 13                                             | U  |    | 13                                                |     | 1                                                | 3 U       | 12                                               | υ      | 12                                               | 2  | U      |
| Fluoranthene                                                                 | ug/L  | 10 | 13                                             | U  |    | 13                                                | U   | 1                                                | 3 U       | 12                                               | U      | 12                                               | 2  | U      |
| Fluorene                                                                     | ug/L  | 10 | 13                                             | U  |    | 13                                                | บ   | · 1                                              | 3 U       | 12                                               | U      | 12                                               | 2  | U      |
| Hexachlorobenzene                                                            | ug/L  | 10 | 13                                             | U  |    | 13                                                | U   | 1                                                | 3 U       | 12                                               | U      | 12                                               | 2  | U      |
| Hexachlorobutadiene                                                          | ug/L  | 10 | 13                                             | U  |    | 13                                                | U   | 1                                                | 3 U       | 12                                               | U      | 12                                               | 2  | U      |
| Hexachiorocyclopentadiene                                                    | ug/L. | 10 | 13                                             | U  |    | 13                                                | υ   | 1                                                | 3 U       | 12                                               | U      | 12                                               | 2  | U      |
| Hexachloroethane                                                             | ug/L  | 10 | 13                                             | U  |    | 13                                                | U   | 1                                                | 3 U       | 12                                               | υ      | 12                                               | 2  | U      |
| Indeno(1,2,3-cd)pyrene                                                       | ug/L  | 10 | 13                                             | U  |    | . 13                                              | U I | 1                                                | 3 U       | 12                                               | U      | 12                                               | 2  | U      |
| Isophorone                                                                   | ug/L  | 10 | 13                                             | U  |    | 13                                                | U   | 1                                                | 3 U       | 12                                               | U      | 12                                               | 2  | U      |
| Naphthalene                                                                  | ug/L  | 10 | 13                                             | U  |    | 13                                                | U U |                                                  | 3 U       | 12                                               |        | 12                                               | -  | Ū      |
| Nitrobenzene                                                                 | ug/L  | 10 | 13                                             | U  |    | 13                                                | Ū   |                                                  | 3 Ū       | 12                                               | -      | 12                                               | -  | Ū      |
| N-Nitrosodi-n-propylamine                                                    | ug/L  | 10 | 13                                             | Ū  |    | 13                                                |     |                                                  | 3 U       | 12                                               |        | 12                                               |    | ŭ      |
| N-Nitrosodlphenylamine                                                       | ug/L  | 10 | 13                                             | Ŭ  |    | 13                                                |     |                                                  | 3 U       | 12                                               | _      | 12                                               |    | ŭ      |
| Pentachlorophenol                                                            | ug/L  | 20 | 25                                             | -  |    | 2                                                 |     |                                                  | 5 U       | 24                                               |        | 24                                               |    | ŭ      |
| Phenanthrene                                                                 | ug/L  | 10 | 13                                             | -  |    | 1:                                                | _   |                                                  | 3 U       | 12                                               | -      | 12                                               |    | Ŭ      |
| Phenol                                                                       | ug/L  | 10 | 13                                             |    |    | 1;                                                |     |                                                  | 13 U      | 12                                               | -      | 12                                               |    | Ŭ      |
| Pyrena                                                                       | ug/L  | 10 | 13                                             | -  |    | 1:                                                |     |                                                  | 3 U       |                                                  | -      |                                                  |    | U<br>U |

8

Created on 11/7/2002

G-20

# Table G-4. Data Presentation: Groundwater Results, Industrial Waste/Sanitary Landfill Wallops Flight Facility, Accomack County, Virginia (continued)

| Sile ID<br>Field Sample Number     |               |         | HP-IWL-01<br>SAIC01 |          | HP-IWL-01<br>SAIC01D |       | HP-IWL-02<br>SAIC01 | ,        | HP-IWL-03<br>SAIC01 |          |     | NIC01  |      |
|------------------------------------|---------------|---------|---------------------|----------|----------------------|-------|---------------------|----------|---------------------|----------|-----|--------|------|
| Site Type                          |               |         | PNCH                |          | PNCH                 |       | PNCH                |          | PNCH                |          | F   | NCH    |      |
| Collection Date                    |               |         | 08/06/02            |          | 08/06/02             |       | 08/06/02            |          | 08/06/02            |          | 08/ | 07/02  |      |
| Depth (ft)                         | -             |         | 16.50               |          | 16.50                |       | 16.00               |          | 19.00               |          |     | 19.00  |      |
|                                    |               |         |                     |          |                      |       |                     |          |                     |          |     |        |      |
| VOLATILE ORGANIC COMP              |               |         | ·                   |          | -                    |       |                     |          |                     |          |     |        |      |
| Parameter<br>1,1,1-Trichtoroethane | Units<br>ua/L | RL<br>1 |                     | UJ       | 1                    | UJ    |                     | UJ .     |                     | UJ       |     |        | ŪJ   |
| 1,1,2,2-Tetrachloroethane          | ug/L          |         |                     | UJ       | 1                    | UJ UJ |                     | UJ       | ;                   | ບັນ      |     |        | ŰŰ   |
| 1,1,2,2-Tretrachioroethane         |               |         |                     | 01       | 1                    | UJ    | 1                   | UJ .     | -                   | ŬĴ       |     | 4      | UJ   |
|                                    | ug/L          | 2       | · ·                 | 0J<br>0J | 1                    | 01    |                     | 03       |                     | UJ       |     | -      | UJ   |
| 1,1-Dichloroethane                 | ug/L          |         |                     | UJ       | •                    | UJ    |                     | UJ       | -                   | UJ<br>UJ |     |        | UJ   |
| 1,1-Dichloroethene                 | ug/L          | !       |                     |          | 1                    |       | 1                   | 11<br>11 |                     | UJ       |     |        | 03   |
| 1,2-Dichloroethane                 | ug/L          | I       | 1                   | UJ       | 1                    | UJ    | 1                   |          | 1                   | 03       |     |        | 03   |
| 1,2-Dichloropropane                | ug/L          | 1       | 1                   | UJ       | 1                    | UJ    | Ţ                   | UJ       | 1                   | UJ<br>UJ |     | í<br>F | - UJ |
| 2-Hexanone                         | ug/L          | 5       | 5                   | UJ       | 5                    | UJ    | 5                   | UJ       | 5                   | 0J<br>0J |     | 5      | 01   |
| Acetone                            | ug/L          | 5       | 7.1                 | UJ       | 5                    | UJ    | 5                   | UJ<br>UJ | 5                   | 01       |     | 5      | 01   |
| Benzene                            | ug/L          | 1       | 1                   | IJ       | 1                    | UJ    | 1                   | UJ<br>03 | 1                   | 01<br>01 |     | 1      | 01   |
| Bromodichloromethane               | ug/L          | 1       | 1                   | UJ       | 1                    | UJ    | 1                   |          | 1                   |          |     |        | 01   |
| Bromoform                          | ug/L          | !       |                     | IJ       | 1                    | UJ    | 1                   | UJ       | 1                   | U)<br>UJ |     | - !    | - UJ |
| Bromomethane                       | ug/L          |         | 1                   | UJ       | 1                    | UJ    | 1                   | UJ       | ]                   |          |     | 1      | 03   |
| Carbon disulfide                   | ug/L          | 1       | 1                   | UJ       | 1                    | UJ    |                     | 0J       | 1                   | UJ       |     |        |      |
| Carbon Tetrachloride               | ug/L          | 1       | 1                   | UJ       | 1                    | UJ    | 1                   | UJ       | 1                   | UJ       |     |        | UJ   |
| Chlorobenzene                      | ug/L          | 1       | 1                   | UJ       | 1                    | UJ    | 1                   | UJ       | 1                   | UJ       |     | 1      | UJ   |
| Chloroethane                       | ug/L          | - 1     | 1                   | UJ       | 1                    | UJ    | . 1                 | UJ       | 1                   | IJ       |     | 1      | 01   |
| Chloroform                         | ug/L          | 1       | 1                   | UJ       | 1                    | UJ    | 1                   | IJ       | 1                   | UJ       |     | 1      | U.   |
| Chloromethane                      | ug/L          | 1       | 1                   | UJ       | 1                    | IJ    | 1                   | UJ       | 1                   | UJ       |     | 1      | ŲJ   |
| cis-1,2-Dichloroethene             | ug/L          | 1       | 1                   | IJ       | . 1                  | UJ    | - 1                 | UJ       | 1                   | UJ       |     | 1      | UJ   |
| cis-1,3-Dichloropropene            | ug/L          | 1       | 1                   | บม       | 1                    | IJ    | 1                   | UJ       | 1                   | UJ       |     | 1      | UJ   |
| Dibromochloromethane               | ug/L          | 1       | - 1                 | UJ.      | 1                    | IJ    | 1                   | IJ       | 1                   | IJ       |     | 1      | U.   |
| Ethylbenzene                       | ug/L          | 1       | 1                   | UJ       | 1                    | UJ    | 1                   | UJ       | 1                   | UJ       |     | 1      | U.   |
| m-and/or p-Xylene                  | ug/L.         | 1       | 1                   | IJ       | 1                    | IJ    | 0.7                 | J        | 1                   | UJ       |     | 1      | υ.   |
| Methyl ethyl ketone                | ug/L          | 5       | 5                   | UJ       | . 5                  | บม    | 5                   | UJ       | 5                   | UJ       |     | 5      | U,   |
| Methyl isobutyl ketone             | ug/L          | 5       | 5                   | UJ       | 5                    | UJ    | 5                   | UJ       | 5                   | UJ       |     | 5      | U,   |
| Methylene Chloride                 | ug/L          | 1       | 1                   | บม       | 1                    | UJ    | 1                   | ບງ       | 1                   | IJ       |     | 2.3    | υ.   |
| o-xylene                           | ug/L          | 1       | .1                  | ŲJ       | 1                    | UJ -  | 1                   | UJ       | 1                   | UJ       |     | 1      | U.   |
| Styrene                            | ug/L          | 1       | 1                   | · UJ ·   | 1                    | UJ    | <u> </u>            | UJ       | 1                   | . NN     |     | 1      | υ.   |
| Tetrachloroethene                  | ug/L          | 1       | 1                   | UJ       | 1                    | UJ    | 1                   | UJ       | 1                   | UJ       |     | 1      | U.   |
| Toluene                            | ug/L          | 1       | 0.6                 | J        | 1                    | UJ    | 1.7                 | J        | 1.2                 | J        |     | · 1    | U.   |
| trans-1,2-Dichloroethene           | ug/L          | 1       | 1                   | บัง      | · 1                  | ŨĴ    | 1                   | IJJ      | 1                   | ÛJ       |     | 1      | U.   |
| trans-1,3-Dichloropropene          | ug/L          | 1       | 1                   | ŪJ       | 1                    | ŪJ    | 1                   | UJ       | 1                   | UJ       |     | 1      | U.   |
| Trichloroethene                    | ug/L          | i       | 1                   | ŪĴ       | 1                    | ŰĴ    | 1                   | UJ       | 1                   | UJ       |     | 1      | U.   |
| Vinyl Chloride                     | ug/L          | i       | 1                   | UJ.      |                      | ŬĴ    | 1                   | ŪĴ       | 1                   | ŬĴ       |     | i i    | U.   |

#### Footnotes:

B - Metals: Reported value was less than the contract required detection limit but greater than or equal to the instrument detection limit.

B - Organics: Analyte was found in the associated method blank. Validation of the data did not result in this compound being qualified as nondetect due to blank contamination. Therefore this result is considered to be site related.

D - The value for the target analyte was calculated from a dilution.

E - Metals: The reported value is estimated because of the presence of interferents.

E - Organics: Concentration range exceeded for this analyte.

J -- Value Is estimated.

N - Metals: Spiked sample recovery not within control limits.

N - Organics: Tentatively identified compound based on mass spectral library search.

P - There is greater than 25% difference for detected concentrations between the two GC columns for the associated pesticide/PCB target analyte.

R - Value is rejected.

U - Compound was analyzed for but not detected.

UJ - Compound was analyzed for but not detected and is considered an estimate.

X - The mass spectrum does not meet EPA CLP criteria for confirmation, but compound presence is strongly suspected.

\* - Duplicate analysis not within control limits.

N/A - Compound not analyzed for.

NF - Data not found.

RL - Reporting Limit for each method. For SW846 methods, the samples are reported down to the method detection limits (MDL). For metals, the samples are reported down to the instrument detection limit (IDL).

MDL - Method Detection Limit.

SAICXXR - An SAIC field sample number followed by an "R" designates a recollected sample.

Table G-5. Data Presentation: Soil Boring Results, Construction Debris Landfill Wallops Flight Facility, Accomack County, Virginia

| Field Sample Number         SA(C01                                                         | SAIC01<br>BORE<br>08/07/02<br>0.00<br>44400<br>23.5 J<br>6.3 B<br>240<br>0.4 B<br>23.9<br>1750<br>53<br>3.6<br>2660<br>10700 | SAIC02<br>BORE<br>08/07/02<br>4.00<br>11000<br>3.4 UJ<br>6.9<br>55.3<br>0.28<br>4.9<br>871<br>18,7 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Description         DBR07/02         DBR07/02 | 08/07/02<br>0.00<br>44400<br>23.5 J<br>6.3 B<br>240<br>0.4 B<br>23.9<br>1750<br>53<br>3.6<br>2660<br>10700                   | 08/07/02<br>4,00<br>11000<br>3.4 UJ<br>6.9<br>55.3<br>0.28<br>4.9<br>871                           |
| Depth (ft)         6.50         9.00         0.00         0.00         7.00           METALS(6010)         Parameter         Units         RL         Adminum         MG/KG         20         7170         4140         29100         31200         6770           Adminum         MG/KG         0.8         0.21         UJ         0.22         UJ         1.2         UJ         1.7         UJ         0.24         UJ           Ansenic         MG/KG         0.8         0.21         UJ         0.22         UJ         1.2         UJ         1.7         UJ         0.24         UJ           Barium         MG/KG         0.5         0.17         0.16         0.41         B         0.4         B         0.34           Cadmium         MG/KG         10.7         3.5         0.51         D         110         1240         2.25           Cobit         MG/KG         10         3440         2466         287.7         6.7           Cobatt         MG/KG         10         3740         2100         7740         34300         4420           Lead         MG/KG         10         3740         220         1.3         12.7         J <th>0.00<br/>44400<br/>23.5 J<br/>6.3 B<br/>240<br/>0.4 B<br/>23.9<br/>1750<br/>53<br/>3.6<br/>2660<br/>10700</th> <th>4.00<br/>11000<br/>3.4 UJ<br/>6.9<br/>55.3<br/>0.26<br/>4.9<br/>871</th>          | 0.00<br>44400<br>23.5 J<br>6.3 B<br>240<br>0.4 B<br>23.9<br>1750<br>53<br>3.6<br>2660<br>10700                               | 4.00<br>11000<br>3.4 UJ<br>6.9<br>55.3<br>0.26<br>4.9<br>871                                       |
| METALS(6010)         METALS(6010)           Parameter         Units         RL           Aluminum         MG/KG         20         7170         4140         29100         31200         6770           Aluminum         MG/KG         20         7170         4140         12         UJ         1.7         UJ         0.24         UJ           Ansenic         MG/KG         1         1.8         0.64         8         5         8         6.9         9         1.9           Barlum         MG/KG         0.5         0.17         0.15         0.41         8         0.4         8         0.34           Cadmium         MG/KG         10         3.48         0.64         2.277         0.04         B           Calcium         MG/KG         1         7.6         3.7         2.6.8         2.9.7         6.7           Cobalt         MG/KG         1         3.5         1.5         U         1110         12.40         2.5           Iron         MG/KG         1.3         5.2         3.0         8         660         Maranes         460         4300         4420         2.5           Iron         MG/KG                                                                                                                                                                                                                                   | 44400<br>23.5 J<br>6.3 B<br>240<br>0.4 B<br>23.9<br>1750<br>53<br>3.8<br>2660<br>10700                                       | 11000<br>3.4 UJ<br>6.9<br>555.3<br>0.28<br>4.9<br>871                                              |
| Parameter         Units         RL           Aluminum         MG/KG         20         7170         4140         29100         31200         6770           Aluminum         MG/KG         0.6         0.21         UJ         0.22         UJ         1.2         UJ         1.7         UJ         0.24         UJ           Arsenic         MG/KG         1         1.6         0.64         B         6         B         6.9         B         1.9           Barlum         MG/KG         20         15.9         5.2         371         325         30.5           Boryllium         MG/KG         0.5         0.17         0.16         0.41         B         0.4         B         0.34           Cadnium         MG/KG         100         3480         545         2940         2710         628           Cadrium         MG/KG         10         3.5         1.5         U         1110         1240         2.5           Cobat         MG/KG         10         3.5         1.5         U         1110         1240         2.5           Ion         MG/KG         10         3.8         12.4         265         253                                                                                                                                                                                                                                 | 23.5 J<br>6,3 B<br>240<br>0,4 B<br>23.9<br>1750<br>53<br>3,6<br>2660<br>10700                                                | 3.4 UJ<br>6.9<br>55.3<br>0.28<br>4,9<br>871                                                        |
| Aluminum       MG/KG       20       7170       4140       28100       31200       6770         Antimony       MG/KG       0.8       0.21       UJ       0.22       UJ       1.2       UJ       1.7       UJ       0.24       UJ         Antimony       MG/KG       1       1.6       0.64       B       5       B       6.9       B       1.9         Barlum       MG/KG       0.5       0.03       B       0.02       U       25.9       29.7       0.04       B         Calchum       MG/KG       1       7.6       3.7       26.8       29.7       0.04       B         Calchum       MG/KG       1       7.6       3.7       26.8       29.7       6.7         Cobalt       MG/KG       100       3740       2100       7740       34300       4420         Iron       MG/KG       10       3740       2100       7740       34300       4420         Lead       MG/KG       100       3740       2100       7740       34300       4420         Lead       MG/KG       100       178       99       565       518       255         Selenium                                                                                                                                                                                                                                                                                                                        | 23.5 J<br>6,3 B<br>240<br>0,4 B<br>23.9<br>1750<br>53<br>3,6<br>2660<br>10700                                                | 3.4 UJ<br>6.9<br>55.3<br>0.28<br>4,9<br>871                                                        |
| Antimory         MG/KG         0.8         0.21         UJ         0.22         UJ         1.2         UJ         1.7         UJ         0.24         UJ           Arsenic         MG/KG         1         1.6         0.64         B         6         B         1.9         0.05         0.05         0.05         0.05         0.06         0.06         0.06         0.06         0.06         0.04         B         0.04         D                                                                                                                                                                                        | 23.5 J<br>6,3 B<br>240<br>0,4 B<br>23.9<br>1750<br>53<br>3,6<br>2660<br>10700                                                | 3.4 UJ<br>6.9<br>55.3<br>0.28<br>4,9<br>871                                                        |
| Ansenic         MG/KG         1         1.6         0.54         B         6         B         6.8         B         1.9           Barlum         MG/KG         20         15.9         5.2         371         325         30.5           Barlum         MG/KG         0.5         0.17         0.16         0.41         B         0.4         B         0.34           Cadmium         MG/KG         0.5         0.03         B         0.02         U         25.9         29.7         0.04         B           Cadmium         MG/KG         1         7.6         3.7         26.8         29.7         6.7           Cobatt         MG/KG         1         3.5         1.5         U         1110         1240         2.5           Copper         MG/KG         0.3         9.8         12.4         266         283         4           Magnesium         MG/KG         10         3740         2.2         10.8         J         12.7         J         3.9           Polassium         MG/KG         100         288         134         1460         1390         860           Marganese         MG/KG         100                                                                                                                                                                                                                                      | 6.3 B<br>240<br>0.4 B<br>23.9<br>1750<br>53<br>3.6<br>2660<br>10700                                                          | 6.9<br>55.3<br>0.28<br>4.9<br>871                                                                  |
| Barium         MG/KG         20         16.9         6.2         371         325         30.8           Beryllium         MG/KG         0.5         0.17         0.16         0.41         B         0.4         B         0.34           Beryllium         MG/KG         0.5         0.03         B         0.02         U         25.9         29.7         0.04         B         0.34           Calcium         MG/KG         1         7.6         3.7         26.8         29.7         6.7           Cobalt         MG/KG         1         3.5         1.5         U         1110         1240         2.5           Copper         MG/KG         10         3740         2100         7740         34300         4420           Lead         MG/KG         10         278         134         1450         1390         660           Magnesum         MG/KG         10         288         134         1460         1390         860         1           Nickel         MG/KG         10         271         2.2         10.8         12.7         J         3.9         J           Silver         MG/KG         10.0         179                                                                                                                                                                                                                             | 240<br>0.4 B<br>23.9<br>1750<br>53<br>3.8<br>2680<br>10700                                                                   | 55.3<br>0.28<br>4,9<br>871                                                                         |
| Beryllium         MG/KG         0.5         0.17         0.16         0.41         B         0.4         B         0.34           Cadmium         MG/KG         0.5         0.03         B         0.02         U         25.9         29.7         0.04         B           Calcium         MG/KG         10         3480         646         2940         2710         626           Chromium         MG/KG         1         7.6         3.7         26.8         29.7         6.7           Cobait         MG/KG         1         3.5         1.5         1110         1240         2.5           tron         MG/KG         10         3740         2100         7740         34300         4420           Lead         MG/KG         10         3740         2100         7740         34300         4420           Magnesium         MG/KG         10         2740         2100         7740         642         45.3           Marganese         MG/KG         10         25         30.8         6.7         407         642         45.3           Nicket         MG/KG         10.0         138         0.22         1         12.1                                                                                                                                                                                                                          | 0.4 B<br>23.9<br>1760<br>53<br>3.6<br>2660<br>10700                                                                          | 0.28<br>4.9<br>871                                                                                 |
| Cadmium         MG/KG         0.5         0.03         B         0.02         U         25.9         29.7         0.04         B           Calcium         MG/KG         100         3480         545         2940         2710         526           Chromium         MG/KG         1         7.6         3.7         26.8         29.7         6.7           Cobalt         MG/KG         1         3.5         1.5         U         1110         1240         2.5           Cobalt         MG/KG         10         3740         2100         7740         34300         4420           Lead         MG/KG         100         288         134         1450         1390         660           Magnesium         MG/KG         100         288         134         1450         1390         650           Magnesium         MG/KG         10.2         2.2         J         10.6         J         12.7         J         3.9         J           Nicket         MG/KG         100         179         99         665         618         255         Selenium         MG/KG         10.07         8.0.37         B         0.37         B                                                                                                                                                                                                                         | 23.9<br>1760<br>53<br>3.6<br>2660<br>10700                                                                                   | 4.9<br>871                                                                                         |
| Calcium         MG/KG         100         3480         546         2940         2710         528           Chromium         MG/KG         1         7.6         3.7         28.8         29.7         6.7           Cobalt         MG/KG         1         3.5         1.5         U         1110         1240         2.5           Cobalt         MG/KG         1         3.5         1.5         U         1110         1240         2.5           Iron         MG/KG         10         3740         2100         7740         34300         4420           Lead         MG/KG         10.3         9.8         12.4         266         253         4           Magnesium         MG/KG         10.0         288         134         1450         1390         660           Magnesium         MG/KG         10.0         179         99         565         518         255           Selenium         MG/KG         1         0.23         B         0.05         0         0.29         0.33         B         0.66         U           Soliver         MG/KG         10         73.5         U         0.29         0.33         B                                                                                                                                                                                                                              | 1750<br>53<br>3.8<br>2660<br>10700                                                                                           | 871                                                                                                |
| Chromium         MG/KG         1         7.6         3.7         26.8         29.7         6.7           Cobalt         MG/KG         5         1.3         1.2         3         3.8         1.6           Copper         MG/KG         1         3.6         1.5         U         1110         1240         2.5           Iron         MG/KG         10         3740         2100         7740         34300         4420           Lead         MG/KG         0.3         9.8         12.4         266         253         4           Magnesium         MG/KG         1.5         30.8         6.7         407         642         45.3           Nickel         MG/KG         1         4.2         J         2.2         J         10.8         J         12.7         J         3.9         J           Polassium         MG/KG         100         179         99         665         618         255         S           Selenium         MG/KG         1         0.05         U         0.29         U         3.3         B         0.68         U         St         St         St         St         U         13 <td< td=""><td>53<br/>3.6<br/>2660<br/>10700</td><td></td></td<>                                                                                                                                                                         | 53<br>3.6<br>2660<br>10700                                                                                                   |                                                                                                    |
| Cobalt         MG/KG         5         1.3         1.2         3         3.8         1.6           Copper         MG/KG         1         3.6         1.5         U         1110         1240         2.5           Copper         MG/KG         10         3740         2100         7740         34300         4420           Lead         MG/KG         0.3         9.8         12.4         256         263         4           Magnese         MG/KG         1.5         30.8         6.7         407         642         45.3           Nicket         MG/KG         1         4.2         J         2.2         J         10.8         J         1.7         J         3.9         J           Potassium         MG/KG         100         179         99         6665         616         255         3         8         0.02         U         1.3         B         0.37         B         5/8         100         73.5         U         0.29         U         0.33         B         0.66         U         10         10.47         U         0.33         0.06         U         110         113         UJ         76.4         UJ <td>3.6<br/>2660<br/>10700</td> <td></td>                                                                                                                                                                            | 3.6<br>2660<br>10700                                                                                                         |                                                                                                    |
| Copper         MG/KG         1         3.5         1.5         U         1110         1240         2.5           Iron         MG/KG         10         3740         2100         7740         34300         4420           Lead         MG/KG         0.3         9.8         12.4         266         253         4           Magnesium         MG/KG         100         288         134         1450         1390         660           Manganese         MG/KG         1.5         30.8         6.7         407         642         45.3           Nicket         MG/KG         1         4.2         J         2.2         J         10.8         J         12.7         J         3.9         J           Potassium         MG/KG         100         179         99         665         618         255         Setentum         MG/KG         1         0.05         U         0.29         U         0.33         B         0.06         U         Sodium         MG/KG         1         0.47         U         0.49         U         2.8         U         0.33         U         0.53         U         Vanadium         MG/KG         5         7.                                                                                                                                                                                                         | 2660<br>10700                                                                                                                |                                                                                                    |
| Iron       MG/KG       10       3740       2100       7740       34300       4420         Lead       MG/KG       0.3       9.8       12.4       266       253       4         Magneslum       MG/KG       100       288       134       1450       1390       860         Manganese       MG/KG       1.5       30.8       6.7       407       642       45.3         Nicket       MG/KG       100       179       99       665       518       255         Selentum       MG/KG       100       179       99       665       518       255         Selentum       MG/KG       1       0.05       U       0.29       U       0.33       B       0.06       U         Solurn       MG/KG       1       0.47       U       0.49       U       2.8       U       0.33       U       0.53       U       0.54       U       1.41       14.7                                                                                                                                                                                                                                                                                                                  | 10700                                                                                                                        | 4.3                                                                                                |
| Lead         MG/KG         0.3         9.8         12.4         265         263         4           Magnesium         MG/KG         100         288         134         1450         1390         660           Manganese         MG/KG         1.5         30.8         6.7         407         642         45.3           Nickel         MG/KG         1         4.2         J         2.2         J         10.8         J         12.7         J         3.9         J           Potassium         MG/KG         100         179         99         665         518         255         5           Selenium         MG/KG         0.5         0.23         B         0.22         U         1.2         U         1.3         B         0.37         B           Silver         MG/KG         10         0.05         U         0.29         U         0.33         B         0.06         U           Sodium         MG/KG         10         0.47         U         0.49         U         2.8         U         2.8         U         0.53         U           Yanadium         MG/KG         2         1.6         3.2 <td< td=""><td></td><td>155</td></td<>                                                                                                                                                                                                   |                                                                                                                              | 155                                                                                                |
| Magneslum         MG/KG         100         288         134         1450         1390         660           Maganese         MG/KG         1.5         30.8         6.7         407         642         45.3           Nickel         MG/KG         1         4.2         J         2.2         J         10.8         J         12.7         J         3.9         J           Potassium         MG/KG         100         179         99         665         616         255           Selenium         MG/KG         0.0         179         99         665         616         265           Selenium         MG/KG         1         0.05         U         0.29         U         0.33         B         0.06         U           Sodium         MG/KG         100         73.5         UJ         62.4         UJ         163         UJ         113         UJ         76.4         UJ           Thallium         MG/KG         1         0.47         U         0.49         U         2.8         U         2.8         U         0.53         U         Vanadium         MG/KG         2         14.5         3.2         1400         1420 </td <td></td> <td>39200</td>                                                                                                                                                                                     |                                                                                                                              | 39200                                                                                              |
| Marganese         MG/KG         1.5         30.8         6.7         407         642         45.3           Nickel         MG/KG         1         4.2         J         2.2         J         10.8         J         12.7         J         3.8         J           Potassium         MG/KG         100         179         99         6665         618         255           Selenium         MG/KG         0.5         0.23         B         0.22         U         1.2         U         1.3         B         0.37         B           Silver         MG/KG         1         0.05         U         0.29         U         0.33         B         0.06         U           Sodium         MG/KG         1         0.47         U         0.49         U         2.8         U         0.53         U         Vanadium         MG/KG         5         7.5         3.9         14.1         14.7         9.7           Zinc         MG/KG         0.1         0.04         0.02         U         0.33         0.08         0.02         B           SEMIVOLATILE ORGANIC COMPOUNDS(6270)            Units         RL                                                                                                                                                                                                                                              | 947                                                                                                                          | 141                                                                                                |
| Nicket         MG/KG         1         4.2         J         2.2         J         10.8         J         12.7         J         3.9         J           Potassium         MG/KG         100         178         99         6665         618         255           Setenium         MG/KG         0.5         0.23         B         0.22         U         1.2         U         1.3         B         0.37         B           Silver         MG/KG         1         0.05         U         0.05         U         0.29         U         0.33         B         0.06         U           Sodium         MG/KG         100         73.5         UJ         62.4         UJ         163         UJ         113         UJ         76.4         UJ           Thallium         MG/KG         5         7.5         3.9         14.1         14.7         9.7           Zinc         MG/KG         0.1         0.04         0.02         U         0.33         0.08         0.02         B           SEMIVOLATILE ORGANIC COMPOUNDS(6270)           Parameter         Units         RL                                                                                                                                                                                                                                                                                   | 1950                                                                                                                         | 843                                                                                                |
| Potassium         MG/KG         100         179         99         585         518         255           Setenium         MG/KG         0.5         0.23         B         0.22         U         1.2         U         1.3         B         0.37         B           Silver         MG/KG         1         0.05         U         0.05         U         0.29         U         0.33         B         0.06         U           Sodium         MG/KG         100         73.5         UJ         62.4         UJ         163         UJ         13         UJ         76.4         UJ           Yanadium         MG/KG         5         7.5         3.9         14.1         14.7         9.7           Zinc         MG/KG         2         14.6         3.2         1400         1420         16.9           METALS(7471)         Parameter         Units         RL         Variantics         O.02         U         0.33         0.08         0.02         B           SEMIVOLATILE ORGANIC COMPOUNDS(6270)           Parameter         Units         RL         Variantics         Variantics         Variantics         Variantics         Variantics <th< td=""><td>367</td><td>185</td></th<>                                                                                                                                                               | 367                                                                                                                          | 185                                                                                                |
| Setenium         MG/KG         0.5         0.23         B         0.22         U         1.2         U         1.3         B         0.37         B           Silver         MG/KG         1         0.05         U         0.05         U         0.29         U         0.33         B         0.06         U           Solium         MG/KG         100         73.5         UJ         62.4         UJ         163         UJ         113         UJ         76.4         UJ           Thallium         MG/KG         1         0.47         U         0.49         U         2.8         U         2.8         U         0.53         U         9.7           Zinc         MG/KG         2         14.5         3.2         1400         1420         15.9           METALS(7471)         Parameter         Units         RL         No.44         0.02         U         0.33         0.02         B           SEMIVOLATILE ORGANIC COMPOUNDS(8270)         Parameter         Units         RL         No.400         U         360         U         400         U           1,2-4-Tritchiorobenzene         ug/kg         330         370         U         400 <td>110 U</td> <td>15.4 J</td>                                                                                                                                                                   | 110 U                                                                                                                        | 15.4 J                                                                                             |
| Silver         MG/KG         1         0.05         U         0.29         U         0.33         B         0.06         U           Sodium         MG/KG         100         73.5         UJ         62.4         UJ         163         UJ         113         UJ         76.4         UJ           Thallium         MG/KG         1         0.47         U         0.49         U         2.8         U         2.8         U         0.53         U           Vanadium         MG/KG         5.         7.5         3.9         14.1         14.7         9.7           Zinc         MG/KG         2         14.5         3.2         1400         1420         15.9           METALS(7471)         Parameter         Units         RL         Parameter         O.02         U         0.33         0.08         0.02         B           SEMIVOLATILE ORGANIC COMPOUNDS(8270)           Parameter         Units         RL         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                                                 | 389                                                                                                                          | 387                                                                                                |
| Sodium         MG/KG         100         73.5         UJ         62.4         UJ         163         UJ         113         UJ         76.4         UJ           Thallium         MG/KG         1         0.47         U         0.49         U         2.8         U         2.8         U         0.53         U           Vanadium         MG/KG         5         7.6         3.9         14.1         14.7         9.7           Zinc         MG/KG         2         14.6         3.2         1400         1420         15.9           METALS(7471)         Parameter         Units         RL         Vanadium         MG/KG         0.1         0.04         0.02         U         0.33         0.08         0.02         B           SEMIVOLATILE ORGANIC COMPOUNDS(8270)         Parameter         Units         RL         I         1.2.4-Trichlorobenzene         ug/kg         330         370         U         400         U         360         U         400         U           Parameter         Units         RL         I         1.2.4-Trichlorobenzene         ug/kg         330         370         U         400         U         360         U         400                                                                                                                                                                                  | 2 B                                                                                                                          | 1 B                                                                                                |
| Thallium       MG/KG       1       0.47       U       0.49       U       2.8       U       2.8       U       0.53       U         Vanadium       MG/KG       5       7.5       3.9       14.1       14.7       9.7         Zinc       MG/KG       2       14.6       3.2       1400       1420       15.9         METALS(7471)       Parameter       Units       RL       Output       Output       O.02       U       0.33       O.08       O.02       B         SEMIVOLATILE ORGANIC COMPOUNDS(8270)         Parameter       Units       RL       1       14.00       1       400       U       360       U       400       U       1       2.00       0.02       B       0.02       B       0.02       0.03       0.08       0.02       B       0.02       0.03       0.00       0.02       0.03       0.08       0.02       B       0.02       0.01       1.2.4-Titchiorobenzene       ug/kg       330       370       U       400                                                                                                                                                                                                                                                                       | 16.8                                                                                                                         | 1.6                                                                                                |
| Vanadium         MG/KG         5.         7.5         3.9         14.1         14.7         9.7           Zinc         MG/KG         2         14.6         3.2         1400         1420         15.9           METALS(7471)         Parameter         Units         RL         9.7         9.7           Parameter         Units         RL         9.7         9.7         9.7           SEMIVOLATILE ORGANIC COMPOUNDS(8270)         9.7         9.7         9.7         9.7           Parameter         Units         RL         0.02         U         0.33         0.08         0.02         B           SEMIVOLATILE ORGANIC COMPOUNDS(8270)         9.7         9.7         9.7         9.7         9.7         9.7           Parameter         Units         RL         0.02         U         0.33         0.08         0.02         B           SEMIVOLATILE ORGANIC COMPOUNDS(8270)         9.7         1.2.4-Titchiorobenzene         ug/kg         330         370         U         400         U         360         U         400         U           1,2-0.5 lorobenzene         ug/kg         330         370         U         400         U         360         U <t< td=""><td>150 UJ</td><td>39.6 UJ</td></t<>                                                                                                                                   | 150 UJ                                                                                                                       | 39.6 UJ                                                                                            |
| Zinc         MG/KG         2         14.6         3.2         1400         1420         15.9           METALS(7471)         Parameter         Units         RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.7 U                                                                                                                        | 1.4 B                                                                                              |
| METALS(7471)         Parameter         Units         RL           Mercury         MG/KG         0.1         0.04         0.02         U         0.33         0.08         0.02         B           SEMIVOLATILE ORGANIC COMPOUNDS(8270)           Parameter         Units         RL         1.2.4-Trichlorobenzene         ug/kg         330         370         U         400         U         360         U         400         U           1,2-Dichlorobenzene         ug/kg         330         370         U         400         U         360         U         400         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.2                                                                                                                         | 15.6                                                                                               |
| Parameter         Units         RL           Mercury         MG/KG         0.1         0.04         0.02         0.33         0.08         0.02         B           SEMIVOLATILE ORGANIC COMPOUNDS(8270)         Parameter         Units         RL         1.2.4-Trichlorobenzene         ug/kg         330         370         U         400         U         360         U         400         U           1,2-Dichlorobenzene         ug/kg         330         370         U         400         U         360         U         400         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1030                                                                                                                         | 258                                                                                                |
| Mercury         MG/KG         0.1         0.04         0.02         U         0.33         0.08         0.02         B           SEMIVOLATILE ORGANIC COMPOUNDS(6270)         Parameter         Units         RL         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <thi< th=""> <thi< th="">         I</thi<></thi<>                                                                                                                                                                                                                     |                                                                                                                              |                                                                                                    |
| SEMIVOLATILE ORGANIC COMPOUNDS(8270)           Parameter         Units         RL           1,2,4-Trichlorobenzene         ug/kg         330         370         U         400         U         360         U         400         U           1,2-Dichlorobenzene         ug/kg         330         370         U         400         U         360         U         400         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                              |                                                                                                    |
| Parameter         Units         RL           1,2,4-Trichlorobenzene         ug/kg         330         370         U         400         U         360         U         400         U           1,2-Dichlorobenzene         ug/kg         330         370         U         400         U         360         U         400         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.32                                                                                                                         | 0.04                                                                                               |
| Parameter         Units         RL           1,2,4-Trichlorobenzene         ug/kg         330         370         U         400         U         360         U         400         U           1,2-Dichlorobenzene         ug/kg         330         370         U         400         U         360         U         400         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                            |                                                                                                    |
| 1,2-Dichlorobenzene ug/kg 330 370 U 400 U 360 U 360 U 400 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              |                                                                                                    |
| 1,2-Dichlorobenzene ug/kg 330 370 U 400 U 360 U 360 U 400 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 380 U                                                                                                                        | 410 U                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 380 U                                                                                                                        | 410 U                                                                                              |
| 1,3-Dichlorobenzene ug/kg 330 370 U 400 U 360 U 360 U 400 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 380 U                                                                                                                        | 410 U                                                                                              |
| 1,4-Dichlorobenzene ug/kg 330 370 U 400 U 360 U 360 U 400 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 380 U                                                                                                                        | 410 U                                                                                              |
| 2,4,5-Trichlorophenol ug/kg 660 370 U 400 U 360 U 360 U 400 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 380 U                                                                                                                        | 410 U                                                                                              |
| 2,4,6-Trichlorophenol ug/kg 330 370 U 400 U 360 U 360 U 400 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 380 U                                                                                                                        | 410 U                                                                                              |
| 2,4-Dichlosophenol ug/kg 330 370 U 400 U 360 U 360 U 400 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 380 U                                                                                                                        | 410 U                                                                                              |
| 2,4-Dimethylphenol ug/kg 330 370 U 400 U 360 U 360 U 400 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 380 U                                                                                                                        | 410 U                                                                                              |
| 2,4-Diniticophenol ug/kg 660 740 U 810 U 720 U 710 U 800 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 760 U                                                                                                                        | 820 U                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 380 U                                                                                                                        | 410 U                                                                                              |
| 2,8-Dinitrologiene ug/kg 330 370 U 400 U 380 U 380 U 400 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 380 U                                                                                                                        | 410 U                                                                                              |
| 2-Chloromaphhalene ug/kg 330 370 U 400 U 360 U 380 U 400 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 380 U                                                                                                                        | 410 U                                                                                              |
| 2-Chlorophenol ug/kg 330 370 U 400 U 380 U 380 U 400 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 380 U                                                                                                                        | 410 U                                                                                              |
| 2-Methylnaphthalene ug/kg 330 370 U 2500 360 U 360 U 400 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                              | 410 U                                                                                              |
| 2-Methylphenol ug/kg 330 370 U 400 U 360 U 360 U 400 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 380 U                                                                                                                        | 410 U                                                                                              |
| 2-Menyphenov 300 850 570 0 400 0 500 0 400 0 400 0 200 0 400 0 400 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                              | 410 U                                                                                              |
| 2-Nitrophenol ug/kg 330 370 U 400 U 360 U 360 U 400 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 380 U<br>380 U<br>380 U                                                                                                      | 410 U                                                                                              |

| Table G-5. Data Presentation: Soil Boring Results, Construction Debris Landfil | <b>l</b> . |
|--------------------------------------------------------------------------------|------------|
| Wallops Flight Facility, Accomack County, Virginia (continued)                 |            |

| Site ID                      |                                        |     | SB-CDL-01 |    | SB-CDL-01 |        | SB-CDL-02 |   | SB-CDL-02 |    | SB-CDL-02 |     | S8-CDL-03 |    | SB-CDL-03<br>SAIC02 |    |
|------------------------------|----------------------------------------|-----|-----------|----|-----------|--------|-----------|---|-----------|----|-----------|-----|-----------|----|---------------------|----|
| Field Sample Number          |                                        |     | SAIC01    |    | SAIC02    |        | SAIC01    |   | SAIC01D   |    | SAIC02    |     | SAIC01    |    | BORE                |    |
| Site Type                    |                                        |     | BORE      |    | BORE      |        | BORE      |   | BORE      |    | BORE      |     | BORE      |    | 08/07/02            |    |
| Collection Date              |                                        |     | 08/07/02  |    | 08/07/02  |        | 08/07/02  |   | 08/07/02  |    | 08/07/02  |     | 08/07/02  |    | 4.00                |    |
| Depth (ft)                   |                                        |     | 6.50      |    | 9.00      |        | 0.00      |   | 0.00      |    | 7.00      |     | 0.00      |    | 4.00                |    |
| 3,3'-Dichlorobenzidine       | ug/kg                                  | 660 | 740       | U  | 810       | U      | 720       | U | 710       | U  | . 800     | U   | 760       | U  | 820                 | U  |
| 3-Nitroaniline               | ug/kg                                  | 330 | 370       | U  | 400       | U      | 360       | υ | 360       | U  | 400       | U   | 380       | U  | 410                 | U  |
| 4,6-Dinitro-2-cresol         | ug/kg                                  | 660 | 740       | U  | 810       | U      | 720       | U | 710       | U  | 800       | U   | 760       | U  | 820                 | U  |
| 4-Bromophenyl phenyl ether   | ug/kg                                  | 330 | 370       | U  | 400       | U.     | 360       | U | 360       | U  | 400       | U   | 380       | U  | 410                 | U  |
| 4-Chloro-3-methylphenol      | ug/kg                                  | 330 | 370       | U  | 400       | U      | 360       | U | 360       | U  | 400       | U   | 380       | U  | 410                 | U  |
| 4-Chloroaniline              | ug/kg                                  | 330 | 370       | U  | 400       | U      | 360       | U | 360       | IJ | 400       | U   | 380       | υ  | 410                 | U  |
| 4-Chlorophenyl phenyl ether  | ug/kg                                  | 330 | 370       | U  | 400       | U      | 360       | U | 360       | U  | 400       | U   | 380       | U  | 410                 | U  |
| 4-Methylphenol               | ug/kg                                  | 330 | 370       | U  | 400       | U      | 360       | U | 360       | U  | 400       | U   | 380       | U  | 410                 | U  |
| 4-Nitroaniline               | ug/kg                                  | 330 | 370       | υ  | 400       | U      | 360       | U | 360       | U  | 400       | U   | 380       | U  | 410                 | U  |
| 4-Nitrophenol                | ug/kg                                  | 660 | 740       | U  | 810       | U      | 720       | U | 710       | U  | 800       | U.  | 760       | U  | 820                 | U  |
| Acenaphthene                 | ug/kg                                  | 330 | 72        | J. | 400       | U      | 360       | U | 360       | Ŭ  | 400       | U   | 380       | Ū  | 410                 | U  |
| Acenaphthylene               | ug/kg                                  | 330 | 370       | U  | 400       | U      | 360       | U | 360       | U  | 400       | U   | 380       | U  | 410                 | U  |
| Anthracene                   | ug/kg                                  | 330 | 150       | J  | 400       | U      | 360       | U | 360       | U  | 400       | บ   | 380       | U  | 410                 | U  |
| Benzo(a)anthracene           | ug/kg                                  | 330 | 270       | J  | 400       | υ      | 360       | υ | 360       | υ  | 400       | υ   | 380       | U  | 410                 | υ  |
| Benzo(a)pyrene               | ug/kg                                  | 330 | 220       | J  | 400       | U      | 360       | U | 360       | U  | 400       | U   | 37        | J  | 410                 | U  |
| Benzo(b)fluoranthene         | ug/kg                                  | 330 | 260       | J  | 400       | Ű      | 360       | Ū | 360       | Ŭ  | 400       | Ū   | 380       | Ū  | 410                 | Ŭ  |
| Benzo(g,h,i)perytene         | ug/kg                                  | 330 | 150       | J  | 400       | U      | 360       | U | 360       | Ú  | 400       | Ü   | 380       | Ũ  | 410                 | Ŭ  |
| Benzo(k)fluoranthene         | ug/kg                                  | 330 | 94        | J  | 400       | U      | 360       | Ū | 360       | Ŭ  | 400       |     | 380       | Ū  | 410                 | Ū  |
| bis(2-chloroethoxy) methane  | ug/kg                                  | 330 | 370       | Ū  | 400       | Ũ      | 360       | Ű | 360       | Ũ  | 400       |     | 380       | Ũ  | 410                 | Ū  |
| bis(2-Chloroethyl) Ether     | ug/kg                                  | 330 | 370       | Ŭ  | 400       | Ũ      | 360       | - | 360       | Ū  | 400       |     | 380       | ΞŪ | 410                 | Ū  |
| bis(2-chloroisopropyi) ether | ug/kg                                  | 330 | 370       | Ū  | 400       | บ      | 360       |   | 360       | Ū  | 400       | ū   | 380       | Ŭ  | 410                 | Ū  |
| bis(2-Ethylhexyl)phthalate   | ug/kg                                  | 330 | 370       | Ū  | 400       | Ũ      | 360       | - | 25        | Ĵ  | 400       | _   | 65        | .ĭ | 410                 | ŭ  |
| Butylbenzyi phthajate        | ug/kg                                  | 330 | 370       | Ū  | 400       | Ū      | 360       | Ū | 360       | Ū  | 400       | -   | 380       | Ū  | 410                 | Ū  |
| Carbazole                    | ug/kg                                  | 330 | 79        | Ĵ  | 400       | Ũ      | 360       | - | 360       | Ũ  | 400       | -   | 380       | ŭ  | 410                 | ŭ  |
| Chrysene                     | ug/kg                                  | 330 | 210       | Ĵ  | 400       | ũ      | 360       |   | 360       | Ŭ  | 400       |     | 380       | บั | 410                 | -  |
| Dibenzo(a,h)anthracene       | ug/kg                                  | 330 | 370       | Ũ  | 400       | ŭ      | 360       | - | 360       | Ū  | 400       | -   | 380       | Ŭ  | 410                 | -  |
| Dibenzofuran                 | ug/kg                                  | 330 | 44        | Ĵ  | 400       | Ũ      | 360       | บ | 360       | Ū  | 400       | -   | 380       | Ũ  | 410                 | Ū  |
| Diethyl phthalate            | ug/kg                                  | 330 | 370       | U  | 400       | U      | 360       | U | 360       | Ú  | 400       | Ú   | 380       | Ũ  | 410                 | Ū  |
| Dimethyl phthalate           | ug/kg                                  | 330 | 370       | U. | 400       | U      | 360       | U | 360       | υ  | 400       | Ŭ   | 380       | Ū  | 410                 | Ū  |
| Di-n-butyl phthalate         | ug/kg                                  | 330 | 370       | U  | 400       | U      | 360       | U | 360       | U  | 400       | บ่  | 380       | Ŭ  | 410                 | Ŭ  |
| Di-n-octyl phthalate         | ug/kg                                  | 330 | 370       | U  | 400       | Ŭ      | 360       | U | 360       | Ŭ  | 400       | IJ  | 380       | ū  | 410                 |    |
| Fluoranthene                 | ug/kg                                  | 330 | 430       |    | 400       | บ      | 360       | Ū | 360       | Ŭ  | 400       | -   | 380       | Ū  | 410                 | -  |
| Fluorene                     | ug/kg                                  | 330 | 78        | J  | 95        | Ĵ      | 360       | Ū | 360       | Ū  | 400       |     | 380       | ũ  | 410                 | -  |
| Hexachlorobenzene            | ug/kg                                  | 330 | 370       | U  | 400       | Ū      | 360       | Ū | 360       | Ū  | 400       | -   | 380       | ũ  | 410                 |    |
| Hexachlorobutadiene          | ug/kg                                  | 330 | 370       | U  | 400       | Ū      | 360       | Ū | 360       | Ū  | 400       | -   | 380       | ū  | 410                 |    |
| Hexachlorocyclopentadiene    | ug/kg                                  | 330 | 370       | U  | 400       | Ū      | 360       |   | 360       | Ŭ  | 400       | -   | 380       | ŭ  | 410                 | -  |
| Hexachloroethane             | ug/kg                                  | 330 | 370       | Ū  | 400       | Ū      | 360       | - | 360       | Ŭ  | 400       |     | 380       | Ũ  | 410                 |    |
| Indeno(1,2,3-cd)pyrene       | ug/kg                                  | 330 | 110       | J  | 400       | Ū      | 360       | Ū | 360       | Ū  | 400       | -   | 380       | Ū  | 410                 |    |
| Isophorone                   | ug/kg                                  | 330 | 370       | Ū  | 400       | Ū      | 360       |   | 360       | Ū  | 400       | -   | 380       | ŭ  | 410                 | -  |
| Naphthalene                  | ug/kg                                  | 330 | 55        |    | 830       | -      | 360       | - | 360       | Ŭ  | 400       |     | 380       | ŭ  | 410                 | -  |
| Nitrobenzene                 | ug/kg                                  | 330 | 370       |    | 400       | U      | 360       | - | 360       | -  | 400       |     | 380       | Ŭ  | 410                 |    |
| N-Nitrosodi-n-propylamine    | ug/kg                                  | 330 | 370       | -  | 400       | -      | 380       |   | 360       |    | 400       |     | 380       | Ŭ  | 410                 | -  |
| N-Nilrosodiphenylamine       | ug/kg                                  | 330 | 370       | -  | 400       | ŭ      | 360       | _ | 360       | -  | 400       |     | 380       | Ŭ  | 410                 | -  |
| Pentachlorophenol            | ug/kg                                  | 660 | 740       | -  | 810       | ŭ      | 720       | - | 710       |    | 400       | -   |           |    |                     | -  |
| Phenanthrene                 | ug/kg                                  | 330 | 530       | -  | 63        |        | 360       |   | 360       | -  | 400       |     | 760       | U  | 820                 |    |
| Phenol                       | ug/kg                                  | 330 | . 370     |    | 400       | U<br>U | 360       |   | 360       |    | 400       | -   | 380       | U  | 410                 |    |
|                              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 000 |           |    |           | U U    | 300       |   | 300       | U  | 400       | ) U | 380       | U  | 410                 | 11 |

- --

-- -- '

-- ---

## Table G-5. Data Presentation: Soil Boring Results, Construction Debris LandfillWallops Flight Facility, Accomack County, Virginia (continued)

| Sile ID                            |       |          | SB-CDL-01 |     | SB-CDL-01 |     | SB-CDL-02 |     | SB-CDL-02 |     | SB-CDL-02 |     | SB-CDL-03 |    | SB-CDL-03 |     |
|------------------------------------|-------|----------|-----------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|----|-----------|-----|
| ield Sample Number                 |       |          | SAIC01    |     | SAIC02    |     | SAIC01    |     | SAIC01D   |     | SAIC02    |     | SAIC01    |    | SAIC02    |     |
| Site Type                          | 6     |          | BORE      |     | BORE      |     | BORE      |     | BORE      |     | BORE      |     | BORE      |    | BORE      |     |
| Collection Date                    |       |          | 08/07/02  |     | 08/07/02  |     | 08/07/02  |     | 08/07/02  |     | 08/07/02  |     | 08/07/02  |    | 08/07/02  |     |
| Depth (ft)                         |       |          | 6.50      |     | 9.00      |     | 0.00      |     | 0.00      |     | 7.00      |     | 0.00      |    | 4.00      |     |
|                                    |       |          |           |     |           |     |           |     |           |     |           |     |           |    |           |     |
| VOLATILE ORGANIC COMP<br>Parameter | Units | <u>"</u> |           |     |           |     |           |     |           |     |           |     |           |    |           |     |
| 1,1,1-Trichloroethane              | ug/kg | 5        | 5.5       | U   | 2100      | U   | 6         | U   | 6.4       | U   | 4.8       | U   | 9.5       | U  | 5.7       | U   |
| 1,1,2,2-Tetrachloroethane          | ug/kg | . 5      | 5.5       | ū   | 2100      | Ũ   | 6         | Ū   | 6.4       | Ŭ   | 4.8       | U   | 9.5       | ប  | 5.7       | U   |
| 1,1,2-Trichloroethane              | ug/kg | 5        | 5.5       | Ū   | 2100      | Ū   | . 6       | Ű.  | 6.4       | U   | 4.8       | U · | 9.5       | U  | 5.7       | U - |
| 1,1-Dichloroethane                 | ug/kg | 5        | 5.5       | Ū   | 2100      | Ŭ   | 6         | U   | 6.4       | U   | 4.8       | υ   | 9.5       | U  | 5.7       | υ   |
| 1,1-Dichloroethene                 | ug/kg | 5        | 5.5       | Ū   | 2100      | Ū   | 6         | U   | 6.4       | U   | 4.8       | U   | 9.5       | υ  | 5.7       | U   |
| 1,2-Dichloroethane                 | ug/kg | 5        | 5.5       | Ū   | 2100      | Ū   | 6         | U   | 6.4       | Ū   | 4.8       | U   | 9.5       | U  | 5.7       | U   |
| .2-Dichloropropane                 | ug/kg | 5        | 5,5       | Ũ   | 2000      | J   | 6         | Ū   | 5.4       | Ū   | 4.8       | U   | 9.5       | U  | 5.7       | U   |
| 2-Hexanone                         | ug/kg | 10       | 11        | Ū   | 4100      | Ū   | 12        | Ũ   | 13        | Ū   | 9.5       | Ŭ   | 19        | Ű  | 11        | U   |
| Acetone                            | ug/kg | 10       | 12        | Ũ   | 4100      | บิม | 38        | Ū   | 55        | Ũ   | 9.5       | Ū   | 55        | Ū  | 15        | U   |
| Benzene                            | ug/kg | 5        | 5.5       | Ū   | 2100      | Ŭ   | 6         | Ū   | 6.4       | Ū   | 4.8       | Ú.  | 9.5       | Ū  | 5.7       | U   |
| Bromodichloromethane               | ug/kg | 5        | 5.5       | Ū   | 2100      | Ū   | . 6       | Ū   | 6.4       | Ũ   | 4.8       | Ū   | 9.5       | Ū  | 5.7       | U   |
| Bromoform                          | ug/kg | 5        | 5.5       | U - | 2100      | U   | 6         | U   | 6.4       | U   | 4.8       | U   | 9.5       | U  | 5.7       | U   |
| Bromomethane                       | ug/kg | 5        | 5.5       | U   | 2100      | U   | . 6       | ប   | 6.4       | U   | 4.8       | U   | 9.5       | U  | 5.7       | U   |
| Carbon disulfide                   | ug/kg | 5        | 5.5       | U   | 2100      | U   | 6         | U   | 6.4       | U - | 4.8       | U   | 9.5       | U  | 5.7       | ីប  |
| Carbon Tetrachloride               | ug/kg | 5        | 5.5       | U   | 2100      | U   | 6         | U   | 6.4       | U   | 4.8       | U   | 9.5       | U  | 5.7       | U   |
| Chlorobenzene                      | ug/kg | 5        | 5.5       | Ū   | 2100      | Ū   | . 6       | Ŭ   | 6.4       | Ū   | 4.8       | U   | 9.5       | Ū  | 5.7       | .U  |
| Chloroethane                       | ug/kg | 5        | 5.5       | υ   | 2100      | ป   | 6         | U   | 6.4       | U   | 4.8       | U · | 9.5       | U  | 5.7       | U.  |
| Chloroform                         | ug/kg | 5        | 5.5       | บ   | 2100      | U   | 6         | U   | 6.4       | U   | 4.8       | U   | 9.5       | υ  | 5.7       | U   |
| Chloromethane                      | ug/kg | 5        | 5.5       | υ   | 2100      | U   | 6         | U   | 6.4       | ບ   | 4.8       | U   | 87        |    | 5.7       | U   |
| cis-1,2-Dichloroethene             | ug/kg | 5        | 5.5       | U   | 2100      | U   | 6         | U   | 6.4       | U   | 4.8       | U   | 9.5       | U  | 5.7       | U   |
| cis-1,3-Dichloropropene            | ug/kg | 5        | 5.5       | U   | 2100      | U   | 6         | U   | 6.4       | U   | 4.8       | U   | 9.5       | U  | 5.7       | U   |
| Dibromochloromethane               | ug/kg | 5        | 5.5       | U   | 2100      | U   | 6         | U   | 6.4       | U   | 4.8       | U   | 9.5       | Ú  | 5.7       | U   |
| Ethylbenzene                       | ug/kg | 5        | 5.5       | U   | 12000     | J   | 6         | U   | 6.4       | U   | 4.8       | U   | 9.5       | U  | 5.7       | U   |
| n-and/or p-Xylene                  | ug/kg | 5        | 5.5       | U   | 9600      | J   | 6         | U   | 6.4       | U   | 4.8       | U   | 9.5       | U  | 5.7       | U   |
| Methyl ethyl ketone                | ug/kg | 10       | 11        | ŪJ  | 4100      | Ū   | 12        | ŬJ  | 13        | ŬJ  | 9.5       | UJ  | 19        | ŨJ | - 11      | ŪJ  |
| lethyl isobutyl ketone             | ug/kg | 10       | 11        | U   | 4100      | Ŭ   | 12        | U   | 13        | U   | 9.5       | U   | 19        | U  | 11        | U   |
| Aethylene Chloride                 | ug/kg | 5        | 5.6       | Ū   | 2200      | Ū   | 6         | Ū   | 6.4       | Ũ   | 4.8       | Ũ   | 9.7       | ŨJ | 5.7       | Ū   |
| -xylene                            | ug/kg | 5        | 5.5       | U   | 2100      | Ū   | 6         | U   | 6.4       | U   | 4.8       | U   | 9.5       | U  | 5.7       | ΰ   |
| Styrene                            | ug/kg | 5        | 5.5       | Ū   | 2100      | Ū   | 6         | Ū   | 6.4       | U   | 4.8       | U   | 9.5       | Ū  | 5.7       | U   |
| etrachloroethene                   | ug/kg | - 5      | 5.5       | U   | 1100      | J   | 6         | U   | 6.4       | U   | 4.8       | U   | 9.5       | U. | 5.7       | U   |
| oluene                             | ug/kg | 5        | 5.5       | Ŭ   | 2100      | Ŭ   | 6         | Ű   | 6.4       | U   | 4.8       | U   | 9.5       | U  | 5.7       | U   |
| ans-1,2-Dichloroethene             | ug/kg | 5        | 5.5       | Ū   | 2100      | บ   | · 6       | Ũ   | 6.4       | Ū   | 4.8       | Ū   | 9.5       | Ū  | 5.7       | Ū   |
| rans-1,3-Dichloropropene           | ug/kg | 5        | 5.5       | Ū   | 2100      | Ū   | 6         | U   | 6.4       | Ū   | 4.8       | U   | 9.5       | Ū  | 5.7       | Ū   |
| Frichloroethene                    | ug/kg | 5        | 5.5       | บ   | 2100      | Ū   | 6         | Ű   | 6.4       | Ũ   | 4.8       | Ū   | 9.5       | Ū  | 5.7       | Ū   |
| Vinyl Chloride                     | ug/kg | 5        | 5.5       |     | 2100      | ũ   | Ř         | - Ĥ | 6.4       | Ξū. | 4.8       | Ū   | 9.5       | Ū  | 5.7       |     |

#### Table G-5. Data Presentation: Soil Boring Results, Construction Debris Landfill Wallops Flight Facility, Accomack County, Virginia (continued)

#### Footnotes:

B - Metals: Reported value was less than the contract required detection limit but greater than or equal to the instrument detection limit.

B - Organics: Analyte was found in the associated method blank. Validation of the data did not result in this compound being qualified as nondetect due to blank contamination.

Therefore this result is considered to be site related.

D - The value for the target analyte was calculated from a dilution.

E - Metals: The reported value is estimated because of the presence of interferents.

E - Organics: Concentration range exceeded for this analyte.

J - Value is estimated.

N - Metals: Spiked sample recovery not within control limits.

N - Organics; Tentatively identified compound based on mass spectral library search.

P - There is greater than 25% difference for detected concentrations between the two GC columns for the associated pesticide/PCB target analyte.

R - Value is rejected.

U - Compound was analyzed for but not detected.

UJ - Compound was analyzed for but not detected and is considered an estimate.

X - The mass spectrum does not meet EPA CLP criteria for confirmation, but compound presence is strongly suspected.

\* - Duplicate analysis not within control limits.

N/A - Compound not analyzed for.

NF - Data not found.

RL - Reporting Limit for each method. For SW846 methods, the samples are reported down to the method detection limits (MDL). For metals, the samples are reported down to

the instrument detection limit (IDL).

MDL - Method Detection Limit.

SAICXXR - An SAIC field sample number followed by an "R" designates a recollected sample.

## Table G-6. Data Presentation: Groundwater Results, Construction Debris Landfill Wallops Flight Facility, Accomack County, Virginia

Å.

· É

| Site ID                           |                  |                | HP-CDL-01 |      | HP-CDL-02 |    | HP-CDL-03 | _      |
|-----------------------------------|------------------|----------------|-----------|------|-----------|----|-----------|--------|
| Field Sample Number               |                  |                | SAIC01    |      | SAIC01    |    | SAIC01    |        |
| Sile Type                         |                  |                | PNCH      |      | PNCH      |    | PNCH      |        |
| Collection Date                   |                  |                | 08/07/02  |      | 08/07/02  |    | 08/07/02  |        |
| Depth (ft)                        |                  |                | 10.00     |      | 8.00      |    | 4.00      |        |
| pepin (n)                         | ·····            |                | (0.00     |      | 0.00      |    |           |        |
| WETALS(8010)                      |                  |                |           |      |           |    |           |        |
| Parameter                         | Units            | RL             |           |      |           | ·  |           |        |
| Aluminum                          | ug/L             | 200            | 30.9      | UJ   | 30.9      | UJ | 30.9      | υ.     |
| Antimony                          | ug/L             | 6              | 2.5       | UJ . | 2.5       | UJ | 2.5       | 0.     |
| Arsenic                           | ug/L             | 10             | 12.7      | U    | 3.4       | U  | 3.4       | U      |
| Barlum                            | ug/L             | 200            | 28        |      | 18.7      |    | 315       |        |
| Beryllium                         | ug/L             | 5              | 0.1       | U    | 0.1       | U  | 0.1       | U      |
| Cadmium                           | ug/L             | 5              | 0.35      | B    | 0.3       | U  | 0.3       | U      |
| Calcium                           | ug/L             | 1000           | 17000     |      | 33600     |    | 54000     |        |
| Chromium                          | ug/L             | 10             | 1.3       | U    | 1.3       | U  | 3.4       | В      |
| Cobalt                            | ug/L             | 50             | 0.6       | ŭJ   | 0.6       | ŬJ | 0.6       | Ū.     |
| Copper                            | ug/L             | 10             | 2.2       | Ū    | 5.6       | Ű  | 3         | Ŭ      |
| Iron                              | ug/L             | 100            | 28600     | •    | 24.3      | Ŭ  | 359       | 2      |
| Lead                              | ug/L             | 3              | 13.6      |      | 1.6       | ŭ  | 1.6       | U      |
| Magneslum                         | ug/L             | 1000           | 1110      |      | 8500      |    | 6210      |        |
|                                   | -                | 1000           | 791       |      | 105       |    | 451       |        |
| Manganese                         | ug/L             |                |           |      |           |    |           |        |
| Nickel                            | ug/L             | 10             | 1.1       | U    | 1.1       | U  | 14.3      |        |
| Potasslum                         | ug/L             | 1000           | 2220      |      | 2360      |    | 4300      |        |
| Selenium                          | ug/L             | 5              | 3.5       | U    | 3.5       | U  | 3.5       | U      |
| Silver                            | ug/L             | 10             | 0.6       | U    | 0.6       | U  | 0.6       | υ      |
| Sodium                            | ug/L             | 1000           | 9040      |      | 9670      |    | 9530      |        |
| Thailium                          | ug/L             | 10 .           | 2.7       | U    | 2.7       | U  | . 2.7     | U      |
| Vanadium                          | ug/L             | 50             | 3.1       | В    | 0.79      | В  | 0.7       | U      |
| Zinc                              | ug/L             | 20             | 9.3       | U    | 4.5       | U  | 87.4      |        |
| METALS(7470)                      |                  |                |           |      |           |    |           |        |
| Parameter                         | Units            | RL             |           |      |           |    |           |        |
| Mercury                           | ug/L             | 0.2            | 0.1       | Ú    | 0.1       | U  | 0.1       | U      |
|                                   |                  |                |           |      |           |    |           |        |
| SEMIVOLATILE ORGANIC<br>Parameter | COMPOUN<br>Units | DS(8270)<br>RL |           |      |           |    |           |        |
| 1,2,4-Trichlorobenzene            | ug/L             | 10             | 14        | U    | 14        | U  | 13        | U      |
| 1.2-Dichlorobenzene               | ug/L             | 10             | 14        | Ŭ    | 14        | Ū  | 13        | Ū      |
| 1.3-Dichlorobenzene               | ug/L             | 10             | 14        | ũ    | - 14      | ŭ  | 13        | ū      |
| 1,4-Dichlorobenzene               | ug/L             | 10             | 14        | Ū    | 14        | Ŭ  | 13        | Ū      |
| 2,4,5-Trichlorophenol             | ug/L             | 20             | 14        | ŭ    | 14        | บั | 13        | บั     |
| 2.4.6-Trichlorophenol             | ug/L             | 10             | 14        | Ŭ    | 14        | บ  | 13        | ŭ      |
| 2,4-Dichlorophenol                | •                | 10             | 14        | ŭ    | 14        | Ŭ  | 13        | บ      |
| -                                 | ug/L             | 10             | 10.4      | J    | 14        | Ŭ. |           | U<br>U |
| 2,4-Dimethylphenol                | ug/L             | -              |           | -    | • •       |    | 13        | -      |
| 2,4-Dinitrophenol                 | ug/L             | 20             | 29        | U    | 29        | U  | 25        | U      |
| 2,4-Dinitrotoluene                | ug/L             | 10             | 14        | U    | 14        | U  | 13        | U      |
| 2,6-Dinitrotoluene                | ug/L             | 10             | 14        | U    | 14        | U  | 13        | JU     |
| 2-Chloronaphthalene               | ug/L             | 10             | 14        | U    | 14        | U  | 13        | Ľ      |
| 2-Chlorophenol                    | ug/L             | 10             | 14        | Ū    | 14        | U  | . 13      | U      |
| 2-Methylnaphthalene               | ug/L             | 10             | 49        |      | 14        | U  | 13        | Ŭ      |
| 2-Methylphenol                    | ug/L             | 10             | 27        |      | 14        | U  | - 13      | U      |
| 2-Nitroaniline                    | ug/L             | 10             | 14        | U    | 14        | Ŭ  | 13        | Ū      |
|                                   |                  |                |           |      |           |    |           |        |

- A harring

### Table G-6. Data Presentation: Groundwater Results, Construction Debris Landfill Wallops Flight Facility, Accomack County, Virginia (continued)

| Site ID                      |      |     | HP-CDL-01 |     | HP-CDL-02 |        | HP-CDL-03 |     |
|------------------------------|------|-----|-----------|-----|-----------|--------|-----------|-----|
| Field Sample Number          |      |     | SAIC01    |     | SAIC01    | •      | SAIC01    |     |
| Site Type                    |      |     | PNCH      |     | PNCH      |        | PNCH      |     |
| Collection Date              |      |     | 08/07/02  |     | 08/07/02  |        | 08/07/02  |     |
| Depth (ft)                   |      |     | 10.00     |     | 8.00      |        | 4.00      |     |
| 3,3'-Dichlorobenzidine       | սց/Լ | 20  | 29        | Ų   | 29        | U      | 25        | U.  |
| 3-Nitroaniline               | ug/L | 10  | 14        | U   | 14        | U      | 13        | U   |
| 4,6-Dinitro-2-cresol         | ug/L | 20  | 29        | U.  | 29        | U      | 25        | U   |
| 4-Bromophenyl phenyl ether   | ug/L | 10  | 14        | ប   | 14        | U      | 13        | U   |
| 4-Chloro-3-methylphenol      | ug/L | 10  |           | U   | · 14      | U      | 13        | U   |
| 4-Chloroaniline              | ug/L | 10  |           | U   | 14        | U      | 13        | - U |
| 4-Chlorophenyl phenyl ether  | ug/L | 10  | 14        | U   | . 14      | . U    | 13        | υ   |
| 4-Methylphenol               | ug/L | 10  | 46        |     | 14        | U      | 13        | U   |
| 4-Nitroaniline               | ug/L | 10  | . 14      | U   | 14        | Ű      | 13        | Ū   |
| 4-Nitrophenol                | ug/L | 20  | 29        | U   | 29        | Ú      | 25        | Ū   |
| Acenaphthene                 | ug/L | 10  | 14        | U.  | 14        | Ũ.     | 13        | บั  |
| Acenaphthylene               | ug/L | 10  | 14        | Ū   | 14        | Ū      | 13        | Ũ   |
| Anthracene                   | uo/L | 10  | 14        | ũ   | 14        | ŭ      | 13        | Ŭ   |
| Benzo(a)anthracene           | ug/L | 10  | 14        | ŭ   | 14        | ŭ      | 13        | ŭ   |
| Benzo(a)pyrene               | ug/L | 10  | 14        | ŭ   | 14        | ŭ      | 13        | ŭ   |
| Benzo(b)fluoranthene         | ug/L | 10  | 14        | ŭ   | 14        | ŭ      | 13        | ŭ   |
| Benzo(g,h,i)perviene         | ug/L | 10  | 14        | ŭ   | - 14      | Ŭ      | 13        | Ŭ   |
| Benzo(k)fluoranthene         | ug/L | 10  | 14        | Ŭ   | 14        | υ<br>υ | 13        | Ŭ   |
| bis(2-chloroethoxy) methane  | ug/L | 10  | 14        | ŭ.  | 14        | Ŭ      | 13        | Ŭ   |
| bis(2-Chloroethyl) Ether     | ug/L | 10  | 14        | Ŭ   | 14        | U      |           | -   |
| bis(2-chloroisopropyl) ether | սց/Լ | 10  | 14        | ŭ   | 14        | _      | 13        | U   |
| bis(2-Ethylhexyl)phthalate   |      | 10  | 14        | U   |           | U I    | 13        | U   |
| Butylbenzyl phthalate        | ug/L | 10  |           | U   | 14        | U      | 13        | U   |
| Carbazole                    | ug/L | • • | 14        |     | 14        | U :    | 13        | U   |
| Chrysene                     | ug/L | 10  | 14        | U   | 14        | U.     | 13        | U   |
|                              | ug/L | 10  | 14        | U   | 14        | U      | 13        | U   |
| Dibenzo(a,h)anthracene       | ug/L | 10  | 14        | U · | - 14      | U      | 13        | U   |
| Dibenzofuran                 | ug/L | 10  | 14        | U   | 14        | U      | 13        | U   |
| Diethyl phthalate            | ug/L | 10  | 14        | U   | 14        | U.     | 13        | -   |
| Dimethyl phthalate           | ug/L | 10  | 14        | U   | 14        | U      | 13        |     |
| Di-n-butyl phthalate         | ug/L | 10  | 14        | U   | 14        | U      | 13        | -   |
| Di-n-octyl phthalate         | ug/L | 10  | 14        | U   | - 14      | U      | 13        |     |
| Fluoranthene                 | ug/L | 10  | 14        | U   | 14        | U      | 13        | U   |
| Fluorene                     | ug/L | 10  | 14        | U   | 14        | U      | - 13      | U   |
| Hexachlorobenzene            | ug/L | 10  | 14        | U   | 14        | U      | 13        | U   |
| Hexachlorobutadiene          | ug/L | 10  | . 14      | U   | . 14      | U .    | 13        | U   |
| Hexachlorocyclopentadiene    | ug/L | 10  | 14        | U   | 14        | ປ່     | 13        | U   |
| Hexachloroethane             | ug/L | 10  | 14        | U   | 14        | U      | 13        | U   |
| Indeno(1,2,3-cd)pyrene       | ug/L | 10  | 14        | U   | 14        | U      | 13        | U   |
| Isophorone                   | ug/L | 10  | 14        | U   | 14        | Ū      | -13       |     |
| Naphthalene                  | ua/L | 10  | 120       | -   | 14        | ŭ      | 13        | -   |
| Nitrobenzene                 | ug/L | 10  | 14        | U   | 14        | ŭ      | 13        | -   |
| N-Nitrosodi-n-propylamine    | ug/L | 10  | 14        | Ŭ   | 14        | ŭ      | 13        | -   |
| N-Nitrosodiphenylamine       | ug/L | 10  | 14        | Ŭ   | 14        | บ      | 13        | -   |
| Pentachlorophenol            | ug/L | 20  | 29        | Ŭ   | 29        | U.     |           | -   |
| Phenanthrene                 | ug/L | 10  | 29        | U   |           | -      | 25        |     |
| Phenol                       | -    | 10  |           |     | 14        | U      | 13        |     |
|                              | ug/L |     | 14        | U.  | 14        | U      | 13        |     |
| Pyrene                       | ug/L | 10  | - 14      | UJ  | 14        | UJ     | 13        | UJ. |

|                                    |               |           | •         | •        | 9              |        |           |          |
|------------------------------------|---------------|-----------|-----------|----------|----------------|--------|-----------|----------|
| Site ID                            |               |           | HP-CDL-01 |          | HP-CDL-02      | ·····  | HP-CDL-03 |          |
| Field Sample Number                |               |           | SAIC01    |          | SAIC01         |        | SAIC01    |          |
| Site Type                          |               |           | PNCH      |          | PNCH           |        | PNCH      |          |
| Collection Date                    |               |           | 08/07/02  |          | 08/07/02       |        | 08/07/02  |          |
| Depth (ft)                         |               |           | 10.00     |          | 8.00           |        | 4.00      |          |
| · · ·                              |               |           |           |          |                |        |           |          |
| VOLATILE ORGANIC COMP              |               | 60)<br>RL |           |          |                |        |           |          |
| Parameter<br>1,1,1-Trichloroethane | Units<br>ua/L | <u></u>   | 1         | ÛJ       | 1              | U      | 1         | UJ       |
| 1,1,2,2-Tetrachloroethane          | ug/L<br>ug/L  |           | 1         | 01       | 1              | Ŭ      | · ·       | UU<br>UU |
| 1,1,2,2-1 etrachioroethane         | ug/L          |           | 1         | UJ       | 1              | บั     | 1         | UJ       |
| 1,1,2-1 nonioroethane              |               |           | · · · · · | UJ       |                | Ŭ      | 1         | 03       |
|                                    | ug/L          | 1         | 1         | UJ<br>UJ | ł              | 0      | 1         | 03       |
| 1,1-Dichloroethene                 | ug/L          |           | •         | UJ<br>UJ |                | U      | 1         | 03       |
| 1,2-Dichloroethane                 | ug/L          | 1         | 1         | UJ       | 1              | U<br>U | 1         | 03       |
| 1,2-Dichloropropane                | ug/L          | 1         | 1         |          | 1 5            | U -    | 1         | 01       |
| 2-Hexanone                         | ug/L          | 5         | 5<br>5    | ມ        |                | U      | 5         | 00<br>00 |
| Acetone                            | ug/L          | . 5       | -         | UJ<br>UJ | 5.2<br>0.54    |        |           | 01       |
| Benzene                            | ug/L          | 1         | 500       |          |                | 1      | 1         |          |
| Bromodichloromethane               | ug/L          | ]         | 1         | UJ       | 1              | U      | 1         | UJ       |
| Bromoform                          | ug/L          | 1.        | 1         | UJ       | 1              | -      | •         |          |
| Bromomethane                       | ug/L          | 1         | 1         | UJ       | 1              | UJ     | 1         | UJ       |
| Carbon disulfide                   | ug/L          | 1         | 1         | UJ       | 1              | U      | 1         | UJ       |
| Carbon Tetrachloride               | ug/L          | 1         | 1         | UJ       | 1              | U      | 1         | UJ       |
| Chlorobenzene                      | ug/L          | 1         | 1         | UJ       | 1              | U      | 1         | UJ       |
| Chloroethane                       | ug/L          | 1         | 1         | UJ       | 1              | U      | 1         | UJ       |
| Chloroform                         | ug/L          | 1         | 1         | UJ       | 1              | U      | 1         | UJ       |
| Chloromethane                      | ug/L          | 1         | 0.7       | J        | 1              | U      | · 1       | UJ       |
| cis-1,2-Dichloroethene             | ug/L          | 1         | 12        | J        | 1              | U      | 2.3       | J        |
| cis-1,3-Dichloropropene            | ug/L          | 1         | · · · 1   | បរ       | - 1 - <b>1</b> | UJ .   | 1         | UJ       |
| Dibromochloromethane               | ug/L          | 1         | 1         | UJ       | 1              | U      | 1         | UJ       |
| Ethylbenzene                       | ug/L          | 1         | 920       | J        | 1              | U      | 1         | UJ       |
| m-and/or p-Xylene                  | ug/L          | 1         | 3700      | З        | 1              | U      | 1         | IJ       |
| Methyl ethyl ketone                | ug/L          | 5         | 5         | IJ       | 5              | U      | 5         | UJ       |
| Methyl isobutyl ketone             | ug/L          | 5         | - 5       | UJ       | 5              | UJ     | 5         | UJ       |
| Methylene Chloride                 | ug/L          | 1         | . 1       | ÚJ       | 2.2            | UJ .   | 2         | UJ       |
| o-xylene                           | ug/L          | 1         | 1700      | J.       | 1              | U      | - 1       | UJ       |
| Styrene                            | ug/L          | 1         | 22        | J        | 1              | Ū.     | 1         | UJ       |
| Tetrachloroethene                  | ug/L          | 1         | 12        | ្វី      | ;              | Ŭ      | i         | ŪJ       |
| Toluene                            | ug/L          | 1         | 12000     | Ĵ        | 1.1            | •      | 1         | UJ       |
| trans-1,2-Dichloroethene           | ug/L          | 1         | 1         | ŬJ       | 1              | U      | f         | U.       |
| trans-1,3-Dichloropropene          | ug/L          | 1         | i         | ŬĴ       |                | ŭ      |           | Ű        |
| Trichloroethene                    | ug/L          | ÷         | 1.1       | 1        | 1              | ŭ      | 1         | ບັ       |
| Vinyl Chloride                     | ug/L          | -         | 1         | ŮJ       | · · · ·        | ŭ      | 1         | UJ       |

#### Table G-6. Data Presentation: Groundwater Results, Construction Debris Landfill Wallops Flight Facility, Accomack County, Virginia (continued)

#### Footnotes:

B - Metals: Reported value was less than the contract required detection limit but greater than or equal to the instrument detection limit.

B - Organics: Analyte was found in the associated method blank. Validation of the data did not result in this compound being qualified as nondetect due to blank contamination. Therefore this result is considered to be site related.

D - The value for the target analyte was calculated from a dilution.

E - Metals: The reported value is estimated because of the presence of interferents.

E - Organics: Concentration range exceeded for this analyte.

J -- Value is estimated.

N - Metals: Spiked sample recovery not within control limits.

N - Organics: Tentatively identified compound based on mass spectral library search.

P - There is greater than 25% difference for detected concentrations between the two GC columns for the associated pesticide/PCB target analyte.

R - Value is rejected.

U - Compound was analyzed for but not detected,

UJ - Compound was analyzed for but not detected and is considered an estimate.

X - The mass spectrum does not meet EPA CLP criteria for confirmation, but compound presence is strongly suspected.

\* - Duplicate analysis not within control limits.

N/A - Compound not analyzed for.

NF - Data not found.

RL - Reporting Limit for each method. For SW846 methods, the samples are reported down to the method detection limits (MBL). For metals, the samples are reported down to the Instrument detection limit (IDL).

MDL - Method Detection Limit.

SAICXXR - An SAIC field sample number followed by an "R" designates a recollected sample.

#### APPENDIX H PHOTOGRAPHS



ENTRANCE TO SB-CDL-01 (CDL Site Conditions)



SB-CDL-02 SAMPLING LOCATION (Adjacent to Northern Man-made Channel)

#### NITNARITV



SB-CDL-02 SAMPLING LOCATION

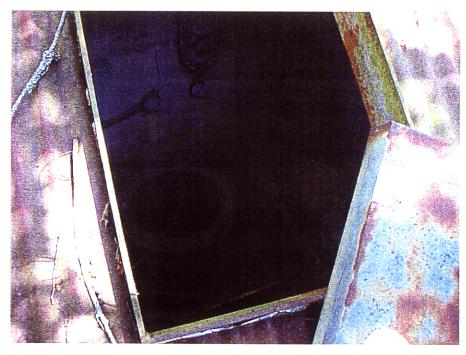


ENTRANCE TO SB-CDL-03 SAMPLING LOCATION



SB-IWL-02 SAMPLING LOCATION




SB-IWL-03 SAMPLING LOCATION



OLD WWTP ACCESS ROAD



UST FILL PORT (SAMPLING ACCESS)



VIEW FROM DOGHOUSE OPENING